Assignments in Mathematics Class X (Term I)

6. TRIANGLES

IMPORTANT TERMS, DEFINITIONS AND RESULTS

- Two figures having the same shape but not necessarily the same size are called similar figures.
- All the congruent figures are similar but the converse is not true.
- Two polygons of the same number of sides are similar, if (i) their corresponding angles are equal and (ii) their corresponding sides are in the same ratio (i.e., proportion).
- Two triangles are similar, if
(i) their corresponding angles are equal
(ii) their corresponding sides are in the same ratio (or proportion).

- Basic Proportionality Theorem (B.P.T.) (Thales Theorem)

In a triangle, a line drawn parallel to one side, to intersect the other sides in distinct points, divides the two sides in the same ratio.

In $\triangle \mathrm{ABC}$, if $\mathrm{DE} \| \mathrm{BC}$ then $(i) \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
(ii) $\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}$
(iii) $\frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}}$

- Converse of Basic Proportionality Theorem

If a line divides any two sides of a triangle in the same ratio, the line is parallel to the third side.

In $\triangle \mathrm{PQR}$, if $\frac{\mathrm{PS}}{\mathrm{SQ}}=\frac{\mathrm{PT}}{\mathrm{TR}}$, then $\mathrm{ST} \| \mathrm{QR}$.

- If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar (AAA similarity criterion).
- If in two triangles, two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are similar ($A A$ similarity criterion).
- If in two triangles, corresponding sides are in the same ratio, then their corresponding angles are equal and hence the triangles are similar (SSS similarity criterion).
- If one angle of a triangle is equal to the one angle of another triangle and the sides including these angles are in the same ratio (proportional), then the triangles are similar (SAS similarity criterion).
- If a perpendicular is drawn from the vertex of the right angle of a right triangle to hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and also to each other.
- The ratio of the areas of two similar triangles are equal to the ratio of the squares of any two corresponding sides.
- The areas of two similar triangles are in the ratio of the squares of the corresponding altitudes.
- The areas of two similar triangles are in the ratio of the squares of the corresponding medians.
- If the areas of two similar triangles are equal, then the triangles are congruent, i.e., equal and similar triangles are congruent.
- The Pythagoras Theorem

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. In figure, $\angle B=90^{\circ}$, so, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+$ BC^{2}.

- Converse of the Pythagoras Theorem

In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle.

A. Important Questions

1. In the figure, if $\frac{A E}{E B}=\frac{A F}{F C}$, then we can conclude
that :

(a) E and F are the mid-points of $A B$ and $A C$ respectively
(b) $E F \| B C$
(c) $\frac{E F}{B C}=\frac{A B}{A C}$
(d) none of the above
2. In the triangle $A B C, D E \| B C$, then the length of $D B$ is :

(a) 2.5 cm
(b) 5 cm
(c) 3.5 cm
(d) 3 cm
3. In $\triangle A B C$, if $D E \| B C$, then the value of x is:

(a) 4
(b) 6
(c) 8
(d) 9
4. In the trapezium $A B C D, A B \| C D$, then the value of x is :

(a) 2
(b) 3
(c) -2
(d) -3
5. In the $\triangle D E F, L M \| E F$ and $\frac{D M}{M F}=\frac{2}{3}$. If $D E=5.5 \mathrm{~cm}$, then $D L$ is :

(a) 2.5 cm
(b) 2.4 cm
(c) 2.2 cm
(d) 2 cm
6. In the given figure, $P Q=1.28 \mathrm{~cm}, P R=2.56 \mathrm{~cm}$, $P E=0.18 \mathrm{~cm}$ and $P F=0.36 \mathrm{~cm}$, then :

(a) $E F$ is not parallel to $Q R$
(b) $E F \| Q R$
(c) cannot say anything
(d) none of the above
7. In the given figure, if $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$, then BC is equal to :

(a) 4.5°
(b) 3
(c) 3.6
(d) 2.4
8. In the given figure. $\triangle A C B \sim \triangle A P Q$. If $B C=8 \mathrm{~cm}$, $P Q=4 \mathrm{~cm}, B A=6.5 \mathrm{~cm}$ and $\mathrm{AP}=2.8 \mathrm{~cm}$, then the length of $A Q$ is :

(a) 3.25 cm (b) 4 cm
(c) 4.25 cm
(d) 3 cm
9. If $\triangle A B C \sim \triangle P Q R$ and $\angle P=50^{\circ}, \angle B=60^{\circ}$, then $\angle R$ is :
(a) 100°
(b) 80°
(c) 70°
(d) cannot be determined
10. $\triangle A B C \sim \triangle D E F$ and the perimeters of $\triangle A B C$ and $\triangle D E F$ are 30 cm and 18 cm respectively.
If $B C=9 \mathrm{~cm}$, then $E F$ is equal to :
(a) 6.3 cm
(b) 5.4 cm
(c) 7.2 cm
(d) 4.5 cm
11. $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ such that $\mathrm{AB}=9.1 \mathrm{~cm}$ and $\mathrm{DE}=$ 6.5 cm . If the perimeter of $\triangle \mathrm{DEF}$ is 25 cm , then perimeter of $\triangle \mathrm{ABC}$ is :
(a) 35 cm
(b) 28 cm
(c) 42 cm
(d) 40 cm
12. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
(a) $B C \cdot E F=A C \cdot F D$
(b) $A B \cdot E F=A C \cdot D E$
(c) $B C \cdot D E=A B \cdot E F$
(d) $B C \cdot D E=A B \cdot F D$
13. If in two triangles ABC and $\mathrm{PQR}, \frac{A B}{Q R}=\frac{B C}{P R}=\frac{C A}{P Q}$
(a) $\triangle P Q R \sim \triangle C A B$
(b) $\triangle P Q R \sim \triangle A B C$
(c) $\triangle C B A \sim \triangle P Q R$
(d) $\triangle \mathrm{BCA} \sim \triangle P Q R$
14. In the given figure, two line segments, $A C$ and $B D$ intersect each other at the point P such that $P A=6$ $\mathrm{cm}, P B=3 \mathrm{~cm}, P C=2.5 \mathrm{~cm}, P D=5 \mathrm{~cm}, \angle A P B$ $=50^{\circ}$ and $\angle C D P=30^{\circ}$. Then $\angle P B A$ is equal to:

(a) 50°
(b) 30°
(c) 60°
(d) 100°
15. If in triangles $A B C$ and $D E F, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, when :
(a) $\angle \mathrm{B}=\angle \mathrm{E}$
(b) $\angle \mathrm{A}=\angle \mathrm{D}$
(c) $\angle \mathrm{B}=\angle \mathrm{D}$
(d) $\angle \mathrm{A}=\angle \mathrm{F}$
16. The areas of two similar triangles are $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$, if the longest side of the larger triangle is 26 cm , then the longest side of the other triangle is :
(a) 12 cm
(b) 14 cm
(c) 19 cm
(d) 22 cm
17. In the following trapezium $A B C D, A B \| C D$ and $C D=2 A B$. If area $(\triangle A O B)=84 \mathrm{~cm}^{2}$, then area ($\triangle C O D$) is :
(a) $168 \mathrm{~cm}^{2}$
(b) $336 \mathrm{~cm}^{2}$
(c) $252 \mathrm{~cm}^{2}$
(d) none of these

18. If $\triangle A B C \sim \triangle P Q R$, area $(\triangle A B C)=80 \mathrm{~cm}^{2}$ and area $(\triangle P Q R)=245 \mathrm{~cm}^{2}$, then $\frac{A B}{P Q}$ is equal to :
(a) $16: 49$
(b) $4: 7$
(c) $2: 5$
(d) none of these
19. In the similar triangles, $\triangle A B C$ and $\triangle D E F$, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{3}{4}$. If the median $A L=6 \mathrm{~cm}$, then the median DM of $\triangle \mathrm{DEF}$ is :
(a) $3 \sqrt{2} \mathrm{~cm}$
(b) $4 \sqrt{3} \mathrm{~cm}$
(c) $4 \sqrt{2} \mathrm{~cm}$
(d) $3 \sqrt{3} \mathrm{~cm}$
20. If a ladder of length 13 m is placed against a wall such that its foot is at a distance of 5 m from the wall, then the height of the top of the ladder from the ground is :
(a) 10 m
(b) 11 m
(c) 12 m
(d) none of these

21. In the figure, if $A C=D E$, then the value of $E B$ is :

(a) $3 \sqrt{30} \mathrm{~cm}$
(b) $2 \sqrt{30} \mathrm{~cm}$
(c) $3 \sqrt{15} \mathrm{~cm}$
(d) $4 \sqrt{15} \mathrm{~cm}$
22. In the quadrilateral $A B C D$, if $\angle B=90^{\circ}$ and $\angle A C D$ $=90^{\circ}$, then $A D^{2}$ is:

(a) $A C^{2}-A B^{2}+B C^{2}$
(b) $A C^{2}+D C^{2}+A B^{2}$
(c) $A B^{2}+B C^{2}+C D^{2}$
(d) $A B^{2}+B C^{2}+A C^{2}$
23. If diagonals of a rhombus are 12 cm and 16 cm , then the perimeter of the rhombus is :
(a) 20 cm
(b) 40 cm
(c) 28 cm
(d) 56 cm
24. In the figure, $\triangle A B C$ is right angled at C and Q is the mid-point of $B C$, then the length of $A Q$ is :

(a) 6 cm
(b) 12 cm
(c) $\sqrt{61} \mathrm{~cm}$
(d) $6 \sqrt{3} \mathrm{~cm}$
25. In triangle $A B C$ and $D E F, \angle A \neq \angle C, \angle B=\angle E$, $\angle F=\angle C$ and $A B=E F$. Then, the two triangle are :
(a) neither congruent nor similar
(b) congruent as well as similar
(c) congruent but not similar
(d) similar but not congruent
26. If in triangle $A B C$ and $D E F, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, if :

B. Questions From CBSE Examination Papers

1. The lengths of the diagonals of a rhombus are 24 cm and 32 cm . The perimeter of the rhombus is:
[2010 (T-I)]
(a) 9 cm
(b) 128 cm
(c) 80 cm
(d) 56 cm
2. Which of the following cannot be the sides of a right triangle ?
[2010 (T-I)]
(a) $9 \mathrm{~cm}, 15 \mathrm{~cm}, 12 \mathrm{~cm}$
(b) $2 \mathrm{~cm}, 1 \mathrm{~cm}, \sqrt{5} \mathrm{~cm}$
(c) $400 \mathrm{~mm}, 300 \mathrm{~mm}, 500 \mathrm{~mm}$
(d) $9 \mathrm{~cm}, 5 \mathrm{~cm}, 7 \mathrm{~cm}$
3. $\triangle A B C \sim \triangle P Q R, M$ is the mid-point of $B C$ and N is the mid point of $Q R$. If the area of $\triangle A B C=$ $100 \mathrm{sq} . \mathrm{cm}$, the area of $\triangle P Q R=144 \mathrm{sq} . \mathrm{cm}$ and $A M=4 \mathrm{~cm}$, then $P N$ is :
[2010 (T-I)]
(a) 4.8 cm
(b) 12 cm
(c) 4 cm
(d) 5.6 cm
4. $\triangle A B C$ is such that $A B=3 \mathrm{~cm}, B C=2 \mathrm{~cm}$ and $C A=2.5 \mathrm{~cm}$. If $\triangle D E F \sim \triangle A B C$ and $E F=4 \mathrm{~cm}$, then perimeter of $\triangle D E F$ is :
[2010 (T-I)]
(a) 15 cm
(b) 22.5 cm
(c) 7.5 cm
(d) 30 cm
5. A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same time, a tower casts a shadow 75 m long on the ground. The height of the tower is :
[2010 (T-I)]
(a) 150 m
(b) 100 m
(c) 25 m
(d) 200 m
6. $\triangle A B C \sim \triangle P Q R$. If ar $(\mathrm{ABC})=2.25 \mathrm{~m}^{2}$, ar $(P Q R)$ $=6.25 \mathrm{~m}^{2}, P Q=0.5 \mathrm{~m}$, then length of AB is :
[2010 (T-I)]
(a) 30 cm
(b) 0.5 m
(c) 50 m
(d) 3 m
7. In figure, if $D E \| B C$ then x equals to :
(a) $\angle B=\angle E$
(b) $\angle A=\angle D$
(c) $\angle B=\angle D$
(d) $\angle A=\angle F$
8. If $\triangle A B C \sim \triangle Q R P, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{9}{4}$, perimeter $\triangle A B C=48 \mathrm{~cm}, A B=18 \mathrm{~cm}$ and $B C=18 \mathrm{~cm}$,
then $P Q$ is equal to :
(a) 8 cm
(b) 10 cm
(c) 12 cm
(d) $\frac{20}{3} \mathrm{~cm}$
9. D and E are respectively the points on the sides $A B$ and $A C$ of a triangle $A B C$ such that $A D=2 \mathrm{~cm}, B D$ $=4 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $D E \| B C$. Then, length of $D E(\mathrm{in} \mathrm{cm})$ is :
(a) 6
(b) 5
(c) 3
(d) 2.5
10. It is given that $\triangle A B C \sim \triangle P Q R$, with $\frac{B C}{Q R}=\frac{1}{4}$, then, $\frac{\operatorname{ar}(P R Q)}{\operatorname{ar}(B C A)}$ is equal to :
(a) $\frac{1}{4}$
(b) $\frac{1}{16}$
(c) 4
(d) 16

(a) 3 cm
(b) 4 cm
(c) 7 cm
(d) 4.7 cm
11. In figure, if $D E \| B C$, then x equals :
[2010 (T-I)]

(a) 6 cm
(b) 7 cm
(c) 3 cm
(d) 4 cm
12. $\triangle A B C$ and $\triangle P Q R$ are similar triangles such that $\angle A=32^{\circ}$ and $\angle R=65^{\circ}$, then $\angle B$ is :
[2010 (T-I)]
(a) 83°
(b) 32°
(c) 65°
(d) 97°
13. In the figure $\triangle A B C \sim \triangle P Q R$, then $y+z$ is :

(a) $2+\sqrt{3}$
(b) $4+3 \sqrt{3}$
(c) $4+\sqrt{3}$
(d) $3+4 \sqrt{3}$
14. The perimeters of two similar triangles $A B C$ and $L M N$ are 60 cm and 48 cm respectively.
[2010 (T-I)]
If $L M=8 \mathrm{~cm}$, length of $A B$ is :
(a) 10 cm
(b) 8 cm
(c) 5 cm
(d) 6 cm
15. If in $\triangle A B C$ and $\triangle D E F \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar if :
[2010 (T-I)]
(a) $\angle B=\angle E$
(b) $\angle A=\angle D$
(c) $\angle B=\angle D$
(d) $\angle A=\angle F$
16. In an isosceles $\triangle A B C$, if $A C=B C$ and $A B^{2}=2 A C^{2}$, then $\angle C$ is equal to :
[2010 (T-I)]
(a) 45°
(b) 60°
(c) 30°
(d) 90°
17. If $\triangle A B C \sim \triangle D E F, B C=4 \mathrm{~cm}, E F=5 \mathrm{~cm}$ and ar $(\triangle A B C)=80 \mathrm{~cm}^{2}$, then $\operatorname{ar}(\triangle D E F)$ is :
[2010 (T-I)]
(a) $100 \mathrm{~cm}^{2}$
(b) $125 \mathrm{~cm}^{2}$
(c) $150 \mathrm{~cm}^{2}$
(d) $200 \mathrm{~cm}^{2}$
(c) $150 \mathrm{~cm}^{2}$

SHORT ANSWER TYPE QUESTIONS

15. The areas of two similar triangles $A B C$ and $P Q R$ are $25 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If $Q R=9.8$ cm , then $B C$ is :
[2010 (T-I)]
(a) 9.8 cm
(b) 7 cm
(c) 49 cm
(d) 25 cm
16. If the ratio of the corresponding sides of two similar triangles is $2: 3$, then the ratio of their corresponding altitude is :
[2010 (T-I)]
(a) $3: 2$
(b) $16: 81$
(c) $4: 9$
(d) $2: 3$
17. In the figure, $P Q \| B C$ and $A P: P B=1: 2$. Find $\frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}$:
[2010 (T-I)]

(a) $1: 4$
(b) $4: 1$
(c) $1: 9$
(d) $2: 9$

A. Important Questions

1. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B . C D$.

2. S and T are points on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$.
Show that $\triangle R P Q \sim \triangle R T S$.
3. In the given figure, $A B \| Q R$. Find the length of PB.

4. If the sides of a triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 6 cm long, determine whether the triangle is a rightangled triangle.
5. In the given figure, if $A B \| C D$, find the value of x.

6. In the given figure, $\angle A B C=90^{\circ}$ and $B D \perp A C$. If $B D=8 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$, find $C D$.

7. In a right angled triangle with sides a and b and hypotenuse c, the altitude drawn on the hypotenuse is x. Prove that $a b=c x$.

8. In the figure, $\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}$ and $A B=8 \mathrm{~cm}$. Find the value of $D C$.

9. In the given figure, $\frac{A D}{D B}=\frac{A E}{E C}$ and $\angle A D E=$ $\angle A C B$. Prove that $\triangle A B C$ is an isosceles triangle.

10. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \triangle C F B$.
11. P and Q are points on sides $A B$ and $A C$ respectively of $\triangle A B C$. If $A P=3 \mathrm{~cm}$, $P B=6 \mathrm{~cm}, A Q=5 \mathrm{~cm}$ and $Q C=10 \mathrm{~cm}$, show that $B C=3 P Q$.
12. In a triangle $A B C$, altitudes $A L$ and $B M$ intersect in O. Prove that $\frac{A O}{B O}=\frac{O M}{O L}$.
13. A wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
14. In the given figure, $D E \| B C$. If $D E=3 \mathrm{~cm}, B C$ $=6 \mathrm{~cm}$ and area $(\triangle A D E)=15 \mathrm{~cm}^{2}$, find the area of $\triangle \mathrm{ABC}$.

15. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.
16. $A B C D$ is a trapezium with $A B \| D C$. If E and F are on non-parallel sides $A D$ and $B C$ respectively such that $E F$ is parallel to $A B$, then show that $\frac{A E}{E D}=\frac{B F}{F C}$.
17. In the given figure, $O C . O D=O A . O B$. Show that $\angle A=\angle C$ and $\angle B=\angle D$.

18. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Then find ar $\triangle D E F$: ar $\triangle A B C$.
19. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.
20. A ladder is placed against a wall such that its foot is at a distance of 3.5 m from the wall and its top reaches a window 12 m above the ground. Find the length of the ladder.
21. If $A B C$ is an equilateral triangle of side $2 a$, then find each of its altitude.
22. An aeroplane leaves an airport and flies due north at a speed of 500 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after 2 hours?

B. Questions From CBSE Examination Papers

1. In the figure, A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.
[2010 (T-I)]

2. In the figure, two triangles $A B C$ and $D B C$ are on the same base $B C$ in which $\angle A=\angle D=90^{\circ}$. If $C A$ and $B D$ meet each other at E, show that $A E \times C E-B E \times D E$.
[2010 (T-I)]

3. In the figure, if $\angle A=\angle B$ and $A D=B E$, show that $D E \| A B$ in $\triangle A B C$.
[2010 (T-I)]

4. In the figure, $P Q R$ and $S Q R$ are two triangles on the same base $Q R$. If $P S$ intersect $Q R$ at O, then
show that : $\frac{\operatorname{ar}(P Q R)}{\operatorname{ar}(S Q R)}=\frac{P O}{S O}$.
[2010 (T-I)]

5. In the figure, O is a point inside $\triangle P Q R$ such that $\angle P O R=90^{\circ}, O P=6 \mathrm{~cm}$ and $O R=8$. If $P Q=$ $24 \mathrm{~cm}, Q R=26 \mathrm{~cm}$, prove that $\triangle Q P R$ is a right angled triangle.
[2010 (T-I)]

6. In the given figure, E is a point on side $C B$ produced of an isosceles $\triangle A B C$ with $\mathrm{AB}=\mathrm{BC}$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \triangle E C F$.
[2010 (T-I)]

7. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.
[2010 (T-I)]
8. In a right angled triangle if hypotenuse is 20 cm and the ratio of other two sides is $4: 3$, find the sides.
[2010 (T-I)]
9. In an isosceles triangle $A B C$, if $A B=A C=13 \mathrm{~cm}$ and the altitude from A on $B C$ is 5 cm , find $B C$.
10. In the figure, $D E \| A C$ and $D F \| A E$. Prove that $\frac{E F}{B F}=\frac{E C}{B E}$.
[2010 (T-I)]

11. In the figure, $\triangle A B E \cong \triangle A C D$. Prove that $\triangle A D E \sim \triangle A B C$.
[2010 (T-I)]

12. In the figure, if $P Q \| C B$ and $P R \| C D$, prove that $\frac{A R}{A D}=\frac{A Q}{A B}$
[2010 (T-I)]

13. In the figure, $P M=6 \mathrm{~cm}, M R=8 \mathrm{~cm}$ and $Q R=26 \mathrm{~cm}$, find the length of $P Q$. [2010 (T-I)]

14. In the figure, $A B C D$ is a rhombus. Prove that $4 A B^{2}=A C^{2}+B D^{2}$.
[2010 (T-I)]

15. In the figure, D, E, F, are mid-points of sides $B C$, $C A, A B$ respectively of $\triangle A B C$. Find the ratio of area of $\triangle D E F$ to area of $\triangle A B C$.
[2010 (T-I)]

16. If one diagonal of a trapezium divides the other diagonal in the ratio $1: 2$, prove that one of the parallel sides is double the other. [2010 (T-I)]
17. In $\triangle A B C, A B=A C$ and D is a point on side $A C$ such that $B C^{2}=A C . C D$. Prove that $B D=B C$.
[2010 (T-I)]
18. In the figure $D E \| B C$. Find x. [2010 (T-I)]

19. In the figure, $\angle B A C=90^{\circ}, A D \perp B C$. Prove that $: A B^{2}+C D^{2}=B D^{2}+A C^{2}$.
[2010 (T-I)]

20. In the figure, $A B \| D E$ and $B D \| E F$. Prove that $D C^{2}=C F \times A C$.
[2010 (T-I)]

21. If D, E are points on the sides $A B$ and $A C$ of a $\triangle A B C$ such that $A D=6 \mathrm{~cm}, B D=9 \mathrm{~cm}, A E=8$ $\mathrm{cm} E C=12 \mathrm{~cm}$. Prove that $D E \| B C$.
[2010 (T-I)]
22. Prove that the line joining the mid points of any two sides of a triangle is parallel to the third side.
[2010 (T-I)]
23. In the figure, $D E \| O Q$ and $D F \| O R$. Show that $E F \| Q R$.
[2010 (T-I)]

24. In the figure, $\angle A C B=90^{\circ}$ and $\mathrm{CD} \perp A B$. Prove that $\frac{B C^{2}}{A C^{2}}=\frac{B D}{A D}$.
[2010 (T-I)]

25. In the figure, $X N \| C A$ and $X M \| B A . T$ is a point on $C B$ produced. Prove that $T X^{2}=T B . T C$.
[2010 (T-I)]

26. Two poles of height 10 m and 15 m stand vertically on a plane ground. If the distance between their feet is $5 \sqrt{3} \mathrm{~m}$, find the distance between their tops.
[2010 (T-I)]
27. In the figure, $A B \perp B C, D E \perp A C$ and $G F \perp B C$. Prove that $\triangle A D E \sim \triangle G C F$.
[2010 (T-I)]

28. In $\triangle A B C, A D \perp B C$ such that $A D^{2}=B D \times C D$. Prove that $\triangle A B C$ is right angled at A.
[2010 (T-I)]
29. From the given figure, find $\angle M L N$. [2010 (T-I)]

30. In a quadrilateral $A B C D, \angle B=90^{\circ}$. If $A D^{2}=A B^{2}$ $+B C^{2}+C D^{2}$, prove that $\angle A C D=90^{\circ}$.

31. In the figure, D is point on the side $B C$ of $\triangle A B C$ such that $\angle A D C=\angle B A C$. Prove that $\frac{C A}{C D}=\frac{C B}{C A}$

32. In the figure, $X Y \| A C$ and $X Y$ divides triangular region $A B C$ into two parts equal in area. Find the ratio of $\frac{A X}{A B}$.
[2010 (T-I)]
33. $A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right angled triangle.
[2010 (T-I)]

34. In the figure, $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle T Q R=\angle P R S$. Show that $\triangle P Q S \sim \triangle P Q R$.
[2010 (T-I)]
35. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Determine the ratio of the areas of $\triangle D E F$ and $\triangle A B C$.
[2008]
36. In the given figure, $P Q=24 \mathrm{~cm}, Q R=26 \mathrm{~cm}$, $\angle P A R=90^{\circ}, P A=6 \mathrm{~cm}$ and $A R=8 \mathrm{~cm}$. Find $\angle Q P R$.
[2008]

37. E is a point on the side $A D$ produced of a $\| \mathrm{gm}$ $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim C F B$.
[2008]
38. The lengths of the diagonals of a rhombus are 30 cm and 40 cm . Find the side of the rhombus.
[2008]
39. A man goes 15 meters due west and then 8 metres due north. How far is he from the starting point?
[2008]
40. In the figure, $\angle M=\angle N=46^{\circ}$. Express x in terms of a, b and c, where a, b and c are lengths of $L M$, $M N$ and $N K$ respectively.
[2009]

41. In a $\triangle A B C, D E \| B C$. If $D E=\frac{2}{3} B C$ and area of $\triangle A B C=81 \mathrm{~cm}^{2}$, find the area of $\triangle A D E$.
[2009]
[3 Marks]

SHORT ANSWER TYPE QUESTIONS

A. Important Questions

1. In the figure, $L M \| C B$ and $L N \| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

2. The diagonals of a trapezium divide each other in the same ratio. Prove
3. In the given figure, $A B C$ and $A M P$ are two right triangles, right angled at B and M respectively. Prove that:
(i) $\triangle A B C \sim \triangle A M P$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$.

4. In the figure, $D E \| O Q$ and $D F \| O R$. Show that $E F \| Q R$.

5. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that $A B C D$ is a trapezium.
6. By using the converse of the basic proportionality theorem, show that the line joining mid-points of non-parallel sides of a trapezium is parallel to the parallel sides.
7. If three or more parallel lines are intersected by two transversals, the intercepts made by them on the transversal are proportional. Prove.
8. $P Q R$ is triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M . M R$.
9. $A B C D$ is a trapezium in which $A B \| C D$. The diagonals $A C$ and $B D$ intersect at O. Prove that : (i) $\triangle A O B \sim \triangle C O D$ (ii) If $O A=6 \mathrm{~cm}$ and $O C=8 \mathrm{~cm}$, find $: \frac{\operatorname{area}(\triangle A B O)}{\operatorname{area}(\triangle C O D)}$.
10. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.
11. $A B C$ is a triangle in which $\angle A=90^{\circ}, A N \perp B C$, $A B=12 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$. Find the ratio of the areas of $\triangle A N C$ and $\triangle A B C$.
12. $A B C D$ is a square. F is the mid-point of $A B . B E$ is the one-third of $B C$. If the area of the $\triangle B F E$ is $108 \mathrm{~cm}^{2}$, find the length of $A C$.
[HOTS]

13. The foot of a ladder is 6 m away from a wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its tip reach?
14. In the given figure, $\angle B<90^{\circ}$ and segment $A D \perp B C$, show that $b^{2}=h^{2}+a^{2}+x^{2}-2 a x$

15. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
16. Using BPT, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.
17. Using converse of BPT, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.
18. Line l drawn parallel to side $A B$ of quadrilateral $A B C D$ meets $A D$ at E and $B C$ at F such that $\frac{A E}{E D}=\frac{B F}{F C}$. Then show that $A B C D$ is a trapezium.
19. A girl of height 120 cm is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 4.8 m above the ground, find the length of her shadow after 4 seconds.
20. If $\triangle A B C \sim \triangle D E F$ and, $A L$ and $D M$ are their corresponding medians, then show that $\frac{A L}{D M}=\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$.
21. If $\triangle A B C \sim \triangle D E F$ and, $A L$ and $D M$ are their corresponding altitudes, then show that $\frac{A L}{D M}=\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$.
22. If $\triangle A B C \sim D E F$, then show that $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$.
23. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=3 C D$, find the ratio of the areas of triangles $A O B$ and $C O D$.
24. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
25. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding altitudes.
26. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding perimeters.

B. Questions From CBSE Examination Papers

1. In $\triangle A B C$, in figure, $P Q$ meets $A B$ in P and $A C$ in Q. If $A P=1 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, A Q=1.5 \mathrm{~cm}, Q C=$ 4.5 cm , prove that area of $\triangle A P Q$ is one sixteenth of the area of $\triangle A B C$.
[2010 (T-I)]

2. In the figure, $P A, Q B$ and $R C$ are prependiculars to $A C$. Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$
[2010 (T-I)]

3. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $3 B D=B C$. Prove that $9 A D^{2}=7 A B^{2}$
[2010 (T-I)]
4. In $\triangle P Q R, P D \perp Q R$ such that D lies on $Q R$. If $P Q=a, P R=b, Q D=c$ and $D R=d$ and a, b, c, d are positive units, prove that $(a+b)(a-b)=(c+d)(c-d)$.
[2010 (T-I)]
5. In $\triangle A B C, A D \perp B C$ such that $A B^{2}=B D$. $C D$. Prove that $A B C$ is a right triangle, right angle at A.
[2010 (T-I)]
6. P and Q are points on sides $A B$ and $A C$ respectively of $\triangle A B C$. If $A P=3 \mathrm{~cm}, P B=6 \mathrm{~cm}, A Q=5 \mathrm{~cm}$ and $Q C=10 \mathrm{~cm}$, show that $B C=3 P Q$.
[2010 (T-I)]
7. In figure, $B L$ and $C M$ are medians of $\triangle A B C$ right angled at A. Prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$
[2010 (T-I)]

8. The perpendicular $A D$ on the base $B C$ of $\triangle A B C$ intersects $B C$ in D such that $B D=3 C D$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.
[2010 (T-I)]
9. In the figure, $O A . O B=O C . O D$. Show that $\angle A=$ $\angle C$ and $\angle B=\angle D$.
[2010 (T-I)]

10. In the figure, $A B C$ is an isosceles triangle right angled at B. Two equilateral triangles are constructed with side $B C$ and $A C$. Prove that :
ar $\triangle B C D=\frac{1}{2} \operatorname{ar} \triangle A C E$
[2010 (T-I)]

11. In the figure, $A B D$ is a triangle in which $\angle D A B=90^{\circ}$ and $A C \perp B D$. Prove that $A B^{2}=B C \times B D$.
[2010 (T-I)]

12. In $A B C$, if $A D$ is the median, then show that $A B^{2}+A C^{2}=2\left[A D^{2}+B D^{2}\right]$.
[2010 (T-I)]
13. In figure, $A B C$ is right triangle right angled at C. Let $B C=a, C A=b, A B=c$ and let p be the length of perpendicular from C on $A B$. Prove that:
(i) $c p=a b$
(ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

[2010 (T-I)]
14. In the figure, $P Q R$ is a triangle in which $Q M \perp P R$ and $P R^{2}-P Q^{2}=Q R^{2}$, prove that $Q M^{2}=P M \times M R$.
[2010 (T-I)]

15. In figure, the line segment $P Q$ is parallel to $A C$ of triangle $A B C$ and it divides the triangle into two parts of equal area. Find the ratio $\frac{A P}{A B}$.
[2010 (T-I)]

16. In figure, $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{AD}: \mathrm{DB}=5: 1$. Find $\frac{\operatorname{ar}(\triangle D F E)}{\operatorname{ar}(\triangle C F B)}$.
[2010 (T-I)]

17. Two isosceles triangles have equal vertical angles and their areas are in the ratio $16: 25$. Find the ratio of their corresponding heights. [2010 (T-I)]
18. Prove that the equilateral triangles described on the two sides of a right-angled triangle are together equal to the equilateral triangle described on the hypotenuse in terms of their areas. [2010 (T-I)]
19. In the figure, $P Q R$ is a right angled triangle in which $Q=90^{\circ}$. If $Q S=S R$, show that $P R^{2}-4 P S^{2}=3 P Q^{2}$
[2010 (T-I)]

20. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
[2010 (T-I)]
21. If the areas of two similar triangles are equal, prove that they are congruent.
[2010 (T-I)]
22. In an isosceles triangle $A B C$ with $A B=A C$, $B D \perp A C$, prove that $B D^{2}-C D^{2}=2 C D . A D$.
[2010 (T-I)]
23. In the figure, $l \| m$ and line segments $A B$, $C D$ and $E F$ are concurrent at P. Prove that : $\frac{A E}{B F}=\frac{A C}{B D}=\frac{C E}{F D}$.

24. Triangle $A B C$ is right angled at B and D is mid point of $B C$. Prove that : $A C^{2}=4 A D^{2}-3 A B^{2}$.
[2010 (T-I)]
25. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.
[2010 (T-I)]
26. In the figure, $\angle Q P R=90^{\circ}, \angle P M R=90^{\circ}, Q R=26$ $\mathrm{cm}, P M=8 \mathrm{~cm}, M R=6 \mathrm{~cm}$. Find area $(\triangle P Q R)$.

[2010 (T-I)]
27. In $\triangle A B C, D$ and E are two points lying on side $A B$ such that $A D=B E$. If $D P \| B C$ and $E Q \| A C$, then prove that $P Q \| A B$.
[2010 (T-I)]

28. In figure, $X Y \| Q R, \frac{P Q}{X Q}=\frac{7}{3}$ and $P R=6.3 \mathrm{~cm}$.
Find $Y R$.
$[2010$ (T-I)]

29. In $\triangle A B C, A D$ is a median and E is mid-point of $A D$. If $B E$ is produced, it meets $A C$ at F . Show that $A F=\frac{1}{3} A C$.
[2006]
30. In the given figure, $P Q \| B C$ and
[2008]
$A P: P B=1: 2$. Find $\frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}$.

31. If D is a point on the side $A B$ of $\triangle A B C$ such that $A D: D B=3: 2$ and E is a point on $B C$ such that $D E \| A C$. Find the ratio of areas of $\triangle A B C$ and $\triangle B D E$.
[2001, 2006 C]
32. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
[2005, 2006]
33. In the figure, $D E F G$ is a square and $\angle B A C=90^{\circ}$. Show that $D E^{2}=B D \times E C$.
[2009]

LONG ANSWER TYPE QUESTIONS

34. O is a point in the interior of rectangle $A B C D$. If O is joined to each of the vertices of the rectangle, prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$. [2006 C]
35. In the figure, $\triangle P Q R$ is right angled at Q and the points S and T trisect the side $Q R$. Prove that $8 P T^{2}=3 P R^{2}+5 P S^{2}$
[2006 C, 2009]

A. Important Questions

1. In the given figure, O is a point in the interior of a triangle $A B C, O D \perp B C, O E \perp A C$ and $O F \perp A B$. Show that
(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=$ $A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$
[HOTS]

2. $A B C D$ is a quadrilateral. P, Q, R, S are the points of trisection of the sides $A B, B C, C D$ and $D A$ respectively. Prove that $P Q R S$ is a parallelogram.
3. In a right triangle ABC , right angled at C. P and Q are points on the sides $C A$ and $C B$ respectively which divide these sides in the ratio $1: 2$. Prove that :
(i) $9 A Q^{2}=9 A C^{2}+4 B C^{2}$
(ii) $9 B P^{2}=9 B C^{2}+4 A C^{2}$
(iii) $9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}$
4. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$
and median $P M$ of $\triangle P Q R$ (see figure). Show that $\triangle A B C \sim \triangle P Q R$.

5. In the given figure, in $\triangle P Q R, X Y \| Q R, P X=1$ $\mathrm{cm}, X Q=3 \mathrm{~cm}, Y R=4.5 \mathrm{~cm}$ and $Q R=9 \mathrm{~cm}$. Find $P Y$ and $X Y$. Further if the area of $\triangle P X Y$ is ' A ' cm^{2}, find in terms of A the area of $\triangle P Q R$ and the area of trapezium $X Y R Q$.

6. If A be the area of a right triangle and a one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A a}{\sqrt{a^{4}+4 A^{2}}}$.
[HOTS]

B. Questions From CBSE Examination Papers

1. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
[2010 (T-I)]
2. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
[2010 (T-I)]
3. State and prove Basic Proportionality theorem.
[2010 (T-I)]
4. Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle.
[2010 (T-I)]
5. Prove that if a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, the other two sides are divided in the same ratio.
[2010 (T-I)]
6. State and prove converse of Pythagoras theorem.
[2010 (T-I)]
7. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Using the above result do the following :
In the figure, $D E \| B C$ and $B D=C E$.
Prove that $\triangle A B C$ is an isosceles triangle.
[2009]

8. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ in L and $A D$ produced in E. Prove that $E L=2 B L$.
[2009]

FORMATIVE ASSESSMENT

Activity-1

Objective : To verify the Basic Proportionality Theorem by activity method.
Materials Required : Ruled paper, white sheets of paper, colour pencils, a pair of scissors, geometry box, etc.

Procedure :

1. On a white sheet of paper, draw an acute angled triangle $A B C$ and an obtuse angled triangle $P Q R$. Using a pair of scissors, cut them out.

(a)

(b)

Figure-1
2. Take a ruled paper. Place $\triangle \mathrm{ABC}$ over the ruled paper such that any one side of the triangle is placed on one of the lines of the ruled paper. Place the $\triangle \mathrm{PQR}$ over the ruled paper in the same manner as discussed above. Mark points $X_{1}, X_{2}, X_{3}, X_{4}$ on $\triangle A B C$ and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ on $\triangle P Q R$. Join $X_{1} X_{2}, X_{3} X_{4}, Y_{1} Y_{2}$, and $Y_{3} Y_{4}$.

(a)

(b)

Figure-2
3. Using a ruler, measure $\mathrm{A}_{1}, \mathrm{X}_{1} \mathrm{~B}, \mathrm{~A} \mathrm{X}_{2}, \mathrm{X}_{2} \mathrm{C}, \mathrm{A}_{3}, \mathrm{X}_{3} \mathrm{~B}, \mathrm{~A}_{4}, \mathrm{X}_{4} \mathrm{C}$ and record the 1engths in the following table.

AX_{1}	$\mathrm{X}_{1} \mathrm{~B}$	AX_{2}	$\mathrm{X}_{2} \mathrm{C}$	$\frac{\mathrm{AX}}{\mathrm{X}_{1} \mathrm{~B}}$	$\frac{\mathrm{AX}_{2}}{\mathrm{X}_{2} \mathrm{C}}$	$\mathrm{AX} \mathrm{X}_{3}$	$\mathrm{X}_{3} \mathrm{~B}$	AX_{4}	$\mathrm{X}_{4} \mathrm{C}$	$\frac{\mathrm{AX}_{3}}{\mathrm{X}_{3} \mathrm{~B}}$	$\frac{\mathrm{AX}_{4}}{\mathrm{X}_{4} \mathrm{C}}$

4. Similarly, measure $\mathrm{RY}_{1}, \mathrm{Y}_{1} \mathrm{P}, \mathrm{RY}_{2}, \mathrm{Y}_{2} \mathrm{Q}, \mathrm{RY}_{3}, \mathrm{Y}_{3} \mathrm{P}, \mathrm{RY}_{4}$ and $\mathrm{Y}_{4} \mathrm{Q}$.

$\mathrm{R}_{1} \mathrm{Y}$	$\mathrm{Y}_{1} \mathrm{P}$	RY_{2}	$\mathrm{Y}_{2} \mathrm{Q}$	$\frac{\mathrm{RY}_{1}}{\mathrm{Y}_{1} \mathrm{P}}$	$\frac{\mathrm{RY}_{2}}{\mathrm{Y}_{2} \mathrm{Q}}$	RY_{3}	$\mathrm{Y}_{3} \mathrm{P}$	$R Y_{4}$	$\mathrm{Y}_{4} \mathrm{Q}$	$\frac{\mathrm{RY}_{3}}{\mathrm{Y}_{3} \mathrm{P}}$	$\frac{R Y_{4}}{\mathrm{Y}_{4} \mathrm{Q}}$

Observations :

1. In figure 2(a), we see that $X_{1} X_{2} \quad B C$ and $X_{3} X_{4} \quad B C$

Similarly, in figure 2(b), we see that $Y_{1} Y_{2} \quad P Q$ and $Y_{3} Y_{4} \quad P Q$.
2. From the tables, we see that $\frac{\mathrm{AX}_{1}}{\mathrm{X}_{1} \mathrm{~B}}=\frac{\mathrm{AX}_{2}}{\mathrm{X}_{2} \mathrm{C}}, \frac{\mathrm{AX}_{3}}{\mathrm{X}_{3} \mathrm{~B}}=\frac{\mathrm{AX}_{4}}{\mathrm{X}_{4} \mathrm{C}}$

And $\frac{R Y_{1}}{\mathrm{Y}_{1} \mathrm{P}}=\frac{\mathrm{RY}_{2}}{\mathrm{Y}_{2} \mathrm{Q}}, \frac{R Y_{3}}{\mathrm{Y}_{3} \mathrm{P}}=\frac{\mathrm{RY}_{4}}{\mathrm{Y}_{4} \mathrm{Q}}$
Thus, we have :
If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.
Conclusion : From the above activity, the Basic Proportionality Theorem is verified.
Do Yourself : Draw two different triangles and verify the Basic Proportionality Theorem by the activity method.

Activity-2

Objective : To verify the Pythagoras Theorem by the method of paper folding, cutting and pasting.
Materials Required : White sheets of paper, tracing paper, a pair of scissors, gluestick, geometry box, etc.

Procedure:

1. On a white sheet of paper, draw a right triangle ABC , right angled at B and $\mathrm{AB}=x, \mathrm{BC}=y$ and $\mathrm{AC}=z$.

Figure-1
2. Using tracing paper, trace the triangle ABC and make 4 replicas of it. Shade each triangle using different colour. Cut out each triangle.

Figure-2
3. On a white sheet of paper, draw a square of side z. Shade it and cut it out.

Figure-3
4. Paste the 4 right triangles and the square cut out obtained in steps 2 and 3 above as shown on next page.

Figure-4

Observations :

1. In the figure 4 , we see that it is a square of side $(x+y)$.

So its area $=(x+y)^{2}$.
2. Also, area of this square $=$ area of the square of side $z+4 \times$ area of $\triangle A B C$

$$
=z^{2}+4 \times \frac{1}{2} \times x y=z^{2}+2 x y
$$

3. From 1 and 2 above, $(x+y)^{2}=z^{2}+2 x y$

$$
\begin{aligned}
& \Rightarrow x^{2}+y^{2}+2 x y=z^{2}+2 x y \\
& \Rightarrow x^{2}+y^{2}=z^{2}
\end{aligned}
$$

Conclusion : From the above activity, it is verified that in a right triangle the square of the hypotenuse is equal to the sum of the squares of other two sides.

Or in other words, we can say that the Pythagoras Theorem is verified.
Do Yourself : Draw two different right triangles and verify the Pythagoras Theorem by Activity method in each case.

Activity-3

Objective : To illustrate that the medians of a triangle concur at a point (called the centroid) which always lies inside the triangle.

Materials Required : White sheets of paper, colour pencils, geometry box, a pair of scissors, gluestick, etc.

Procedure :

1. On a white sheet of paper, draw an acute angled triangle, a right triangle and an obtuse angled triangle. Using a pair of scissors, cut out these triangles.

(a)

(b)

Figure-1
2. Take the cut out of the acute angled triangle $A B C$ and find the mid-points of its sides by paper folding method.

Figure-2
3. Let the mid-points of BC, AC and AB be D, E and F respectively.
4. Join AD, BE and CF.

Figure-3
5. Repeat the steps 2,3 and 4 for the right triangle $P Q R$ and the obtuse angled triangle $X Y Z$.

Figure-4

Observations :

1. In figure $3, D, E$ and F are mid-points of $B C, A C$ and $A B$ respectively.

So, AD, BE and CF are medians of $\triangle \mathrm{ABC}$.
2. Similarly, PL, QM and RN are the medians of $\triangle P Q R$ [figure 4(a)] and $X G, Y H$ and $Z I$ are medians of $\triangle X Y Z$ [figure 4(b)].
3. We see that in each case the medians pass through a common point, or the medians are concurrent. The point of concurrence of the medians of a triangle is called its centroid.
4. We also observe that in each case the centroid lies in the interior of the triangle.

Conclusion : From the above activity, it is observed that :
(a) the medians of a triangle are concurrent. This point of concurrence of the medians is called the centroid of the triangle.
(b) centroid of a triangle always lies in its interior. Or the medians of a triangle always intersect in the interior of the triangle.

Activity-4

Objective : To verify by activity method that if a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, the triangle on each side of the perpendicular are similar to the whole triangle and to each other.
Materials Required : White sheets of paper, tracing paper, colour pencils, a pair of scissors, gluestick, geometry box, etc.

Procedure :

1. On a white sheet of paper, draw a right triangle ABC , right angled at B .

Figure-1
2. On a tracing paper, trace $\triangle \mathrm{ABC}$. Using paper folding method, draw $\mathrm{BD} \perp \mathrm{AC}$. Cut the triangles ABD and CBD as shown below. Shade both sides of each triangular cut outs.

Figure-2
3. Flip over the triangular cut out BCD and place it over $\triangle \mathrm{ABC}$ in figure 1 , as shown below.

Figure-3
4. Flip over the triangular cut out ABD and place it over $\triangle \mathrm{ABC}$ in figure 1 , as shown below.

(a)

(b)

Figure-4
5. Now, take the triangular cut outs $B C D$ and $A B D$ and place them one over another as shown below.

Figure-5

Observations :

1. In figure 2(a), $\angle \mathrm{ABC}=90^{\circ}$ and in figure 2(b), $\angle \mathrm{CDB}=\angle \mathrm{ADB}=90^{\circ}$.
2. In figure 3(a), and 3(b), we see that $\angle \mathrm{ACB}=\angle \mathrm{BCD}$ and $\angle \mathrm{BAC}=\angle \mathrm{DBC}$ So, $\triangle \mathrm{ABC} \sim \Delta \mathrm{BDC}$
3. In figure 4(a) and 4(b), we see that $\angle \mathrm{ACB}=\angle \mathrm{ABD}$ and $\angle \mathrm{BAC}=\angle \mathrm{DAB}$

So, $\triangle \mathrm{ABC} \sim \Delta \mathrm{ADB}$
4. In figure $5(\mathrm{a})$ and $5(\mathrm{~b})$, we see that $\angle \mathrm{BCD}=\angle \mathrm{ABD}$ and $\angle \mathrm{CBD}=\angle \mathrm{BAD}$

So, $\Delta \mathrm{CBD} \sim \Delta \mathrm{BAD}$
Conclusion : From the activity, it is verified that if a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, the triangles on each side of the perpendicular are similar to the whole triangle and to each other.
Do Yourself : Draw two different right triangles and verify by activity method that if a perpendicular is drawn from the vertex of the right triangle of a right triangle to the hypotenuse, the triangles on each side of the perpendicular are similar to the whole triangle and to each other.

Class X
Chapter 6 - Triangles
Maths

Exercise 6.1

Question 1:

Fill in the blanks using correct word given in the brackets:-
(i) All circles are \qquad . (congruent, similar)
(ii) All squares are \qquad . (similar, congruent)
(iii) All \qquad triangles are similar. (isosceles, equilateral)
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are \qquad and (b) their corresponding sides are \qquad . (equal, proportional)
Answer:
(i) Similar
(ii) Similar
(iii) Equilateral
(iv) (a) Equal
(b) Proportional

Question 2:

Give two different examples of pair of
(i) Similar figures
(ii)Non-similar figures

Answer:
(i) Two equilateral triangles with sides 1 cm and 2 cm

Two squares with sides 1 cm and 2 cm

Class X
Chapter 6 - Triangles
Maths

(ii) Trapezium and square

Triangle and parallelogram

Question 3:

State whether the following quadrilaterals are similar or not:

Answer:
Quadrilateral PQRS and $A B C D$ are not similar as their corresponding sides are proportional, i.e. 1:2, but their corresponding angles are not equal.

Exercise 6.2

Question 1:

In figure.6.17. (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in (ii).
(i)

(ii)

Answer:
(i)

Let $\mathrm{EC}=x \mathrm{~cm}$
It is given that $D E \| B C$.
By using basic proportionality theorem, we obtain

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

$\frac{1.5}{3}=\frac{1}{x}$
$x=\frac{3 \times 1}{1.5}$
$x=2$
$\therefore \mathrm{EC}=2 \mathrm{~cm}$
(ii)

Let $A D=x \mathrm{~cm}$
It is given that $D E \| B C$.
By using basic proportionality theorem, we obtain
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\frac{x}{7.2}=\frac{1.8}{5.4}$
$x=\frac{1.8 \times 7.2}{5.4}$
$x=2.4$
$\therefore \mathrm{AD}=2.4 \mathrm{~cm}$

Question 2:

E and F are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For each of the following cases, state whether EF \| QR.
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.63 \mathrm{~cm}$

Answer:
(i)

Given that, $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}, \mathrm{FR}=2.4 \mathrm{~cm}$
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{3.9}{3}=1.3$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{3.6}{2.4}=1.5$
Hence, $\frac{\mathrm{PE}}{\mathrm{EQ}} \neq \frac{\mathrm{PF}}{\mathrm{FR}}$
Therefore, EF is not parallel to QR.
(ii)

$\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}, \mathrm{RF}=9 \mathrm{~cm}$
$\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{4}{4.5}=\frac{8}{9}$
$\frac{\mathrm{PF}}{\mathrm{FR}}=\frac{8}{9}$
Hence, $\frac{P E}{E Q}=\frac{P F}{F R}$
Therefore, EF is parallel to QR.
(iii)

$P Q=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}, \mathrm{PF}=0.36 \mathrm{~cm}$
$\frac{P E}{P Q}=\frac{0.18}{1.28}=\frac{18}{128}=\frac{9}{64}$
$\frac{\mathrm{PF}}{\mathrm{PR}}=\frac{0.36}{2.56}=\frac{9}{64}$
Hence, $\frac{P E}{P Q}=\frac{P F}{P R}$
Therefore, EF is parallel to QR .

Question 3:

In the following figure, if $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| C D$, prove that
$\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AN}}{\mathrm{AD}}$.

Answer:

In the given figure, LM \| CB
By using basic proportionality theorem, we obtain
$\frac{\mathrm{AM}}{\mathrm{AB}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
Similarly, LN \|CD
$\therefore \frac{\mathrm{AN}}{\mathrm{AD}}=\frac{\mathrm{AL}}{\mathrm{AC}}$
From (i) and (ii), we obtain
$\frac{A M}{A B}=\frac{A N}{A D}$

Question 4:

In the following figure, $D E \| A C$ and $D F \| A E$. Prove that
$\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BE}}{\mathrm{EC}}$.

Answer:

In $\triangle A B C, D E \| A C$
$\therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BE}}{\mathrm{EC}}$
(Basic Proportionality Theorem)
(i)

In $\triangle \mathrm{BAE}, \mathrm{DF} \| \mathrm{AE}$
$\therefore \frac{\mathrm{BD}}{\mathrm{DA}}=\frac{\mathrm{BF}}{\mathrm{FE}} \quad$ (Basic Proportionality Theorem)

From (i) and $(i i)$, we obtain
$\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BF}}{\mathrm{FE}}$

Question 5:

In the following figure, $D E \| O Q$ and $D F \| O R$, show that $E F \| Q R$.

Answer:

In $\triangle \mathrm{POQ}, \mathrm{DE} \| \mathrm{OQ}$
$\therefore \frac{P E}{E Q}=\frac{P D}{D O}$
(Basic proportionality theorem)
(i)

Class X

In $\triangle \mathrm{POR}, \mathrm{DF} \| \mathrm{OR}$
$\therefore \frac{P F}{F R}=\frac{P D}{D O} \quad$ (Basic proportionality theorem)
(ii)

From (i) and (ii), we obtain
$\frac{P E}{E Q}=\frac{P F}{F R}$
$\therefore \mathrm{EF} \| \mathrm{QR} \quad$ (Converse of basic proportionality theorem)

Question 6:

In the following figure, A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.

Answer:

In $\triangle \mathrm{POQ}, \mathrm{AB} \| \mathrm{PQ}$
$\therefore \frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OB}}{\mathrm{BQ}}$
(Basic proportionality theorem)
(i)

In $\triangle \mathrm{POR}, \mathrm{AC} \| \mathrm{PR}$
$\therefore \frac{\mathrm{OA}}{\mathrm{AP}}=\frac{\mathrm{OC}}{\mathrm{CR}} \quad$ (By basic proportionality theorem) (ii)

From (i) and (ii), we obtain
$\frac{\mathrm{OB}}{\mathrm{BQ}}=\frac{\mathrm{OC}}{\mathrm{CR}}$
$\therefore \mathrm{BC} \| \mathrm{QR} \quad$ (By the converse of basic proportionality theorem)

Question 7:

Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).
Answer:

Consider the given figure in which $P Q$ is a line segment drawn through the mid-point P of line $A B$, such that $P Q \| B C$

Class X
Chapter 6 - Triangles
Maths

By using basic proportionality theorem, we obtain
$\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{\mathrm{AP}}{\mathrm{PB}}$
$\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{1} \quad(\mathrm{P}$ is the mid-point of $\mathrm{AB} . \therefore \mathrm{AP}=\mathrm{PB})$
$\Rightarrow A Q=Q C$
Or, Q is the mid-point of AC .

Question 8:

Using Converse of basic proportionality theorem, prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Answer:

Consider the given figure in which $P Q$ is a line segment joining the mid-points P and Q of line $A B$ and $A C$ respectively.
i.e., $A P=P B$ and $A Q=Q C$

It can be observed that
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{1}{1}$
and $\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{1}$
$\therefore \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
Hence, by using basic proportionality theorem, we obtain
PQ $\| B C$

Question 9:

$A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O. Show that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$.
Answer:

Draw a line $E F$ through point O, such that $E F \| C D$
In $\triangle A D C, E O \| C D$
By using basic proportionality theorem, we obtain
$\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}}$
In $\triangle A B D, O E \| A B$
So, by using basic proportionality theorem, we obtain

$$
\begin{align*}
& \frac{\mathrm{ED}}{\mathrm{AE}}=\frac{\mathrm{OD}}{\mathrm{BO}} \\
& \Rightarrow \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}} \tag{2}
\end{align*}
$$

From equations (1) and (2), we obtain
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
$\Rightarrow \frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OD}}$

Question 10:

The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$. Show that $A B C D$ is a trapezium.

Answer:

Let us consider the following figure for the given question.

Draw a line $O E \| A B$

In $\triangle A B D, O E \| A B$
By using basic proportionality theorem, we obtain
$\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BO}}{\mathrm{OD}}$
However, it is given that
$\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$
From equations (1) and (2), we obtain
$\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{AO}}{\mathrm{OC}}$
$\Rightarrow \mathrm{EO} \| \mathrm{DC}$ [By the converse of basic proportionality theorem]
$\Rightarrow \mathrm{AB}\|\mathrm{OE}\| \mathrm{DC}$
$\Rightarrow A B \| C D$
\therefore ABCD is a trapezium.

Exercise 6.3

Question 1:

State which pairs of triangles in the following figure are similar? Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:
(i)

(ii)

(iii)

(iv)

Answer:
(i) $\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{R}=40^{\circ}$
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [By AAA similarity criterion]

$$
\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{RP}}=\frac{\mathrm{CA}}{\mathrm{PQ}}
$$

(ii)
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{QRP} \quad$ [By SSS similarity criterion]
(iii)The given triangles are not similar as the corresponding sides are not proportional.

Class X
Chapter 6 - Triangles
Maths
(iv)The given triangles are not similar as the corresponding sides are not proportional.
(v)The given triangles are not similar as the corresponding sides are not proportional.
(vi) In $\triangle D E F$,
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$
(Sum of the measures of the angles of a triangle is 180°.)
$70^{\circ}+80^{\circ}+\angle F=180^{\circ}$
$\angle F=30^{\circ}$
Similarly, in $\triangle \mathrm{PQR}$,
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
(Sum of the measures of the angles of a triangle is 180°.)
$\angle P+80^{\circ}+30^{\circ}=180^{\circ}$
$\angle \mathrm{P}=70^{\circ}$
In $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$,
$\angle \mathrm{D}=\angle \mathrm{P}\left(\right.$ Each $\left.70^{\circ}\right)$
$\angle \mathrm{E}=\angle \mathrm{Q}\left(\right.$ Each $\left.80^{\circ}\right)$
$\angle F=\angle R\left(\right.$ Each $\left.30^{\circ}\right)$
$\therefore \triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$ [By AAA similarity criterion]

Question 2:

In the following figure, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}$, $\angle D C O$ and $\angle O A B$

Class X
Chapter 6 - Triangles
Maths

Answer:
DOB is a straight line.
$\therefore \angle \mathrm{DOC}+\angle \mathrm{COB}=180^{\circ}$
$\Rightarrow \angle \mathrm{DOC}=180^{\circ}-125^{\circ}$
$=55^{\circ}$
In $\triangle \mathrm{DOC}$,
$\angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}$
(Sum of the measures of the angles of a triangle is 180°.)
$\Rightarrow \angle \mathrm{DCO}+70^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}=55^{\circ}$
It is given that $\triangle \mathrm{ODC} \sim \triangle O B A$.
$\therefore \angle \mathrm{OAB}=\angle \mathrm{OCD}$ [Corresponding angles are equal in similar triangles.]
$\Rightarrow \angle O A B=55^{\circ}$

Question 3:

Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{\mathrm{AO}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$ Answer:

Class X

In $\triangle D O C$ and $\triangle B O A$,
$\angle \mathrm{CDO}=\angle \mathrm{ABO}$ [Alternate interior angles as $\mathrm{AB} \| \mathrm{CD}$]
$\angle \mathrm{DCO}=\angle \mathrm{BAO}$ [Alternate interior angles as $\mathrm{AB}|\mid C D]$
$\angle \mathrm{DOC}=\angle \mathrm{BOA}$ [Vertically opposite angles]
$\therefore \triangle \mathrm{DOC} \sim \triangle \mathrm{BOA}$ [AAA similarity criterion]
$\therefore \frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{OC}}{\mathrm{OA}} \quad$ [Corresponding sides are proportional]
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}}$

Question 4:

In the following figure, $\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$ and $\angle 1=\angle 2$. Show that $\triangle \mathrm{PQS} \sim \triangle \mathrm{TQR}$

Answer:

In $\triangle \mathrm{PQR}, \angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$\therefore P Q=P R(i)$
Given,
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PR}}$
Using (i), we obtain
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}}$
In $\triangle P Q S$ and $\triangle T Q R$,
$\frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{QP}} \quad[\operatorname{Using}(i i)]$
$\angle \mathrm{Q}=\angle \mathrm{Q}$
$\therefore \triangle \mathrm{PQS} \sim \triangle \mathrm{TQR} \quad$ [SAS similarity criterion]

Question 5:

S and T are point on sides PR and QR of $\triangle \mathrm{PQR}$ such that $\angle \mathrm{P}=\angle \mathrm{RTS}$. Show that $\triangle R P Q ~ \triangle R T S$.
Answer:

In $\triangle R P Q$ and $\triangle R S T$,
$\angle \mathrm{RTS}=\angle \mathrm{QPS}$ (Given)
$\angle \mathrm{R}=\angle \mathrm{R}$ (Common angle)
$\therefore \triangle \mathrm{RPQ} \sim \triangle \mathrm{RTS}$ (By AA similarity criterion)

Question 6:

In the following figure, if $\triangle A B E \cong \triangle A C D$, show that $\triangle A D E \sim \triangle A B C$.

Answer:
It is given that $\triangle A B E \cong \triangle A C D$.
$\therefore \mathrm{AB}=\mathrm{AC}[\mathrm{By} \mathrm{CPCT}](1)$
And, $A D=A E$ [By CPCT] (2)
In $\triangle A D E$ and $\triangle A B C$,
$\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$ [Dividing equation (2) by (1)]
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common angle]
$\therefore \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ [By SAS similarity criterion]

Class X
Chapter 6 - Triangles
Maths

Question 7:

In the following figure, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that:

(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) $\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(v) $\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Answer:
(i)

In $\triangle \mathrm{AEP}$ and $\triangle C D P$,
$\angle \mathrm{AEP}=\angle \mathrm{CDP}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (Vertically opposite angles)
Hence, by using AA similarity criterion,
$\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii)

In $\triangle A B D$ and $\triangle C B E$,
$\angle \mathrm{ADB}=\angle \mathrm{CEB}$ (Each 90°)
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (Common)
Hence, by using AA similarity criterion,
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii)

In $\triangle A E P$ and $\triangle A D B$,
$\angle A E P=\angle A D B\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (Common)
Hence, by using AA similarity criterion,
$\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv)

In $\triangle P D C$ and $\triangle B E C$,
$\angle \mathrm{PDC}=\angle \mathrm{BEC}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (Common angle)
Hence, by using $A A$ similarity criterion,
$\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Question 8:

E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim \triangle C F B$

Answer:

In $\triangle A B E$ and $\triangle C F B$,
$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of a parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles as $\mathrm{AE} \| \mathrm{BC}$)
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$ (By AA similarity criterion)
Question 9:
In the following figure, $A B C$ and $A M P$ are two right triangles, right angled at B and M respectively, prove that:

(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Answer:
In $\triangle A B C$ and $\triangle A M P$,
$\angle A B C=\angle A M P\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{A}=\angle \mathrm{A}$ (Common)
$\therefore \triangle A B C \sim \triangle A M P$ (By AA similarity criterion)
$\Rightarrow \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$
(Corresponding sides of similar triangles are proportional)

Question 10:

CD and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \Delta F E G$, Show that:
(i) $\frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
(ii) $\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$
(iii) $\triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}$

Answer:

It is given that $\triangle A B C \sim \triangle F E G$.
$\therefore \angle \mathrm{A}=\angle \mathrm{F}, \angle \mathrm{B}=\angle \mathrm{E}$, and $\angle \mathrm{ACB}=\angle \mathrm{FGE}$
$\angle \mathrm{ACB}=\angle \mathrm{FGE}$
$\therefore \angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Angle bisector)
And, $\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (Angle bisector)
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{FGH}$,
$\angle \mathrm{A}=\angle \mathrm{F}$ (Proved above)
$\angle A C D=\angle F G H$ (Proved above)
$\therefore \triangle \mathrm{ACD} \sim \Delta \mathrm{FGH}$ (By AA similarity criterion)
$\Rightarrow \frac{\mathrm{CD}}{\mathrm{GH}}=\frac{\mathrm{AC}}{\mathrm{FG}}$
In $\triangle D C B$ and $\triangle H G E$,
$\angle D C B=\angle H G E$ (Proved above)
$\angle B=\angle E$ (Proved above)
$\therefore \triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$ (By AA similarity criterion)
In $\triangle D C A$ and $\triangle H G F$,
$\angle A C D=\angle F G H$ (Proved above)
$\angle \mathrm{A}=\angle \mathrm{F}$ (Proved above)
$\therefore \triangle \mathrm{DCA} \sim \Delta \mathrm{HGF}$ (By AA similarity criterion)

Question 11:

In the following figure, E is a point on side $C B$ produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that $\triangle A B D \sim \triangle E C F$

Answer:
It is given that $A B C$ is an isosceles triangle.
$\therefore A B=A C$
$\Rightarrow \angle A B D=\angle E C F$
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ECF}$,
$\angle A D B=\angle E F C\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle B A D=\angle C E F$ (Proved above)
$\therefore \triangle \mathrm{ABD} \sim \Delta \mathrm{ECF}$ (By using AA similarity criterion)

Question 12:

Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of $\triangle P Q R$ (see the given figure). Show that $\triangle A B C \sim$ $\triangle P Q R$.
Answer:

Median divides the opposite side.

$$
\mathrm{BD}=\frac{\mathrm{BC}}{2} \text { and } \mathrm{QM}=\frac{\mathrm{QR}}{2}
$$

Given that,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
In $\triangle A B D$ and $\triangle P Q M$,

Class X
Chapter 6 - Triangles
Maths
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}{ }_{\text {(Proved above) }}$
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ (By SSS similarity criterion)
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{PQM}$ (Corresponding angles of similar triangles)
In $\triangle A B C$ and $\triangle P Q R$,
$\angle A B D=\angle P Q M$ (Proved above)
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (By SAS similarity criterion)

Question 13:

D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $\mathrm{CA}^{2}=\mathrm{CB} \cdot \mathrm{CD}$.

Answer:

In $\triangle A D C$ and $\triangle B A C$,
$\angle A D C=\angle B A C$ (Given)
$\angle A C D=\angle B C A$ (Common angle)
$\therefore \triangle \mathrm{ADC} \sim \triangle \mathrm{BAC}$ (By AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
$\therefore \frac{\mathrm{CA}}{\mathrm{CB}}=\frac{\mathrm{CD}}{\mathrm{CA}}$
$\Rightarrow \mathrm{CA}^{2}=\mathrm{CB} \times \mathrm{CD}$

Question 14:

Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$ Answer:

Given that,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
Let us extend $A D$ and $P M$ up to point E and L respectively, such that $A D=D E$ and $P M$ $=M L$. Then, join B to E, C to E, Q to L, and R to L.

We know that medians divide opposite sides.
Therefore, $\mathrm{BD}=\mathrm{DC}$ and $\mathrm{QM}=\mathrm{MR}$
Also, $A D=D E$ (By construction)
And, $P M=M L$ (By construction)

In quadrilateral $A B E C$, diagonals $A E$ and $B C$ bisect each other at point D.
Therefore, quadrilateral $A B E C$ is a parallelogram.
$\therefore A C=B E$ and $A B=E C$ (Opposite sides of a parallelogram are equal)
Similarly, we can prove that quadrilateral $P Q L R$ is a parallelogram and $P R=Q L, P Q$
$=L R$
It was given that
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{2 \mathrm{AD}}{2 \mathrm{PM}}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BE}}{\mathrm{QL}}=\frac{\mathrm{AE}}{\mathrm{PL}}$
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{PQL}$ (By SSS similarity criterion)
We know that corresponding angles of similar triangles are equal.
$\therefore \angle B A E=\angle Q P L$..
Similarly, it can be proved that $\triangle A E C \sim \triangle P L R$ and
$\angle C A E=\angle R P L \ldots$ (2)
Adding equation (1) and (2), we obtain
$\angle B A E+\angle C A E=\angle Q P L+\angle R P L$
$\Rightarrow \angle C A B=\angle R P Q$
In $\triangle A B C$ and $\triangle P Q R$,
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}$ (Given)
$\angle C A B=\angle R P Q[U s i n g$ equation (3)]
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (By SAS similarity criterion)

Class X
Chapter 6 - Triangles
Maths

Question 15:

A vertical pole of a length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer:

Let $A B$ and $C D$ be a tower and a pole respectively.
Let the shadow of $B E$ and DF be the shadow of $A B$ and $C D$ respectively.
At the same time, the light rays from the sun will fall on the tower and the pole at the same angle.
Therefore, $\angle D C F=\angle B A E$
And, $\angle \mathrm{DFC}=\angle \mathrm{BEA}$
$\angle C D F=\angle A B E$ (Tower and pole are vertical to the ground)
$\therefore \triangle \mathrm{ABE} \sim \triangle \mathrm{CDF}$ (AAA similarity criterion)
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{BE}}{\mathrm{DF}}$
$\Rightarrow \frac{\mathrm{AB}}{6 \mathrm{~m}}=\frac{28}{4}$
$\Rightarrow \mathrm{AB}=42 \mathrm{~m}$
Therefore, the height of the tower will be 42 metres.

Question 16:

If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ prove tha $\mathrm{t} \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

Answer:

It is given that $\triangle A B C \sim \triangle P Q R$
We know that the corresponding sides of similar triangles are in proportion.
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
Also, $\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R \ldots$ (2)
Since AD and PM are medians, they will divide their opposite sides.
$\therefore \mathrm{BD}=\frac{\mathrm{BC}}{2}$ and $\mathrm{QM}=\frac{\mathrm{QR}}{2}$
From equations (1) and (3), we obtain
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}$
In $\triangle A B D$ and $\triangle P Q M$,
$\angle B=\angle Q$ [Using equation (2)]
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}_{\text {[Using equation (4)] }}$
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ (By SAS similarity criterion)
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}}$

Class X

Exercise 6.4

Question 1:

Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=$ 15.4 cm , find $B C$.

Answer:
It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\left(\frac{\mathrm{AB}}{\mathrm{DE}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{DF}}\right)^{2}$
Given that,
$\mathrm{EF}=15.4 \mathrm{~cm}$,
$\operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}$,
$\operatorname{ar}(\triangle \mathrm{DEF})=121 \mathrm{~cm}^{2}$
$\therefore \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{DEF})}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}$
$\Rightarrow\left(\frac{64 \mathrm{~cm}^{2}}{121 \mathrm{~cm}^{2}}\right)=\frac{\mathrm{BC}^{2}}{(15.4 \mathrm{~cm})^{2}}$
$\Rightarrow \frac{\mathrm{BC}}{15.4}=\left(\frac{8}{11}\right) \mathrm{cm}$
$\Rightarrow \mathrm{BC}=\left(\frac{8 \times 15.4}{11}\right) \mathrm{cm}=(8 \times 1.4) \mathrm{cm}=11.2 \mathrm{~cm}$

Question 2:

Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

Answer:

Class X

Since $A B \| C D$,
$\therefore \angle O A B=\angle O C D$ and $\angle O B A=\angle O D C$ (Alternate interior angles)
In $\triangle A O B$ and $\triangle C O D$,
$\angle A O B=\angle C O D$ (Vertically opposite angles)
$\angle O A B=\angle O C D$ (Alternate interior angles)
$\angle O B A=\angle O D C$ (Alternate interior angles)
$\therefore \triangle A O B \sim \triangle C O D$ (By AAA similarity criterion)
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})}=\left(\frac{\mathrm{AB}}{\mathrm{CD}}\right)^{2}$
Since $A B=2 C D$,
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})}=\left(\frac{2 \mathrm{CD}}{\mathrm{CD}}\right)^{2}=\frac{4}{1}=4: 1$

Question 3:

In the following figure, $A B C$ and $D B C$ are two triangles on the same base $B C$. If $A D$
intersects $B C$ at O, show that $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D B C)}=\frac{A O}{D O}$

Class X
Chapter 6 - Triangles
Maths

Answer:
Let us draw two perpendiculars AP and DM on line BC.

We know that area of a triangle $=\frac{1}{2} \times$ Base \times Height
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AP}}{\frac{1}{2} \mathrm{BC} \times \mathrm{DM}}=\frac{\mathrm{AP}}{\mathrm{DM}}$
In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$,
$\angle \mathrm{APO}=\angle \mathrm{DMO}\left(\right.$ Each $\left.=90^{\circ}\right)$
$\angle A O P=\angle D O M$ (Vertically opposite angles)
$\therefore \triangle \mathrm{APO} \sim \triangle \mathrm{DMO}$ (By AA similarity criterion)
$\therefore \frac{\mathrm{AP}}{\mathrm{DM}}=\frac{\mathrm{AO}}{\mathrm{DO}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$

Question 4:

If the areas of two similar triangles are equal, prove that they are congruent.
Answer:
Let us assume two similar triangles as $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

Class X
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
Given that, ar $(\triangle \mathrm{ABC})=\mathrm{ar}(\triangle \mathrm{PQR})$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=1$
Putting this value in equation (1), we obtain
$1=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
$\Rightarrow \mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}$, and $\mathrm{AC}=\mathrm{PR}$
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \quad$ (By SSS congruence criterion)

Question 5:

D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the area of $\triangle D E F$ and $\triangle A B C$.

Answer:

D and E are the mid-points of $\triangle A B C$.
$\therefore \mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{AC}$
In $\triangle B E D$ and $\triangle B C A$,

$\angle \mathrm{BED}=\angle \mathrm{BCA}$	(Corresponding angles)
$\angle \mathrm{BDE}=\angle \mathrm{BAC}$	(Corresponding angles)
$\angle \mathrm{EBD}=\angle \mathrm{CBA}$	(Common angles)
$\therefore \triangle \mathrm{BED} \sim \triangle \mathrm{BCA}$	(AAA similarity criterion)
$\frac{\operatorname{ar}(\triangle \mathrm{BED})}{\operatorname{ar}(\triangle \mathrm{BCA})}=\left(\frac{\mathrm{DE}}{\mathrm{AC}}\right)^{2}$	
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{BED})}{\operatorname{ar}(\triangle \mathrm{BCA})}=\frac{1}{4}$	
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BED})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{BCA})$	

Similarly, $\operatorname{ar}(\triangle \mathrm{CFE})=\frac{1}{4} \operatorname{ar}(\mathrm{CBA})$ and $\operatorname{ar}(\triangle \mathrm{ADF})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
Also, $\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC})-[\operatorname{ar}(\triangle \mathrm{BED})+\operatorname{ar}(\triangle \mathrm{CFE})+\operatorname{ar}(\triangle \mathrm{ADF})]$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC})-\frac{3}{4} \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{4}$

Question 6:

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
Answer:

Let us assume two similar triangles as $\triangle A B C \sim \triangle P Q R$. Let $A D$ and $P S$ be the medians of these triangles.
$\because \triangle A B C \sim \triangle P Q R$
$\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$\angle A=\angle P, \angle B=\angle Q, \angle C=\angle R \ldots$
Since AD and PS are medians,
$\therefore B D=D C=\frac{B C}{2}$
And, $\mathrm{QS}=\mathrm{SR}=\frac{\mathrm{QR}}{2}$
Equation (1) becomes
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
In $\triangle A B D$ and $\triangle P Q S$,
$\angle B=\angle Q$ [Using equation (2)]

And, $\frac{\mathrm{PQ}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}$ [Using equation (3)]
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQS}$ (SAS similarity criterion)
Therefore, it can be said that
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QS}}=\frac{\mathrm{AD}}{\mathrm{PS}}$

Class X

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}
$$

From equations (1) and (4), we may find that
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}=\frac{\mathrm{AD}}{\mathrm{PS}}$
And hence,
$\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AD}}{\mathrm{PS}}\right)^{2}$

Question 7:

Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Answer:

Let $A B C D$ be a square of side a.
Therefore, its diagonal $=\sqrt{2} a$
Two desired equilateral triangles are formed as $\triangle A B E$ and $\triangle D B F$.
Side of an equilateral triangle, $\triangle A B E$, described on of its sides $=a$
Side of an equilateral triangle, $\triangle D B F$, described on one of its diagonals $=\sqrt{2} a$

Class X
Chapter 6 - Triangles
Maths

We know that equilateral triangles have all its angles as 60° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.
$\frac{\text { Area of } \triangle \mathrm{ABE}}{\text { Area of } \triangle \mathrm{DBF}}=\left(\frac{a}{\sqrt{2} a}\right)^{2}=\frac{1}{2}$

Question 8:

$A B C$ and BDE are two equilateral triangles such that D is the mid-point of $B C$. Ratio of the area of triangles $A B C$ and $B D E$ is
(A) $2: 1$
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$

Answer:

We know that equilateral triangles have all its angles as 60° and all its sides of the same length. Therefore, all equilateral triangles are similar to each other. Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.
Let side of $\triangle A B C=x$
Therefore, side of $\triangle \mathrm{BDE}=\frac{x}{2}$

Class X
Chapter 6 - Triangles
Maths
$\therefore \frac{\operatorname{area}(\triangle \mathrm{ABC})}{\operatorname{area}(\triangle \mathrm{BDE})}=\left(\frac{x}{\frac{x}{2}}\right)^{2}=\frac{4}{1}$
Hence, the correct answer is (C).

Question 9:

Sides of two similar triangles are in the ratio 4:9. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

Answer:

If two triangles are similar to each other, then the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides of these triangles.
It is given that the sides are in the ratio 4:9.
Therefore, ratio between areas of these triangles $=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}$
Hence, the correct answer is (D).

Class X
Chapter 6 - Triangles
Maths

Exercise 6.5

Question 1:

Sides of triangles are given below. Determine which of them are right triangles? In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

Answer:
(i) It is given that the sides of the triangle are $7 \mathrm{~cm}, 24 \mathrm{~cm}$, and 25 cm .

Squaring the lengths of these sides, we will obtain 49,576, and 625.
$49+576=625$
Or, $7^{2}+24^{2}=25^{2}$
The sides of the given triangle are satisfying Pythagoras theorem.
Therefore, it is a right triangle.
We know that the longest side of a right triangle is the hypotenuse.
Therefore, the length of the hypotenuse of this triangle is 25 cm .
(ii) It is given that the sides of the triangle are $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 6 cm .

Squaring the lengths of these sides, we will obtain 9,64 , and 36 .
However, $9+36 \neq 64$
Or, $3^{2}+6^{2} \neq 8^{2}$
Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle is not satisfying Pythagoras theorem.
Hence, it is not a right triangle.
(iii)Given that sides are $50 \mathrm{~cm}, 80 \mathrm{~cm}$, and 100 cm .

Squaring the lengths of these sides, we will obtain 2500, 6400, and 10000.
However, $2500+6400 \neq 10000$
Or, $50^{2}+80^{2} \neq 100^{2}$

Clearly, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.
Therefore, the given triangle is not satisfying Pythagoras theorem.
Hence, it is not a right triangle.
(iv)Given that sides are $13 \mathrm{~cm}, 12 \mathrm{~cm}$, and 5 cm .

Squaring the lengths of these sides, we will obtain 169,144 , and 25.
Clearly, $144+25=169$
Or, $12^{2}+5^{2}=13^{2}$
The sides of the given triangle are satisfying Pythagoras theorem.
Therefore, it is a right triangle.
We know that the longest side of a right triangle is the hypotenuse.
Therefore, the length of the hypotenuse of this triangle is 13 cm .

Question 2:

$P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $P M \perp Q R$. Show that $P M^{2}=Q M \times M R$.

Answer:

Let $\angle \mathrm{MPR}=x$
In $\triangle M P R$,
$\angle \mathrm{MRP}=180^{\circ}-90^{\circ}-x$
$\angle \mathrm{MRP}=90^{\circ}-x$
Similarly, in $\triangle M P Q$,
$\angle \mathrm{MPQ}=90^{\circ}-\angle \mathrm{MPR}$

$$
=90^{\circ}-x
$$

$\angle \mathrm{MQP}=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right)$
$\angle \mathrm{MQP}=x$
In \triangle QMP and $\triangle P M R$,
$\angle \mathrm{MPQ}=\angle \mathrm{MRP}$
$\angle \mathrm{PMQ}=\angle \mathrm{RMP}$
$\angle \mathrm{MQP}=\angle \mathrm{MPR}$
$\therefore \Delta \mathrm{QMP} \sim \Delta \mathrm{PMR} \quad$ (By AAA similarity criterion)
$\Rightarrow \frac{\mathrm{QM}}{\mathrm{PM}}=\frac{\mathrm{MP}}{\mathrm{MR}}$
$\Rightarrow \mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$

Question 3:

In the following figure, $A B D$ is a triangle right angled at A and $A C \perp B D$. Show that
(i) $A B^{2}=B C \times B D$
(ii) $A C^{2}=B C \times D C$
(iii) $A D^{2}=B D \times C D$

Answer:
(i) In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CAB}$,

$$
\begin{aligned}
& \angle \mathrm{DAB}=\angle \mathrm{ACB} \quad\left(\text { Each } 90^{\circ}\right) \\
& \angle \mathrm{ABD}=\angle \mathrm{CBA} \quad(\text { Common angle }) \\
& \therefore \triangle \mathrm{ADB} \sim \triangle \mathrm{CAB} \text { (AA similarity criterion) } \\
& \Rightarrow \frac{\mathrm{AB}}{\mathrm{CB}}=\frac{\mathrm{BD}}{\mathrm{AB}} \\
& \Rightarrow \mathrm{AB}{ }^{2}=\mathrm{CB} \times \mathrm{BD} \\
& \text { (ii) } \mathrm{Let} \angle \mathrm{CAB}=x \\
& \text { In } \triangle \mathrm{CBA}, \\
& \angle \mathrm{CBA}=180^{\circ}-90^{\circ}-x \\
& \angle \mathrm{CBA}=90^{\circ}-x \\
& \text { Similarly, in } \Delta \mathrm{CAD}, \\
& \angle \mathrm{CAD}=90^{\circ}-\angle \mathrm{CAB} \\
& \quad=90^{\circ}-x \\
& \angle \mathrm{CDA}=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right) \\
& \angle \mathrm{CDA}=x \\
& \text { In } \triangle \mathrm{CBA} \text { and } \triangle \mathrm{CAD}, \\
& \angle \mathrm{CBA}=\angle \mathrm{CAD} \\
& \angle \mathrm{CAB}=\angle \mathrm{CDA} \\
& \angle \mathrm{ACB}=\angle \mathrm{DCA} \\
& \therefore \triangle \mathrm{CBA} \sim \triangle \mathrm{CAD} \\
& \Rightarrow \frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{BC}}{\mathrm{AC}} \\
& \Rightarrow \mathrm{AC} \\
& \hline \text { (iii) }=\mathrm{In} \triangle \mathrm{DCA} \times \mathrm{BC} \\
& \angle \mathrm{DCA}=\angle \mathrm{DAB} \text { and } \triangle \mathrm{DAB}, \\
& \angle \mathrm{CDA}=\angle \mathrm{ADB}\left(\text { Common angle) } 90^{\circ}\right) \\
& \text { (Each } \left.90^{\circ}\right) \\
& \quad \text { (By AAA rule) }
\end{aligned}
$$

$\therefore \triangle \mathrm{DCA} \sim \triangle \mathrm{DAB}$
(AA similarity criterion)
$\Rightarrow \frac{\mathrm{DC}}{\mathrm{DA}}=\frac{\mathrm{DA}}{\mathrm{DB}}$
$\Rightarrow \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$

Question 4:

$A B C$ is an isosceles triangle right angled at C. prove that $A B^{2}=2 A C^{2}$.
Answer:

Given that $\triangle A B C$ is an isosceles triangle.
$\therefore A C=C B$
Applying Pythagoras theorem in $\triangle A B C$ (i.e., right-angled at point C), we obtain
$\mathrm{AC}^{2}+\mathrm{CB}^{2}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AC}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2} \quad(\mathrm{AC}=\mathrm{CB})$
$\Rightarrow 2 \mathrm{AC}^{2}=\mathrm{AB}^{2}$

Question 5:

$A B C$ is an isosceles triangle with $A C=B C$. If $A B^{2}=2 A C^{2}$, prove that $A B C$ is a right triangle.
Answer:

Given that,
$\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2} \quad(\mathrm{As} \mathrm{AC}=\mathrm{BC})$
The triangle is satisfying the pythagoras theorem.
Therefore, the given triangle is a right - angled triangle.

Question 6:

$A B C$ is an equilateral triangle of side $2 a$. Find each of its altitudes.
Answer:

Let $A D$ be the altitude in the given equilateral triangle, $\triangle A B C$.
We know that altitude bisects the opposite side.
$\therefore B D=D C=a$

Class X
Chapter 6 - Triangles
Maths

In $\triangle \mathrm{ADB}$,
$\angle \mathrm{ADB}=90^{\circ}$
Applying pythagoras theorem, we obtain
$\mathrm{AD}^{2}+\mathrm{DB}^{2}=\mathrm{AB}^{2}$
$\Rightarrow \mathrm{AD}^{2}+a^{2}=(2 a)^{2}$
$\Rightarrow \mathrm{AD}^{2}+a^{2}=4 a^{2}$
$\Rightarrow \mathrm{AD}^{2}=3 a^{2}$
$\Rightarrow \mathrm{AD}=a \sqrt{3}$
In an equilateral triangle, all the altitudes are equal in length.
Therefore, the length of each altitude will be $\sqrt{3} a$.

Question 7:

Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.
Answer:

In $\triangle A O B, \triangle B O C, \triangle C O D, \triangle A O D$,
Applying Pythagoras theorem, we obtain

$$
\begin{align*}
& \mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2} \tag{1}\\
& \mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{OC}^{2} \tag{2}\\
& \mathrm{CD}^{2}=\mathrm{CO}^{2}+\mathrm{OD}^{2} \tag{3}\\
& \mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2} \tag{4}
\end{align*}
$$

Adding all these equations, we obtain
$\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=2\left(\mathrm{AO}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}+\mathrm{OD}^{2}\right)$
$=2\left(\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}+\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}\right)$
(Diagonals bisect each other)
$=2\left(\frac{(\mathrm{AC})^{2}}{2}+\frac{(\mathrm{BD})^{2}}{2}\right)$
$=(\mathrm{AC})^{2}+(\mathrm{BD})^{2}$

Question 8:

In the following figure, O is a point in the interior of a triangle $A B C, O D \perp B C, O E \perp$ $A C$ and $O F \perp A B$. Show that

(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$

Answer:
Join OA, OB, and OC.

Class X

(i) Applying Pythagoras theorem in $\triangle A O F$, we obtain
$\mathrm{OA}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}$
Similarly, in $\triangle B O D$,
$\mathrm{OB}^{2}=\mathrm{OD}^{2}+\mathrm{BD}^{2}$
Similarly, in $\triangle C O E$,
$\mathrm{OC}^{2}=\mathrm{OE}^{2}+\mathrm{EC}^{2}$
Adding these equations,
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}+\mathrm{OD}^{2}+\mathrm{BD}^{2}+\mathrm{OE}^{2}+\mathrm{EC}^{2}$
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{EC}^{2}$
(ii) From the above result,
$\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{EC}^{2}=\left(\mathrm{OA}^{2}-\mathrm{OE}^{2}\right)+\left(\mathrm{OC}^{2}-\mathrm{OD}^{2}\right)+\left(\mathrm{OB}^{2}-\mathrm{OF}^{2}\right)$
$\therefore \mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{EC}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$

Question 9:

A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Answer:

Class X

Let $O A$ be the wall and $A B$ be the ladder.
Therefore, by Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{BO}^{2}$
$(10 \mathrm{~m})^{2}=(8 \mathrm{~m})^{2}+\mathrm{OB}^{2}$
$100 \mathrm{~m}^{2}=64 \mathrm{~m}^{2}+\mathrm{OB}^{2}$
$\mathrm{OB}^{2}=36 \mathrm{~m}^{2}$
$\mathrm{OB}=6 \mathrm{~m}$
Therefore, the distance of the foot of the ladder from the base of the wall is 6 m.

Question 10:

A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Answer:

Let $O B$ be the pole and $A B$ be the wire.
By Pythagoras theorem,

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2} \\
& (24 \mathrm{~m})^{2}=(18 \mathrm{~m})^{2}+\mathrm{OA}^{2} \\
& \mathrm{OA}^{2}=(576-324) \mathrm{m}^{2}=252 \mathrm{~m}^{2} \\
& \mathrm{OA}=\sqrt{252} \mathrm{~m}=\sqrt{6 \times 6 \times 7} \mathrm{~m}=6 \sqrt{7} \mathrm{~m}
\end{aligned}
$$

Therefore, the distance from the base is $6 \sqrt{7} \mathrm{~m}$.

Question 11:

An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $1,200 \mathrm{~km}$ per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours?
Answer:

Distance travelled by the plane flying towards north in $1 \frac{1}{2} \mathrm{hrs}$ $=1,000 \times 1 \frac{1}{2}=1,500 \mathrm{~km}$

Similarly, distance travelled by the plane flying towards west in 2 $=1,200 \times 1 \frac{1}{2}=1,800 \mathrm{~km}$

Class X
Chapter 6 - Triangles
Maths

Let these distances be represented by OA and OB respectively.
Applying Pythagoras theorem,
Distance between these planes after $1 \frac{1}{2} \mathrm{hrs}, \mathrm{AB}=\sqrt{\mathrm{OA}^{2}+\mathrm{OB}^{2}}$
$=\left(\sqrt{(1,500)^{2}+(1,800)^{2}}\right) \mathrm{km}=(\sqrt{2250000+3240000}) \mathrm{km}$
$=(\sqrt{5490000}) \mathrm{km}=(\sqrt{9 \times 610000}) \mathrm{km}=300 \sqrt{61} \mathrm{~km}$
Therefore, the distance between these planes will be $300 \sqrt{61}$ km after $1 \frac{1}{2} \mathrm{hrs}$.

Question 12:

Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m , find the distance between their tops.

Answer:

Let $C D$ and $A B$ be the poles of height 11 m and 6 m .
Therefore, $\mathrm{CP}=11-6=5 \mathrm{~m}$
From the figure, it can be observed that $A P=12 m$
Applying Pythagoras theorem for $\triangle \mathrm{APC}$, we obtain

Class X
Chapter 6 - Triangles
Maths

$$
\begin{aligned}
& \mathrm{AP}^{2}+\mathrm{PC}^{2}=\mathrm{AC}^{2} \\
& (12 \mathrm{~m})^{2}+(5 \mathrm{~m})^{2}=\mathrm{AC}^{2} \\
& \mathrm{AC}^{2}=(144+25) \mathrm{m}^{2}=169 \mathrm{~m}^{2} \\
& \mathrm{AC}=13 \mathrm{~m}
\end{aligned}
$$

Therefore, the distance between their tops is 13 m .

Question 13:

D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled
at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$
Answer:

Applying Pythagoras theorem in $\triangle A C E$, we obtain
$\mathrm{AC}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}$
Applying Pythagoras theorem in $\triangle \mathrm{BCD}$, we obtain
$\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}$
Using equation(1) and equation (2), we obtain
$\mathrm{AC}^{2}+\mathrm{CE}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{AE}^{2}+\mathrm{BD}^{2}$
Applying Pythagoras theorem in $\triangle \mathrm{CDE}$, we obtain
$\mathrm{DE}^{2}=\mathrm{CD}^{2}+\mathrm{CE}^{2}$
Applying Pythagoras theorem in $\triangle \mathrm{ABC}$, we obtain
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$
Putting the values in equation (3), we obtain
$\mathrm{DE}^{2}+\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BD}^{2}$

Question 14:

Class X

The perpendicular from A on side $B C$ of a $\triangle A B C$ intersect $B C$ at D such that $D B=3$ $C D$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$

Answer:
Applying Pythagoras theorem for $\triangle A C D$, we obtain
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{DC}^{2}$
Applying Pythagoras theorem in $\triangle A B D$, we obtain
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}$
$\mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{DB}^{2}$
From equation (1) and equation (2), we obtain
$\mathrm{AC}^{2}-\mathrm{DC}^{2}=\mathrm{AB}^{2}-\mathrm{DB}^{2}$
It is given that $3 \mathrm{DC}=\mathrm{DB}$
$\therefore \mathrm{DC}=\frac{\mathrm{BC}}{4}$ and $\mathrm{DB}=\frac{3 \mathrm{BC}}{4}$
Putting these values in equation (3), we obtain
$\mathrm{AC}^{2}-\left(\frac{\mathrm{BC}}{4}\right)^{2}=\mathrm{AB}^{2}-\left(\frac{3 \mathrm{BC}}{4}\right)^{2}$
$\mathrm{AC}^{2}-\frac{\mathrm{BC}^{2}}{16}=\mathrm{AB}^{2}-\frac{9 \mathrm{BC}^{2}}{16}$
$16 \mathrm{AC}^{2}-\mathrm{BC}^{2}=16 \mathrm{AB}^{2}-9 \mathrm{BC}^{2}$
$16 \mathrm{AB}^{2}-16 \mathrm{AC}^{2}=8 \mathrm{BC}^{2}$
$2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$

Question 15:

In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
Answer:

Let the side of the equilateral triangle be a, and $A E$ be the altitude of $\triangle A B C$.
$\therefore \mathrm{BE}=\mathrm{EC}=\frac{\frac{\mathrm{BC}}{2}}{2}=\frac{\frac{a}{2}}{2}$
And, $\mathrm{AE}=\frac{a \sqrt{3}}{2}$
Given that, $B D=\frac{1}{3} B C$
$\therefore \mathrm{BD}=\frac{\frac{a}{3}}{}$
$\mathrm{DE}=\mathrm{BE}-\mathrm{BD}=\frac{\frac{a}{2}-\frac{a}{3}=\frac{a}{6}, ~}{\text { a }}$
Applying Pythagoras theorem in $\triangle A D E$, we obtain
$A D^{2}=A E^{2}+D E^{2}$

$$
\begin{aligned}
& \mathrm{AD}^{2}=\left(\frac{a \sqrt{3}}{2}\right)^{2}+\left(\frac{a}{6}\right)^{2} \\
&=\left(\frac{3 a^{2}}{4}\right)+\left(\frac{a^{2}}{36}\right) \\
&=\frac{28 a^{2}}{36} \\
&=\frac{7}{9} \mathrm{AB}^{2} \\
& \Rightarrow 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}
\end{aligned}
$$

Question 16:

In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
Answer:

Let the side of the equilateral triangle be a, and $A E$ be the altitude of $\triangle A B C$.
$\therefore \mathrm{BE}=\mathrm{EC}=\frac{\mathrm{BC}}{2}=\frac{a}{2}$
Applying Pythagoras theorem in $\triangle A B E$, we obtain
$A B^{2}=A E^{2}+B E^{2}$

$$
\begin{aligned}
& a^{2}=\mathrm{AE}^{2}+\left(\frac{a}{2}\right)^{2} \\
& \mathrm{AE}^{2}=a^{2}-\frac{a^{2}}{4} \\
& \mathrm{AE}^{2}=\frac{3 a^{2}}{4} \\
& 4 \mathrm{AE}^{2}=3 a^{2} \\
& \Rightarrow 4 \times(\text { Square of altitude })=3 \times(\text { Square of one side })
\end{aligned}
$$

Question 17:

Tick the correct answer and justify: In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6$ cm.

The angle B is:
(A) 120° (B) 60°
(C) 90° (D) 45°

Answer:

Given that, $A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$, and $B C=6 \mathrm{~cm}$
It can be observed that
$A B^{2}=108$
$\mathrm{AC}^{2}=144$
And, $\mathrm{BC}^{2}=36$
$A B^{2}+B C^{2}=A C^{2}$
The given triangle, $\triangle A B C$, is satisfying Pythagoras theorem.

Class X

Therefore, the triangle is a right triangle, right-angled at B.
$\therefore \angle B=90^{\circ}$
Hence, the correct answer is (C).

Class X
Chapter 6 - Triangles
Maths

Exercise 6.6

Question 1:

In the given figure, PS is the bisector of $\angle \mathrm{QPR}$ of $\triangle \mathrm{PQR}$. Prove that $\frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{PR}}$.

Answer:

Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T .
Given that, PS is the angle bisector of $\angle \mathrm{QPR}$.
$\angle \mathrm{QPS}=\angle \mathrm{SPR} \ldots(1)$
By construction,

```
\angleSPR = \anglePRT (As PS || TR) ... (2)
\angleQPS = \angleQTR (As PS || TR) ... (3)
```

Using these equations, we obtain
$\angle P R T=\angle Q T R$
$\therefore \mathrm{PT}=\mathrm{PR}$
By construction,
PS || TR
By using basic proportionality theorem for \triangle QTR,
$\frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{QP}}{\mathrm{PT}}$
$\Rightarrow \frac{\mathrm{QS}}{\mathrm{SR}}=\frac{\mathrm{PQ}}{\mathrm{PR}}$

$$
(\mathrm{PT}=\mathrm{TR})
$$

Question 2:

In the given figure, D is a point on hypotenuse $A C$ of $\triangle A B C, D M \perp B C$ and $D N \perp A B$,
Prove that:
(i) $\mathrm{DM}^{2}=\mathrm{DN} . \mathrm{MC}$
(ii) $\mathrm{DN}^{2}=\mathrm{DM} \cdot \mathrm{AN}$

Answer:
(i)Let us join DB.

We have, $D N||C B, D M|| A B$, and $\angle B=90^{\circ}$
\therefore DMBN is a rectangle.
$\therefore \mathrm{DN}=\mathrm{MB}$ and $\mathrm{DM}=\mathrm{NB}$
The condition to be proved is the case when D is the foot of the perpendicular drawn from B to $A C$.
$\therefore \angle C D B=90^{\circ}$
$\Rightarrow \angle 2+\angle 3=90^{\circ}$
In $\triangle C D M$,
$\angle 1+\angle 2+\angle D M C=180^{\circ}$
$\Rightarrow \angle 1+\angle 2=90^{\circ}$
In $\triangle \mathrm{DMB}$,
$\angle 3+\angle \mathrm{DMB}+\angle 4=180^{\circ}$
$\Rightarrow \angle 3+\angle 4=90^{\circ}$
From equation (1) and (2), we obtain
$\angle 1=\angle 3$
From equation (1) and (3), we obtain
$\angle 2=\angle 4$
In $\triangle \mathrm{DCM}$ and $\triangle \mathrm{BDM}$,
$\angle 1=\angle 3$ (Proved above)
$\angle 2=\angle 4$ (Proved above)
$\therefore \triangle \mathrm{DCM} \sim \triangle \mathrm{BDM}$ (AA similarity criterion)

Class X
$\Rightarrow \frac{\mathrm{BM}}{\mathrm{DM}}=\frac{\mathrm{DM}}{\mathrm{MC}}$
$\Rightarrow \frac{\mathrm{DN}}{\mathrm{DM}}=\frac{\mathrm{DM}}{\mathrm{MC}}$
$(\mathrm{BM}=\mathrm{DN})$
$\Rightarrow \mathrm{DM}^{2}=\mathrm{DN} \times \mathrm{MC}$
(ii) In right triangle DBN,
$\angle 5+\angle 7=90^{\circ}$
In right triangle DAN,
$\angle 6+\angle 8=90^{\circ}$..
D is the foot of the perpendicular drawn from B to $A C$.
$\therefore \angle A D B=90^{\circ}$
$\Rightarrow \angle 5+\angle 6=90^{\circ}$
From equation (4) and (6), we obtain
$\angle 6=\angle 7$
From equation (5) and (6), we obtain
$\angle 8=\angle 5$
In $\triangle \mathrm{DNA}$ and $\triangle \mathrm{BND}$,
$\angle 6=\angle 7$ (Proved above)
$\angle 8=\angle 5$ (Proved above)

$\Rightarrow \frac{\mathrm{AN}}{\mathrm{DN}}=\frac{\mathrm{DN}}{\mathrm{NB}}$
$\Rightarrow \mathrm{DN}^{2}=\mathrm{AN} \times \mathrm{NB}$
$\Rightarrow \mathrm{DN}^{2}=\mathrm{AN} \times \mathrm{DM}(\mathrm{As} \mathrm{NB}=\mathrm{DM})$

Question 3:

In the given figure, $A B C$ is a triangle in which $\angle A B C>90^{\circ}$ and $A D \perp C B$ produced.
Prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$.

Answer:
Applying Pythagoras theorem in $\triangle A D B$, we obtain
$A B^{2}=A D^{2}+D B^{2}$
Applying Pythagoras theorem in $\triangle A C D$, we obtain
$A C^{2}=A D^{2}+D C^{2}$
$A C^{2}=A D^{2}+(D B+B C)^{2}$
$A C^{2}=A D^{2}+D B^{2}+B C^{2}+2 D B \times B C$
$A C^{2}=A B^{2}+B C^{2}+2 D B \times B C$ [Using equation (1)]
Question 4:
In the given figure, $A B C$ is a triangle in which $\angle A B C<90^{\circ}$ and $A D \perp B C$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

Answer:
Applying Pythagoras theorem in $\triangle A D B$, we obtain
$A D^{2}+D B^{2}=A B^{2}$
$\Rightarrow A D^{2}=A B^{2}-D B^{2}$
Applying Pythagoras theorem in $\triangle A D C$, we obtain
$A D^{2}+D C^{2}=A C^{2}$
$A B^{2}-B D^{2}+D C^{2}=A C^{2}$ [Using equation (1)]
$A B^{2}-B D^{2}+(B C-B D)^{2}=A C^{2}$
$A C^{2}=A B^{2}-B D^{2}+B C^{2}+B D^{2}-2 B C \times B D$
$=A B^{2}+B C^{2}-2 B C \times B D$

Question 5:

In the given figure, $A D$ is a median of a triangle $A B C$ and $A M \perp B C$. Prove that:
(i)
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \cdot \mathrm{DM}+\left(\frac{\mathrm{BC}}{2}\right)^{2}$
(ii)

$$
\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \cdot \mathrm{DM}+\left(\frac{\mathrm{BC}}{2}\right)^{2}
$$

(iii) $\mathrm{AC}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2}$

Answer:
(i) Applying Pythagoras theorem in $\triangle A M D$, we obtain
$A M^{2}+M D^{2}=A D^{2}$
Applying Pythagoras theorem in $\triangle \mathrm{AMC}$, we obtain
$A M^{2}+M C^{2}=A C^{2}$
$A M^{2}+(M D+D C)^{2}=A C^{2}$
$\left(A M^{2}+M D^{2}\right)+D C^{2}+2 M D \cdot D C=A C^{2}$
$A D^{2}+D C^{2}+2 M D \cdot D C=A C^{2}[$ Using equation (1)]

Using the result,

$$
\mathrm{DC}=\frac{\mathrm{BC}}{2} \text {, we obtain }
$$

$$
\begin{aligned}
& \mathrm{AD}^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}+2 \mathrm{MD} \cdot\left(\frac{\mathrm{BC}}{2}\right)=\mathrm{AC}^{2} \\
& \mathrm{AD}^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}+\mathrm{MD} \times \mathrm{BC}=A C^{2} \\
& \text { (ii) Applying Pythagoras theorem in } \triangle \mathrm{ABM} \text {, we obtain } \\
& A B^{2}=A M^{2}+M B^{2} \\
& =\left(A D^{2}-D M^{2}\right)+M B^{2} \\
& =\left(A D^{2}-D M^{2}\right)+(B D-M D)^{2} \\
& =A D^{2}-D M^{2}+B D^{2}+M D^{2}-2 B D \times M D \\
& =A D^{2}+B D^{2}-2 B D \times M D \\
& =A D^{2}+\left(\frac{B C}{2}\right)^{2}-2\left(\frac{B C}{2}\right) \times M D \\
& =A D^{2}+\left(\frac{B C}{2}\right)^{2}-B C \times M D
\end{aligned}
$$

(iii)Applying Pythagoras theorem in $\triangle A B M$, we obtain
$A M^{2}+M B^{2}=A B^{2}$.
Applying Pythagoras theorem in $\triangle A M C$, we obtain
$A M^{2}+M C^{2}=A C^{2}$
Adding equations (1) and (2), we obtain
$2 A M^{2}+M B^{2}+M C^{2}=A B^{2}+A C^{2}$
$2 A M^{2}+(B D-D M)^{2}+(M D+D C)^{2}=A B^{2}+A C^{2}$
$2 A M^{2}+B D^{2}+D M^{2}-2 B D \cdot D M+M D^{2}+D C^{2}+2 M D \cdot D C=A B^{2}+A C^{2}$
$2 A M^{2}+2 M D^{2}+B D^{2}+D C^{2}+2 M D(-B D+D C)=A B^{2}+A C^{2}$
$2\left(\mathrm{AM}^{2}+\mathrm{MD}^{2}\right)+\left(\frac{\mathrm{BC}}{2}\right)^{2}+\left(\frac{\mathrm{BC}}{2}\right)^{2}+2 \mathrm{MD}\left(-\frac{\mathrm{BC}}{2}+\frac{\mathrm{BC}}{2}\right)=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2 \mathrm{AD}^{2}+\frac{\mathrm{BC}^{2}}{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$

Question 6:

Class X

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Answer:

Let $A B C D$ be a parallelogram.
Let us draw perpendicular $D E$ on extended side $A B$, and $A F$ on side $D C$.
Applying Pythagoras theorem in $\triangle D E A$, we obtain
$D E^{2}+E A^{2}=D A^{2}$
Applying Pythagoras theorem in $\triangle D E B$, we obtain
$D E^{2}+E B^{2}=D B^{2}$
$D E^{2}+(E A+A B)^{2}=D B^{2}$
$\left(D E^{2}+E A^{2}\right)+A B^{2}+2 E A \times A B=D B^{2}$
$D A^{2}+A B^{2}+2 E A \times A B=D B^{2} \ldots(i i)$
Applying Pythagoras theorem in $\triangle A D F$, we obtain
$A D^{2}=A F^{2}+F D^{2}$
Applying Pythagoras theorem in $\triangle A F C$, we obtain
$A C^{2}=A F^{2}+F C^{2}$
$=A F^{2}+(D C-F D)^{2}$
$=A F^{2}+D C^{2}+F D^{2}-2 D C \times F D$
$=\left(A F^{2}+F D^{2}\right)+D C^{2}-2 D C \times F D$
$A C^{2}=A D^{2}+D C^{2}-2 D C \times F D \ldots(i i i)$

Class X

Since $A B C D$ is a parallelogram,
$A B=C D$
And, $B C=A D \ldots(v)$
In $\triangle D E A$ and $\triangle A D F$,
$\angle D E A=\angle A F D\left(\right.$ Both $\left.90^{\circ}\right)$
$\angle E A D=\angle A D F(E A| | D F)$
$A D=A D$ (Common)
$\therefore \triangle \mathrm{EAD} \cong \triangle \mathrm{FDA}$ (AAS congruence criterion)
$\Rightarrow E A=D F$. (vi)

Adding equations (i) and (iii), we obtain
$D A^{2}+A B^{2}+2 E A \times A B+A D^{2}+D C^{2}-2 D C \times F D=D B^{2}+A C^{2}$
$D A^{2}+A B^{2}+A D^{2}+D C^{2}+2 E A \times A B-2 D C \times F D=D B^{2}+A C^{2}$
$B C^{2}+A B^{2}+A D^{2}+D C^{2}+2 E A \times A B-2 A B \times E A=D B^{2}+A C^{2}$
[Using equations (iv) and (vi)]
$A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}$

Question 7:

In the given figure, two chords $A B$ and $C D$ intersect each other at the point P. prove that:
(i) $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
(ii) $A P . B P=C P . D P$

Class X
Chapter 6 - Triangles
Maths

Answer:
Let us join CB.

(i) In $\triangle A P C$ and $\triangle D P B$,
$\angle A P C=\angle D P B$ (Vertically opposite angles)
$\angle C A P=\angle B D P$ (Angles in the same segment for chord CB)
$\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$ (By AA similarity criterion)
(ii) We have already proved that
$\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
We know that the corresponding sides of similar triangles are proportional.
$\therefore \frac{\mathrm{AP}}{\mathrm{DP}}=\frac{\mathrm{PC}}{\mathrm{PB}}=\frac{\mathrm{CA}}{\mathrm{BD}}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{DP}}=\frac{\mathrm{PC}}{\mathrm{PB}}$
$\therefore \mathrm{AP} . \mathrm{PB}=\mathrm{PC} . \mathrm{DP}$

Question 8:

In the given figure, two chords $A B$ and $C D$ of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
(ii) PA.PB $=P C \cdot P D$

Answer:
(i) In $\triangle P A C$ and $\triangle P D B$,
$\angle \mathrm{P}=\angle \mathrm{P}$ (Common)
$\angle \mathrm{PAC}=\angle \mathrm{PDB}$ (Exterior angle of a cyclic quadrilateral is $\angle \mathrm{PCA}=\angle \mathrm{PBD}$ equal to the opposite interior angle)
$\therefore \triangle P A C \sim \triangle P D B$
(ii)We know that the corresponding sides of similar triangles are proportional.
$\therefore \frac{\mathrm{PA}}{\mathrm{PD}}=\frac{\mathrm{AC}}{\mathrm{DB}}=\frac{\mathrm{PC}}{\mathrm{PB}}$
$\Rightarrow \frac{P A}{P D}=\frac{P C}{P B}$
\therefore PA.PB $=$ PC.PD

Question 9:

In the given figure, D is a point on side $B C$ of $\triangle A B C$ such that $\frac{B D}{C D}=\frac{A B}{A C}$. Prove that $A D$ is the bisector of $\angle B A C$.

Answer:

Let us extend $B A$ to P such that $A P=A C$. Join $P C$.

It is given that,
$\frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{AP}}{\mathrm{AC}}$
By using the converse of basic proportionality theorem, we obtain
$A D \| P C$
$\Rightarrow \angle \mathrm{BAD}=\angle \mathrm{APC}$ (Corresponding angles)
And, $\angle \mathrm{DAC}=\angle \mathrm{ACP}$ (Alternate interior angles) ... (2)

Class X
Chapter 6 - Triangles

By construction, we have
$A P=A C$
$\Rightarrow \angle A P C=\angle A C P$
On comparing equations (1), (2), and (3), we obtain
$\angle B A D=\angle A P C$
$\Rightarrow A D$ is the bisector of the angle BAC

Question 10:

Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, ho much string does she have out (see Fig. 6.64)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

Answer:

Let $A B$ be the height of the tip of the fishing rod from the water surface. Let $B C$ be the horizontal distance of the fly from the tip of the fishing rod.

Then, $A C$ is the length of the string.
$A C$ can be found by applying Pythagoras theorem in $\triangle A B C$.
$A C^{2}=A B^{2}+B C^{2}$
$A B^{2}=(1.8 m)^{2}+(2.4 m)^{2}$
$A B^{2}=(3.24+5.76) \mathrm{m}^{2}$
$A B^{2}=9.00 \mathrm{~m}^{2}$
$\Rightarrow \mathrm{AB}=\sqrt{9} \mathrm{~m}=3 \mathrm{~m}$
Thus, the length of the string out is 3 m .
She pulls the string at the rate of 5 cm per second.
Therefore, string pulled in 12 seconds $=12 \times 5=60 \mathrm{~cm}=0.6 \mathrm{~m}$

Let the fly be at point D after 12 seconds.
Length of string out after 12 seconds is AD.
$A D=A C-$ String pulled by Nazima in 12 seconds
$=(3.00-0.6) \mathrm{m}$
$=2.4 \mathrm{~m}$
In $\triangle A D B$,
$A B^{2}+B D^{2}=A D^{2}$
$(1.8 \mathrm{~m})^{2}+\mathrm{BD}^{2}=(2.4 \mathrm{~m})^{2}$
$B D^{2}=(5.76-3.24) \mathrm{m}^{2}=2.52 \mathrm{~m}^{2}$
$B D=1.587 \mathrm{~m}$
Horizontal distance of fly $=B D+1.2 \mathrm{~m}$
$=(1.587+1.2) \mathrm{m}$
$=2.787 \mathrm{~m}$
$=2.79 \mathrm{~m}$

