<u>P block</u>

Inert pair effect

It is the reluctance of s-electrons to participate in chemical binding. It is commonly seen in the elements of groups 13, 14 & 15.

<u>Borax</u>

- It is a white crystalline solid with formula Na₂B₄O₇·10H₂O (Sodium tetra boratedecahydrate) . its correct formula is Na₂[B₄O₅ (OH)₄].8H₂O.
- On heating, borax first loses water molecules and swells up. On further heating it turns into a transparent liquid, which solidifies into glass like material known as borax bead.
- The metaborates of many transition metals have characteristic colours and, therefore, borax bead test can be used to identify them in the laboratory.
- Borax dissolves in water to give NaOH and orthoboric acid. Since NaOH is a strong alkali and orthoboric acid is weak acid, the solution is basic in nature.

ORTHO BORIC ACID

- Orthoboric acid (boric acid) is prepared by acidifying an aqueous solution of borax.
- Orthoboric acid is a weak monobasic non-protic acid. It acts as a Lewis acid by accepting electrons from a hydroxyl ion.

DIBORANE

• Diborane is the simplest boron hydride. It is prepared by treating BF₃ (LiAlH4) in ether or with NaH

 $2BF_3 + 6NaH \rightarrow B_2H_6 + 6NaF$

• The two boron atoms and 4 hydrogen atoms lie in one plane. These four H atoms are called terminal hydrogen. The other two hydrogen atoms l lie one above and one below this plane. These H atoms are called bridging hydrogen atoms. The four terminal B H bonds are regular two centre-two electron bonds while the two bridge

(B- H-B) bonds are three centre- two electron (3c-2e) bonds. Thus diborane is an electron deficient compound.

structure of diborane

• Each B atom uses sp³ hybrids for bonding. one is without an electron shown in broken lines. The terminal B-H bonds are (2c-2e) bonds but the two bridge bonds are (3c-2e) bonds or banana bonds

H).

 Borazine (B₃N₃H₆) is called inorganic benzene. It is prepared by the reaction of ammonia with diborane

Its structure is similar to benzene with alternate BH and NH groups

Diamond	Graphite	Fullerenes
• carbon atom	 layered structure. 	These are the cage
undergoes sp ³	• Each layer contains	like spherical
hybridisation and	planar hexagonal	molecules of
linked to four other	rings • Here each carbon	 C₆₀, C₇₀, C₇₆, prepared by heating
carbon atoms in a	atom is in sp ²	of graphite in an
three dimensional	hybridisation	electric arc in the
network		presence of inert
• diamond is a hardest	elecrtrons are	gases like helium or
substance	delocalised and are	argon.
• for sharpening hard	mobile.	• The most commonly
tools	• graphite conducts	known fullerene is
	electricity. • Due to lavered	C _{60,} Buckminster
	structure, it is very	fullerene. All the carbon atoms
	soft and slippery.lubricant in machines	areequal and they

ALLOTROPES OF CARBON

Graphite is the most	undergo sp ²
stable allotrope of	hybridisation.
carbon.	

SILICA

In CO₂ molecule, C atom undergoes sp hybridisation. So it has a linear shape. But in silica (SiO₂₎, each silicon atom undergoes sp3 hybridisation.

SILICONES

They are a group of organosilicon polymers, which have (-R₂SiO-) as a repeating unit. The starting materials for the manufacture of silicones are alkyl or aryl substituted silicon chlorides,

SILICATES

These are compounds of Si in which each silicon atom is bonded to four oxygen atoms in tetrahedral manner. In silicates, either the discrete SiO₄ ⁴⁻ units are present or a number of such units are joined together by sharing oxygen atoms. When silicate units are linked together, they form chain, ring, sheet or three-dimensional structures.

Zeolites are aluminosilicates of metals. These are widely used as a catalyst in petrochemical industries for cracking of hydrocarbons and isomerisation. E.g. the zeolite ZSM-5 is used to convert alcohols directly into gasoline. Hydrated zeolites are used as ion exchangers in softening of hard water.