# **2. POLYNOMIALS**

## **IMPORTANT TERMS, DEFINITIONS AND RESULTS**

• An expression of the form

$$p(x) = a_a + a_1 x + a_2 x^2 + \dots + a_n x^n$$

where  $ax^2 + bx + c$ , is called a polynomial in x of degree n.

Here,  $a_0, a_1, a_2, \dots a_n$ , are real numbers and each power of x is a non-negative integer.

- The exponent of the highest degree term in a polynomial is known as its degree. A polynomial of degree 0 is called a **constant polynomial**.
- A polynomial of degree 1 is called a **linear** polynomial. A linear polynomial is of the form p(x) = ax + b, where  $a \neq 0$ ,.
- A polynomial of degree 2 is called a **quadratic polynomial.** A quadratic polynomial is of the

form  $p(x) = ax^2 + bx + c$ , where  $a \neq 0$ ,.

- A polynomial of degree 3 is called a **cubic polynomial**. A cubic polynomial is of the form  $p(x) = ax^3 + bx^2 + cx + d$ , where  $a \neq 0$ ,.
- A polynomial of degree 4 is called a **biquadratic polynomial**. A biquadratic polynomial is of the form  $p(x) = ax^4 + bx^3 + cx^2 + dx + e$ , where  $a \neq 0$ ,.
- If p(x) is a polynomial in x and if  $\alpha$  is any real number, then the value obtained by putting  $x = \alpha$  in p(x) is called the value of p(x) at  $x = \alpha$ . The value of p(x) at  $x = \alpha$  is denoted by  $p(\alpha)$ .
- A real number  $\alpha$  is called a zero of the polynomial p(x), if  $p(\alpha) = 0$ .
- A polynomial of degree *n* can have at most *n* real zeroes.
- Geometrically the zeroes of a polynomial p(x) are

the x-coordinates of the points, where the graph of  $p(\alpha) = 0$ . intersects x-axis.

• Zero of the linear polynomial ax + b is

$$-\frac{b}{a} = \frac{-\text{constant term}}{\text{coefficient of } x}$$

• If  $\alpha$  and  $\beta$  are the zeroes of a quadratic poly-

nomial 
$$p(x) = ax^2 + bx + c$$
,  $a \neq 0$ , then  
 $\alpha + \beta = -\frac{b}{a} = \frac{-\text{coefficient of } x}{\text{coefficient of } x^2}$ ,  
 $\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$ 

• If  $\alpha$ ,  $\beta$  and  $\gamma$  are the zeroes of a cubic polynomial  $p(x) = ax^3 + bx^2 + cx + d$ ,  $a \neq 0$ , then

$$\alpha + \beta + \gamma = \frac{-b}{a} = -\frac{\text{coefficient of } x^2}{\text{coefficient of } x^3}$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{coefficient of } x}{\text{coefficient of } x^3}$$

$$\alpha\beta\gamma = -\frac{a}{a} = -\frac{\text{constant term}}{\text{coefficient of } x^3}$$

A quadratic polynomial whose zeroes are α, β is given by

 $p(x) = x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - (\text{sum of the zeroes}) x + \text{product of the zeroes.}$ 

A cubic polynomial whose zeroes are α, β, γ is given by

$$p(x) = x^{3} - (\alpha + \beta + \gamma)x^{2} + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$
  
= x<sup>3</sup> - (sum of the zeroes)x<sup>2</sup>

+ (sum of the products of the zeroes taken two at a time)*x* 

- product of the zeroes.

• The division algorithm states that given any polynomial p(x) and any non-zero polynomial g(x), there are polynomial q(x) and r(x) such that p(x) = g(x)q(x) + r(x), where r(x) = 0 or degree r(x) < degree g(x).

## SUMMATIVE ASSESSMENT

## **MULTIPLE CHOICE QUESTIONS**

#### [1 Mark]

## A. Important Questions

1. Which of the following is a polynomial?

(a) 
$$x^2 - 6\sqrt{x} + 2$$
 (b)  $\sqrt{x} + \frac{1}{\sqrt{x}}$ 

(c) 
$$\frac{5}{x^2 - 3x + 1}$$
 (d) none of these

**2.** If 
$$p(x) = 2x^2 - 3x + 5$$
, then  $p(-1)$  is equal to :  
(a) 7 (b) 8 (c) 9 (d) 10

**3.** The zero of the polynomial 3x + 2 is :

(a) 
$$-\frac{2}{3}$$
 (b)  $\frac{2}{3}$  (c)  $\frac{3}{2}$  (d)  $-\frac{3}{2}$ 

4. The following figure shows the graph of v = p(x). where p(x) is a polynomial. p(x) has :



(d) 4 zeroes (c) 3 zeroes

5. The following figure shows the graph of y = p(x), where p(x) is a polynomial. p(x) has :



| (4) | HO LOID  | $(\mathbf{v})$ |   | 2010   |
|-----|----------|----------------|---|--------|
| (c) | 2 zeroes | (d)            | 3 | zeroes |

- 6. If zeroes of the quadratic polynomial  $2x^2 8x m$ are  $\frac{5}{2}$  and  $\frac{3}{2}$  respectively, then the value of m
  - (a)  $-\frac{15}{2}$  (b)  $\frac{15}{2}$  (c) 2 (d) 15
- 7. If one zero of the quadratic polynomial  $2x^2 8x m$ is  $\frac{5}{2}$ , then the other zero is: (a)  $\frac{2}{3}$  (b)  $-\frac{2}{3}$  (c)  $\frac{3}{2}$  (d)  $\frac{-15}{2}$
- 8. If  $\alpha$  and  $\beta$  are zeroes of  $x^2 + 5x + 8$  then the
  - value of  $\alpha + \beta$  is :

(c) 8 (a) 5 (b) -5 (d) - 8

9. The sum and product of the zeroes of a quadratic polynomial are 2 and -15 respectively. The quadratic polynomial is :

(a) 
$$x^2 - 2x + 15$$
 (b)  $x^2 - 2x - 15$   
(c)  $x^2 + 2x - 15$  (d)  $x^2 + 2x + 15$ 

10. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 - x - 4$ , then the value of  $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$  is :

(a) 
$$\frac{15}{4}$$
 (b)  $\frac{-15}{4}$  (c) 4 (d) 15

- 11. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 - p(x + 1) - c$ , then  $(\alpha + 1)(\beta + 1)$  is equal to : (a) 1 + c (b) 1 - c (c) c - 1 (d) 2 + c
- 12. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 - 5x + k$  such that  $\alpha - \beta = 1$ . then value of k is : (a) 6 (b) 0(c) 1 (d) -1
- 13. If  $\alpha$  and  $\beta$  are the zeroes of the polynomial f(x) $= x^{2} - p(x + 1) - c$  such that  $(\alpha - 1)(\beta + 1) = 0$ , then c is equal to: (d) 2 (a) 1 (b) 0 (c) -1
- 14. The value of k such that the quadratic polynomial  $x^{2} - (k+6)x + (2k+1)$  has sum of the zeroes as half of their product is : (b) 3 (c) -5(a) 2 (d) 5
- 15. If  $\alpha$  and  $\beta$  are the zeroes of the polynomial  $p(x) = 4x^2 - 5x - 1$ , then value of  $\alpha^2\beta + \alpha\beta^2$  is. (a)  $-\frac{1}{4}$  (b)  $\frac{1}{4}$  (c)  $\frac{5}{16}$  (d)  $-\frac{5}{16}$
- 16. If sum of the squares of zeroes of the quadratic polynomial  $f(x) = x^2 - 8x + k$  is 40, the value of k is : (-) 14 (1) 10 ..... (a) 10

a) 
$$10$$
 (b)  $12$  (c)  $14$  (d)  $16$ 

17. The graph of the polynomial p(x) cuts the x-axis 5 times and touches it 3 times. The number of zeroes of p(x) is : (a)

$$(b) 3 (c) 8 (d) 2$$

- 18. If the zeroes of the quadratic polynomial  $x^{2} + (a + 1)x + b$  are 2 and -3, then : (a) a = -7, b = -1 (b) a = 5, b = -1(c) a = 2, b = -6(d) a = 0, b = -6
- **19.** The zeroes of the quadratic polynomial  $x^2 + 89x + 720$  are : (a) both are negative
  - (b) both are positive
  - (c) one is positive and one is negative
  - (d) both are equal
- **20.** If the zeroes of the quadratic polynomial  $ax^2 + bx + c$ ,  $c \neq 0$ , are equal, then : (a) c and a have opposite signs (b) c and b have opposite sign (c) c and a have the same sign (d) c and b have the same sign

- **21.** If one of the zeroes of a quadratic polynomial of the form  $x^2 + ax + b$  is the negative of the other, then it :
  - (a) has no linear term and the constant term is positive.
  - (b) has no linear term and the constant term is negative.
  - (c) can have a linear term but the constant term is negative.
  - (d) can have a linear term but the constant term is positive.
- 22. If one zero of the quadratic polynomial  $x^2 + 3x + k$  is 2, then the value of k is :

(a) 10 (b) -10 (c) 5 (d) -5

- **23.** A polynomial of degree 7 is divided by a polynomial of degree 4. Degree of the quotient is :
  - (a) less than 3 (b) 3
  - (c) more than 3 (d) more than 5
- 24. The number of zeroes, the polynomial  $f(x) = (x 3)^2 + 1$  can have is : (a) 0 (b) 1 (c) 2 (d) 3
- **25.** A polynomial of degree 7 is divided by a polynomial of degree 3. Degree of the remainder is :
  - (a) less than 2 (b) 3
- (c) more than 2 (d) 2 or less than 2 26. If one of the zeroes of the quadratic polynomial
- $(k+1)x^2 + kx 1$  is -3, then the value of k is :

(a)  $\frac{4}{3}$  (b)  $\frac{-4}{3}$  (c)  $\frac{2}{3}$  (d)  $\frac{-2}{3}$ 

**27.** The graph of y = f(x), where f(x) is a quadratic

## **B.** Questions From CBSE Examination Papers

- 1. If one of the zeroes of the quadratic polynomial  $(k 1)x^2 + kx + 1$  is (-3), then k equal to : [2010 (T-I)]
  - (a)  $\frac{4}{3}$  (b)  $-\frac{4}{3}$  (c)  $\frac{2}{3}$  (d)  $-\frac{2}{3}$
- 2. If  $\alpha$  and  $\beta$  are the zeroes of the polynomial  $5x^2 7x + 2$ , then sum of their reciprocals is :

[2010 (T-I)]

- (a)  $\frac{7}{2}$  (b)  $\frac{7}{5}$  (c)  $\frac{2}{5}$  (d)  $\frac{14}{25}$
- **3.** The graph of y = f(x) is shown. The number of zeroes of f(x) is : [2010 (T-I)] (a) 3 (b) 1 (c) 0 (d) 2

polynomial meets the x-axis at A(-2, 0) and B(-3, 0), then the expression for f(x) is :

- (a)  $x^2 + 5x + 6$  (b)  $x^2 5x + 6$
- (c)  $x^2 + 5x 6$  (d)  $x^2 5x 6$
- **28.** The graphs of y = f(x), where f(x) is a polynomial in x are given below. In which case f(x) is not a quadratic polynomial?



**29.** The graph of y = f(x), where f(x) is a polynomial in x is given below. The number of zeroes lying between -2 to 0 of f(x) is :





4. If  $\alpha$  and  $\beta$  are the zeroes of the polynomial

$$4x^2 + 3x + 7$$
, then  $\frac{1}{\alpha} + \frac{1}{\beta}$  is equal to :  
(a)  $\frac{7}{3}$  (b)  $-\frac{7}{3}$  (c)  $\frac{3}{7}$  (d)  $-\frac{3}{7}$ 

(a) 3 (b) 9 (c) 6 (d) 
$$-9$$

- 13. The degree of the polynomial  $(x + 1)(x^2 - x - x^4 + 1)$  is : [2010 (T-I)] (a) 2 (b) 3 (c) 4 (d) 5
- 14. The graph of y = p(x), where p(x) is a polynomial is shown. The number of zeroes of p(x) is :



- 15. If  $\alpha$ ,  $\beta$  are zeroes of  $x^2 6x + k$ , what is the value of k if  $3\alpha + 2\beta = 20$  ? [2010 (T-I)] (a) -16 (b) 8 (c) 2 (d) -8
- 16. If one zero of  $2x^2 3x + k$  is reciprocal to the other, then the value of k is : [2010 (T-I)] (b)  $\frac{-2}{3}$  (c)  $\frac{-3}{2}$  (d) -3(a) 2
- 17. The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is : [2010 (T-I)] (a)  $x^2 + 3x - 2$ (b)  $x^2 - 2x + 3$ (c)  $x^2 - 3x + 2$ (d)  $x^2 - 3x - 2$
- **18.** If (x + 1) is a factor of  $x^2 3ax + 3a 7$ , then [2010 (T-I)] the value of *a* is : (b) -1 (c) 0(d) -2(a) 1
- **19.** The number of polynomials having zeroes -2 and 5 is : [2010 (T-I)] (a) 1 (b) 2 (c) 3 (d) more than 3
- **20.** The quadratic polynomial p(y) with -15 and -7 as sum and one of the zeroes respectively is :

[2010 (T-I)]

(a)  $y^2 - 15y - 56$ (b)  $y^2 - 15y + 56$ (c)  $y^2 + 15y + 56$ (d)  $y^2 + 15y - 56$ 

#### [2 Marks]

## A. Important Questions

1. The graph of y = f(x) cuts the x-axis at (1, 0) and

 $\left(\frac{-3}{2},0\right)$ . Find all the zeroes of f(x).

- 2. Show that 1, -1 and 3 are the zeroes of the polynomial  $x^3 - 3x^2 - x + 3$ .
- 3. For what value of k, (-4) is a zero of the polynomial  $x^2 - x - (2k + 2)?$
- 4. If 1 is a zero of the polynomial  $p(x) = ax^2 3(a 1)$ x - 1, then find the value of a.
- 5. Write the polynomial, the product and sum of whose zeroes are  $\frac{-9}{2}$  and  $\frac{-3}{2}$  respectively.

[2010 (T-I)]

[2010 (T-I)]

(d) 4

[2010 (T-I)]

[2010 (T-I)]

(b)  $x^2 - 24x - 81$ 

(d)  $x^2 + 24x + 81$ 

4

(b) 5 (c) -5 (d) -3 (a) 3 9. The quadratic polynomial having zeroes as 1 and

(b) 2

(a) 1

zeroes is :

(a)  $x^2 + qx + p$ 

(c)  $qx^2 + px + 1$ 

 $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha\beta$  is :

- (a)  $x^2 x + 2$ (b)  $x^2 - x - 2$
- 10. The value of p for which the polynomial  $x^3 + 4x^2$ -px + 8 is exactly divisible by (x - 2) is : [2010 (T-I)] (a) 0 (b) 3 (c) 5 (d) 16 11. If 1 is a zero of the polynomial  $p(x) = ax^2 - 3(a-1)$ x-1, then the value of a is : [2010 (T-I)] (a) 1 (b) -1 (d) -2 (c) 2 12. If -4 is a zero of the polynomial  $x^2 - x - (2 + 2k)$ ,
- SHORT ANSWER TYPE OUESTIONS

-2 is : [2010 (T-I)]

5. The quadratic polynomial p(x) with -81 and 3 as product and one of the zeroes respectively is :

6. The graph of y = p(x), where p(x) is a polynomial

(c) 3

(b)  $x^2 - px + q$ (d)  $px^2 + qx + 1$ 

7. If  $\alpha, \beta$  are zeroes of the polynomial  $f(x) = x^2 + \beta x^2$ 

8. If  $\alpha$  and  $\beta$  are zeroes of  $x^2 - 4x + 1$ , then

px + q, then polynomial having  $\frac{1}{\alpha}$  and  $\frac{1}{\beta}$  as its

is shown. The number of zeroes of p(x) is :

(a)  $x^2 + 24x - 81$ 

(c)  $x^2 - 24x + 81$ 

- (d)  $x^2 + x + 2$ (c)  $x^2 + x - 2$
- then the value of k is :

# [2010 (T-I)]

- 6. If (x + a) is a factor of  $2x^2 + 2ax + 5x + 10$ , find *a*.
- 7. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(t) = t^2 - 4t + 3$ , find the value of  $\alpha^4 \beta^3 + \alpha^3 \beta^4$
- 8. Write the zeroes of the polynomial  $x^2 x 6$ .

#### **B.** Questions From CBSE Examination Papers

- **1.** Divide  $6x^3 + 13x^2 + x 2$  by 2x + 1, and find the quotient and remainder. [2010 (T-I)]
- **2.** Divide  $x^4 3x^2 + 4x + 5$  by  $x^2 x + 1$ , find quotient and remainder. [2010 (T-I)]
- 3.  $\alpha$ ,  $\beta$  are the roots of the quadratic polynomial  $p(x) = x^2 (k 6) x + (2k + 1)$ . Find the value of k, if  $\alpha + \beta = \alpha\beta$ . [2010 (T-I)]
- 4.  $\alpha$ ,  $\beta$  are the roots of the quadratic polynomial  $p(x) = x^2 (k + 6)x + 2 (2k 1)$ . Find the value of k, if  $\alpha + \beta = \frac{1}{2}\alpha\beta$ . [2010 (T-I)]
- 5. Find the zeroes of the polynomial  $4\sqrt{3}x^2 + 5x 2\sqrt{3}$ . [2010 (T-I)]
- 6. Find a quadratic polynomial whose zeroes are  $3+\sqrt{5}$  and  $3-\sqrt{5}$ . [2010 (T-I)]
- 7. What must be added to polynomial  $f(x) = x^4 + 2x^3 2x^2 + x 1$  so that the resulting polynomial is exactly divisible by  $x^2 + 2x 3$ . [2010 (T-I)]
- Find a quadratic polynomial, the sum of whose zeroes is 7 and their product is 12. Hence find the zeroes of the polynomial. [2010 (T-I)]
- **9.** Find a quadratic polynomial whose zeroes are 2 and -6. Verify the relation betweeen the coefficients and zeroes of the polynomial.

[2010 (T-I)]

- 10. If  $\alpha$  and  $\frac{1}{\alpha}$  are the zeroes of the polynomial  $4x^2$
- -2x + (k 4), find the value of k. [2010 (T-I)] 11. Find the zeroes of the polynomial  $100x^2 - 81$ . [2010 (T-I)]
- 12. Divide the polynomial  $p(x) = 3x^2 x^3 3x + 5$ by  $g(x) = x - 1 - x^2$  and find its quotient and remainder. [2010 (T-I)]
- **13.** Can (x + 3) be the remainder on the division of a polynomial p(x) by (2x - 5)? Justify your answer. [2010 (T-I)]
- 14. Can (x 3) be the remainder on division of a polynomial p(x) by (3x + 2)? Justify your answer. [2010 (T-I)]

- **9.** Find a quadratic polynomial, the sum and product of whose zeroes are 3 and 2 respectively.
- 10. Find a quadratic polynomial, the sum and product of whose zeroes are  $\sqrt{2}$  and  $\frac{1}{3}$  respectively.
- 11. Find a quadratic polynomial, the sum and product of whose zeroes are 0 and  $\sqrt{5}$  respectively.
- 15. Find the zeroes of the polynomial  $2x^2 7x + 3$  and hence find the sum of product of its zeroes.

[2010 (T-I)]

16. It being given that 1 is one of the zeros of the polynomial  $7x - x^3 - 6$ . Find its other zeros.

[2010 (T-I)]

- 17. Find the zeroes of the quadratic polynomial  $\sqrt{3x^2 8x + 4\sqrt{3}}$ . [2010 (T-I)]
- **18.** Check whether  $x^2 + 3x + 1$  is a factor of  $3x^4 + 5x^3 7x^2 + 2x + 2$ . [2010 (T-I)]
- **19.** Check whether  $x^2 x + 1$  is a factor of  $x^3 3x^2 + 3x 2$ . [2010 (T-I)]
- **20.** Find the zeroes of the quadratic polynomial  $x^2 + 7x + 12$  and verify the relationship between the zeroes and its coefficients. [2010 (T-I)]
- **21.** Divide  $(2x^2 + x 20)$  by (x + 3) and verify division algorithm. [2010 (T-I)]
- 22. If  $\alpha$  and  $\beta$  are the zeroes of  $x^2 + 7x + 12$ , then find the value of  $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$ . [2010 (T-I)]
- **23.** For what value of k, is -2 a zero of the polynomial  $3x^2 + 4x + 2k$ ? [2010 (T-I)]
- 24. For what value of k, is -3 a zero of the polynomial  $x^2 + 11x + k$ ? [2010 (T-I)]
- **25.** If  $\alpha$  and  $\beta$  are the zeroes of the polynomial  $2y^2 + 7y + 5$ , write the value of  $\alpha + \beta + \alpha\beta$ .

#### [2010 (T-I)]

- **26.** For what value of k, is 3 a zero of the polynomial  $2x^2 + x + k$ ? [2010 (T-I)]
- 27. If the product of zeroes of the polynomial  $ax^2 6x 6$  is 4, find the value of *a*. [2008]
- 28. Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12. Hence, find the zeroes of the polynomial. [2008]
- **29.** If one zero of the polynomial  $(a^2 + 9)x^2 + 13x + 6a$  is reciprocal of the other, find the value of a.

[2008]

#### A. Important Questions

- 1. Find the zeroes of the quadratic polynomial f(x) = $abx^{2} + (b^{2} - ac)x - bc$  and verify the relationship between the zeroes and its coefficients.
- 2. Find the zeroes of the quadratic polynomial p(x) $= x^2 - (\sqrt{3}+1)x + \sqrt{3}$  and verify the relationship between the zeroes and its coefficients.
- 3. Find a cubic polynomial with the sum, sum of the products of its zeroes taken two at a time and product of its zeroes as 3, -1 and -3respectively.
- 4. If  $\alpha$  and  $\beta$  are zeroes of the quadratic polynomial  $f(x) = x^2 - 1$ , find a quadratic polynomial whose zeroes and  $\frac{2\alpha}{\beta}$  and  $\frac{2\beta}{\alpha}$ .

- 5. If  $\alpha$  and  $\beta$  are zeroes of the quadratic polynomial  $f(x) = kx^2 + 4x + 4$  such that  $\alpha^2 + \beta^2 = 24$ , find the value of k.
- 6. If the square of the difference of the zeroes of the quadratic polynomial  $f(x) = x^2 + px + 45$  is equal to 144, find the value of p.

- 7. If the sum of the zeroes of the quadratic polynomial  $f(t) = kt^2 + 2t + 3k$  is equal to their product, find the value of k.
- 8. If one zero of the quadratic polynomial f(x) = $4x^2 - 8kx - 9$  is negative of the other, find the value of k.
- 9. Find the zeroes of the quadratic polynomial  $x^2 + \frac{7}{2}x + \frac{3}{4}$ , and verify relationship between the zeroes and the coefficients.
- 10. Find the zeroes of the polynomial  $x^2 5$  and verify the relationship between the zeroes and the coefficients.
- 11. Find the zeroes of the polynomial  $4x^2 + 5\sqrt{2x} 3$ and verify the relationship between the zeroes and the coefficients.
- 12. Find the zeroes of the quadratic polynomial  $3x^2 - 6 - 7x$  and verify relationship between the zeroes and the coefficients.

### **B.** Questions From CBSE Examination Papers

**1.** If  $\alpha$  and  $\beta$  are zeroes of the quadratic polynomial  $x^2 - 6x + a$ ; find the value of a if  $3\alpha + 2\beta = 20$ .

[2010 (T-I)]

- 2. Divide  $(6 + 19x + x^2 6x^3)$  by  $(2 + 5x 3x^2)$  and verify the division algorithm. [2010 (T-I)]
- 3. If  $\alpha$ ,  $\beta$ ,  $\gamma$  are zeroes of the polynomial  $6x^3 + 3x^2 3x^2$ 5x + 1, then find the value of  $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ .

[2010 (T-I)]

- 4. If the zeroes of the polynomial  $x^3 3x^2 + x + 1$  are a - b, a and a + b, find the values of a and b. [2010 (T-I)]
- 5. On dividing  $x^3 3x^2 + x + 2$  by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4[2010 (T-I)] respectively. Find g(x).
- 6. If  $\alpha$ ,  $\beta$  are zeroes of the polynomial  $x^2 2x 8$ , then form a quadratic polynomial whose zeroes are  $2\alpha$  and  $2\beta$ . [2010 (T-I)]
- 7. If  $\alpha$ ,  $\beta$  are the zeroes of the polynomial  $6y^2 7y$ + 2, find a quadratic polynomial whose zeroes are
- $\frac{1}{\alpha} \text{ and } \frac{1}{\beta}.$  [2010 (T-I)] 8. If  $\alpha$ ,  $\beta$  are zeroes of the polynomial  $x^2 4x + 3$ , then form a quadratic polynomial whose zeroes are

 $3\alpha$  and  $3\beta$ .

- 9. Obtain all zeroes of  $f(x) = x^4 3x^3 x^2 + 9x 6$  if two of its zeroes are  $(-\sqrt{3})$  and  $\sqrt{3}$ . [2010 (T-I)]
- 10. Check whether the polynomial  $g(x) = x^3 3x + 1$  is the factor of polynomial  $p(x) = x^5 - 4x^3 + x^2 + 3x + 1$

[2010 (T-I)]

[2010 (T-I)]

- 11. Find the zeroes of the quadratic polynomial  $6x^2$ -3 - 7x, and verify the relationship between the zeroes and the coefficients. [2010 (T-I)]
- 12. Find the zeroes of  $4\sqrt{3}x^2 + 5x 2\sqrt{3}$  and verify the relation between the zeroes and coefficients of [2010 (T-I)] the polynomial.
- **13.** If  $\alpha$ ,  $\beta$  are the zeroes of the polynomial  $25p^2 15p$ + 2, find a quadratic polynomial whose zeroes are  $\frac{1}{2\alpha}$  and  $\frac{1}{2\beta}$ [2010 (T-I)]
- 14. Divide  $3x^2 x^3 3x + 5$  by  $x 1 x^2$  and verify the division algorithm.
- **15.** If  $\alpha$ ,  $\beta$  are the zeroes of the polynomial  $21y^2 y$ -2, find a quadratic polynomial whose zeroes are  $2\alpha$  and  $2\beta$ . [2010 (T-I)]

- **16.** Find the zeroes of  $3\sqrt{2}x^2 + 13x + 6\sqrt{2}$  and verify the relation between the zeroes and coefficients of the polynomial. [2010 (T-I)]
- 17. Find the zeroes of  $4\sqrt{5}x^2 + 17x + 3\sqrt{5}$  and verify the relation between the zeroes and coefficients of the polynomial. [2010 (T-I)]
- **18.** If the polynomial  $6x^4 + 8x^3 + 17x^2 + 21x + 7$  is divided by another polynomial  $3x^2 + 4x + 1$ , the remainder comes out to be (ax + b), find *a* and *b*. [2009]

## LONG ANSWER TYPE QUESTIONS

- **19.** If the polynomial  $x^4 + 2x^3 + 8x^2 + 12x + 18$  is divided by another polynomial  $x^2 + 5$ , the remainder comes out to be px + q. Find the values of p and q. **[2009]**
- **20.** Find all the zeroes of the polynomial  $x^3 + 3x^2 2x 6$ , if two of its zeroes are  $-\sqrt{2}$  and  $\sqrt{2}$ .
- 21. Find all the zeroes of the polynomial  $2x^3 + x^2 6x 3$ , if two of its zeroes are  $-\sqrt{3}$  and  $\sqrt{3}$ .

[2009]

[2009]

## [4 Marks]

## A. Important Questions

- 1. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $p(s) = 3s^2 6s + 4$ , find the value of  $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$ .
- 2. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 - px + q$ , prove that  $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{p^4}{q^2} - \frac{4p^2}{q} + 2.$
- **3.** If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 + px + q$ , form a polynomial whose zeroes are  $(\alpha + \beta)^2$  and  $(\alpha \beta)^2$ .
- 4. If α and β are the zeroes of the polynomial f(x) = x<sup>2</sup> 2x + 3, find a polynomial whose zeroes are α+2 and α+β

#### **B.** Questions From CBSE Examination Papers

- 1. What must be added to the polynomial  $f(x) = x^4 + 2x^3 2x^2 + x 1$  so that the resulting polynomial is exactly divisible by  $x^2 + 2x 3$ ? [2010 (T-I)]
- **2.** Find the other zeroes of the polynomial  $2x^4 3x^3$ 
  - $-3x^2 + 6x 2$ , if  $\sqrt{}$  and  $\sqrt{}$  are the zeroes of the given polynomial. [2010 (T-I)]
- **3.** If the remainder on division of  $x^3 + 2x^2 + kx + 3$ by x - 3 is 21, find the quotient and the value of k. Hence, find the zeroes of the cubic polynomial  $x^3 + 2x^2 + kx - 18$ . [2010 (T-I)]
- 4. If two zeroes of  $p(x) = x^4 6x^3 26x^2 + 138x 35$ are  $2 \pm \sqrt{3}$ , find the other zeroes. [2010 (T-I)]
- 5. If the polynomial  $x^4 6x^3 + 16x^2 25x + 10$  is divided by another polynomial  $x^2 - 2x + k$ , the remainder comes out to be (x + a), find the values of k and a. [2010 (T-I)]

- 5. Obtain all the zeroes of the polynomial  $f(x) = 2x^4 + x^3 14x^2 19x 6$ , if two of its zeroes are -2 and -1.
- 6. Find the value of k for which the polynomial  $x^4 + 10x^3 + 25x^2 + 15x + k$  is exactly divisible by x+7.
- 7. Find the value of p for which the polynomial  $x^3 + 4x^2 px + 8$  is exactly divisible by x 2.
- 8. What must be added to  $6x^5 + 5x^4 + 11x^3 3x^2$ + x + 5 so that it may be exactly divisible by  $3x^2 - 2x + 4$ ?
- 9. What must be subtracted from the polynomial f(x)=  $x^4 + 2x^3 - 13x^2 - 12x + 21$  so that the resulting polynomial is exactly divisible by  $g(x) = x^2 - 4x + 3$ ?
- + **6.** Find all the zeroes of the polynomial  $2x^4$  +  $7x^3 19x^2 14x + 30$ , if two of its zeros are

 $\sqrt{3}$  and  $-\sqrt{3}$ .

7. Find other zeroes of the polynomial  $x^4 + x^3 - 9x^2$ - 3x + 18, if it is given that two of its zeroes are

[2010 (T-I)]

- 8. Divide  $2x^4 9x^3 + 5x^2 + 3x 8$  by  $x^2 4x + 1$ and verify the division algorithm. [2010 (T-I)]
- 9. Divide  $30x^4 + 11x^3 82x^2 12x + 48$  by  $(3x^2 + 2x 4)$  and verify the result by division algorithm. [2010 (T-I)]
- 10. Find all zeroes of the polynomial  $4x^4 20x^3 + 23x^2 + 5x 6$ , if two of its zeroes are 2 and 3. [2010 (T-I)]
- 11. Find all the zeroes of the polynomial  $2x^4 10x^3 + 5x^2 + 15x 12$ , if it is given that two of its zeroes are  $\sqrt{\frac{3}{2}}$  and  $-\sqrt{\frac{3}{2}}$ . [2010 (T-I)]

12. Find all the zeroes of the polynomial  $2x^4 - 3x^3 - 5x^2 + 9x - 3$ , it being given that two of its zeros are  $\sqrt{3}$  and  $-\sqrt{3}$ . [2010 (T-I)]

13. Obtain all the zeroes of  $x^4 - 7x^3 + 17x^2 - 17x + 6$ , if two of its zeroes are 1 and 2. [2010 (T-I)]

14. Find all other zeroes of the polynomial  $p(x) = 2x^3 + 3x^2 - 11x - 6$ , if one of its zero is -3.

#### [2010 (T-I)]

15. What must be added to the polynomial  $P(x) = 5x^4 + 6x^3 - 13x^2 - 44x + 7$  so that the resulting

polynomial is exactly divisible by the polynomial  $Q(x) = x^2 + 4x + 3$  and the degree of the polynomial to be added must be less than degree of the polynomial Q(x). [2010 (T-I)]

- 16. Find all the zeroes of the polynomial  $x^4 + x^3 34x^2 4x + 120$ , if two of its zeroes are 2 and -2. [2009]
- **17.** If the polynomial  $6x^4 + 8x^3 5x^2 + ax + b$  is exactly divisible by the polynomial  $2x^2 5$ , then find the values of *a* and *b*. [2009]

## FORMATIVE ASSESSMENT

## Activity

**Objective :** To understand the geometrical meaning of the zeroes of a polynomial.

Materials Required : Graphs of different polynomials, paper etc.

## **Procedure :**

1. Let us consider a linear equation y = 5x - 10. Fig.1 shows graph of this equation. We will find zero/zeroes of linear polynomial 5x - 10.

$$5x - 10 = 0 \Rightarrow x = \frac{10}{5} = 2 \Rightarrow x = 2$$
 is a zero of  $5x - 10$ .





- 2. From graph in Fig.1, the line intersects the x-axis at one point, whose coordinates are (2, 0)
- 3. Also, the zero of the polynomial 5x 10 is 2. Thus, we can say that the zero of the polynomial 5x 10 is the *x* coordinate (abscissa) of the point where the line y = 5x 10 cuts the *x*-axis.
- 4. Let us consider a quadratic equation  $y = x^2 5x + 6$ . Fig. 2 shows graph of this equation.
- 5. From graph in Fig. 2, the curve intersects the *x*-axis at two points *P* and *Q*, coordinates of *P* and *Q* are (2, 0) and (3, 0) respectively.
- 6.  $x^2 5x + 6 = 0 \Rightarrow (x 3)(x 2) = 0 \Rightarrow x = 3 \text{ and } x = 2 \Rightarrow x = 2 \text{ and } 3$  are zeroes of the polynomial  $x^2 5x + 6$ .

Thus, we can say that the zeroes of the polynomial  $x^2 - 5x + 6$  are the *x*-coordinates (abscissa) of the points where the graph of  $y = x^2 - 5x + 6$  cuts the *x*-axis.

7. Complete the following table by observing graphs shown in Fig. 3 (*a*), 3 (*b*) and 3 (*c*).

| Fig. No. | No. of zeroes | x-coordinates |
|----------|---------------|---------------|
| 3 (a)    |               |               |
| 3 (b)    |               |               |
| 3 (c)    |               |               |

**Result :** A polynomial of degree *n* has atmost *n*-zeroes.



Figure 2





Figure 3(b)



Figure 3(c)



Exercise 2.1

Question 1:

Class X

The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case. (i)



















Maths





Answer:

(i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.

(ii) The number of zeroes is 1 as the graph intersects the *x*-axis at only 1 point.

(iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.

(iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points.

(v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.

(vi) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.

Maths



Maths

# Exercise 2.2

# **Question 1:**

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

$$(i)x^2-2x-8(ii)4s^2-4s+1(iii)6x^2-3-7x$$

$$(iv)4u^2 + 8u(v)t^2 - 15(vi)3x^2 - x - 4$$

Answer:

(i) 
$$x^2 - 2x - 8 = (x - 4)(x + 2)$$

The value of  $x^2 - 2x - 8$  is zero when x - 4 = 0 or x + 2 = 0, i.e., when x = 4 or x = -2

Therefore, the zeroes of  $x^2 - 2x - 8$  are 4 and -2.

Sum of zeroes = 
$$4-2=2=\frac{-(-2)}{1}=\frac{-(\text{Coefficient of }x)}{\text{Coefficient of }x^2}$$

Product of zeroes  $= 4 \times (-2) = -8 = \frac{(-8)}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$ 

(ii) 
$$4s^2 - 4s + 1 = (2s - 1)^2$$

The value of  $4s^2 - 4s + 1$  is zero when 2s - 1 = 0, i.e.,  $s = \frac{1}{2}$ Therefore, the zeroes of  $4s^2 - 4s + 1$  are  $\overline{2}$  and  $\overline{2}$ .  $\frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(\text{Coefficient of } s)}{(\text{Coefficient of } s^2)}$ 

Sum of zeroes =



Maths

Product of zeroes  $=\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of } s^2}$ (iii)  $6x^2 - 3 - 7x = 6x^2 - 7x - 3 = (3x+1)(2x-3)$ The value of  $6x^2 - 3 - 7x$  is zero when 3x + 1 = 0 or 2x - 3 = 0, i.e.,  $x = \frac{-1}{3}$  or  $x = \frac{3}{2}$ Therefore, the zeroes of  $6x^2 - 3 - 7x$  are  $\frac{-1}{3}$  and  $\frac{3}{2}$ Sum of zeroes =  $\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$ Product of zeroes =  $\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$ (iv)  $4u^2 + 8u = 4u^2 + 8u + 0$ =4u(u+2)The value of  $4u^2 + 8u$  is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = -2Therefore, the zeroes of  $4u^2 + 8u$  are 0 and -2. Sum of zeroes =  $0 + (-2) = -2 = \frac{-(8)}{4} = \frac{-(\text{Coefficient of } u)}{\text{Coefficient of } u^2}$ Product of zeroes =  $0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of } u^2}$ (v)  $t^2 - 15$ 

$$t^{2} - 15 = t^{2} - 0t - 15 = (t - \sqrt{15})(t + \sqrt{15})$$



The value of  $t^2 - 15$  is zero when  $t - \sqrt{15} = 0$  or  $t + \sqrt{15} = 0$ , i.e., when  $t = \sqrt{15}$  or  $t = -\sqrt{15}$ Therefore, the zeroes of  $t^2 - 15$  are  $\sqrt{15}$  and  $-\sqrt{15}$ .  $\sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(Coefficient of t)}{(Coefficient of t^2)}$ Sum of zeroes = Product of zeroes =  $(\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{Constant term}{Coefficient of x^2}$ (vi)  $3x^2 - x - 4$  = (3x - 4)(x + 1)The value of  $3x^2 - x - 4$  is zero when 3x - 4 = 0 or x + 1 = 0, i.e., when  $x = \frac{4}{3}$  or x = -1Therefore, the zeroes of  $3x^2 - x - 4$  are  $\frac{4}{3}$  and -1. Sum of zeroes =  $\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-(Coefficient of x)}{Coefficient of x^2}$ Product of zeroes =  $\frac{4}{3}(-1) = \frac{-4}{3} = \frac{Constant term}{Coefficient of x^2}$ Question 2:

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)  $\frac{1}{4}$ , -1 (ii)  $\sqrt{2}$ ,  $\frac{1}{3}$  (iii) 0,  $\sqrt{5}$ (iv) 1, 1 (v)  $-\frac{1}{4}$ ,  $\frac{1}{4}$  (vi) 4, 1



## Answer:

(i) 
$$\frac{1}{4}, -1$$

Let the polynomial be  $ax^2 + bx + c$ , and its zeroes be $\alpha$  and  $\beta$ .

$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$
$$\alpha\beta = -1 = \frac{-4}{4} = \frac{c}{a}$$
If  $a = 4$ , then  $b = -1$ ,  $c = -4$ 

Therefore, the quadratic polynomial is  $4x^2 - x - 4$ .

(ii) 
$$\sqrt{2}, \frac{1}{3}$$

Let the polynomial be  $ax^2 + bx + c$ , and its zeroes be $\alpha$  and  $\beta$ .

$$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$
$$\alpha\beta = \frac{1}{3} = \frac{c}{a}$$
If  $a = 3$ , then  $b = -3\sqrt{2}$ ,  $c = 1$ 

Therefore, the quadratic polynomial is  $3x^2 - 3\sqrt{2}x + 1$ .

(iii) 
$$0,\sqrt{5}$$

Let the polynomial be  $ax^2 + bx + c$ , and its zeroes be $\alpha$  and  $\beta$ .

$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$
$$\alpha \times \beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$
If  $a = 1$ , then  $b = 0$ ,  $c = \sqrt{5}$ 



Maths

Therefore, the quadratic polynomial is  $x^2 + \sqrt{5}$ .

(iv) 1, 1

Let the polynomial be  $ax^2 + bx + c$ , and its zeroes be $\alpha$  and  $\beta$ .

$$\alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$$
$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$
If  $a = 1$ , then  $b = -1$ ,  $c = 1$ 

Therefore, the quadratic polynomial is  $x^2 - x + 1$ .

$$(v) -\frac{1}{4}, \frac{1}{4}$$

Let the polynomial be  $ax^2 + bx + c$ , and its zeroes be $\alpha$  and  $\beta$ .

$$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$
$$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$
If  $a = 4$ , then  $b = 1$ ,  $c = 1$ 

Therefore, the quadratic polynomial is  $4x^2 + x + 1$ .

Let the polynomial be  $ax^2 + bx + c$ .

$$\alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a}$$
$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$
If  $a = 1$ , then  $b = -4$ ,  $c = 1$ 

Therefore, the quadratic polynomial is  $x^2 - 4x + 1$ .



Maths

# Exercise 2.3

# Question 1:

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i) 
$$p(x) = x^3 - 3x^2 + 5x - 3$$
,  $g(x) = x^2 - 2$   
(ii)  $p(x) = x^4 - 3x^2 + 4x + 5$ ,  $g(x) = x^2 + 1 - x$   
(iii)  $p(x) = x^4 - 5x + 6$ ,  $g(x) = 2 - x^2$   
Answer:

(i) 
$$p(x) = x^3 - 3x^2 + 5x - 3$$
  
 $q(x) = x^2 - 2$   
 $x^2 - 2) \overline{x^3 - 3x^2 + 5x - 3}$   
 $x^3 - 2x$   
 $- +$   
 $-3x^2 + 7x - 3$   
 $-3x^2 + 6$   
 $+ -$   
 $7x - 9$ 

Quotient = x - 3

Remainder = 7x - 9

(ii) 
$$p(x) = x^4 - 3x^2 + 4x + 5 = x^4 + 0 \cdot x^3 - 3x^2 + 4x + 5$$
  
 $q(x) = x^2 + 1 - x = x^2 - x + 1$ 



# Chapter 2 – Polynomials

Maths

$$\begin{array}{r} x^{2} + x - 3 \\
x^{2} - x + 1 \overline{\smash{\big)}} x^{4} + 0.x^{3} - 3x^{2} + 4x + 5 \\
x^{4} - x^{3} + x^{2} \\
 - + - \\
 x^{3} - 4x^{2} + 4x + 5 \\
 x^{3} - x^{2} + x \\
 - + - \\
 - 3x^{2} + 3x + 5 \\
 - 3x^{2} + 3x - 3 \\
 + - + \\
 \underline{8}
\end{array}$$

Quotient =  $x^2 + x - 3$ 

Remainder = 8

(iii) 
$$p(x) = x^4 - 5x + 6 = x^4 + 0.x^2 - 5x + 6$$
  
 $q(x) = 2 - x^2 = -x^2 + 2$   
 $-x^2 + 2)$ 
 $x^4 + 0.x^2 - 5x + 6$   
 $x^4 - 2x^2$   
 $- +$   
 $2x^2 - 5x + 6$   
 $2x^2 - 4$   
 $- +$   
 $-5x + 10$ 

Quotient =  $-x^2 - 2$ Remainder = -5x + 10



Maths

# Question 2:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i) 
$$t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$$
  
(ii)  $x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$   
(iii)  $x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$ 

Answer:

(i) 
$$t^2 - 3$$
,  $2t^4 + 3t^3 - 2t^2 - 9t - 12$   
 $t^2 - 3 = t^2 + 0.t - 3$   
 $t^2 + 0.t - 3$ )  $2t^2 + 3t + 4$   
 $t^2 + 0.t - 3$ )  $2t^4 + 3t^3 - 2t^2 - 9t - 12$   
 $2t^4 + 0.t^3 - 6t^2$   
 $- - +$   
 $3t^3 + 4t^2 - 9t - 12$   
 $3t^3 + 0.t^2 - 9t$   
 $- - +$   
 $4t^2 + 0.t - 12$   
 $- - +$   
 $0$ 

Since the remainder is 0, Hence,  $t^2 - 3$  is a factor of  $2t^4 + 3t^3 - 2t^2 - 9t - 12$ . (ii)  $x^2 + 3x + 1$ ,  $3x^4 + 5x^3 - 7x^2 + 2x + 2$ 



Class X

## Chapter 2 – Polynomials

Maths

Since the remainder is 0,

Hence,  $x^{2} + 3x + 1$  is a factor of  $3x^{4} + 5x^{3} - 7x^{2} + 2x + 2$ . (iii)  $x^{3} - 3x + 1$ ,  $x^{5} - 4x^{3} + x^{2} + 3x + 1$   $x^{3} - 3x + 1$ )  $x^{5} - 4x^{3} + x^{2} + 3x + 1$   $x^{5} - 3x^{3} + x^{2}$  - + -  $-x^{3} + 3x + 1$   $-x^{3} + 3x - 1$  + - - +2

Since the remainder  $\neq 0$ ,

Hence,  $x^3 - 3x + 1$  is not a factor of  $x^5 - 4x^3 + x^2 + 3x + 1$ .



## Chapter 2 – Polynomials

Maths

**Question 3:** 

Obtain all other zeroes of  $3x^4 + 6x^3 - 2x^2 - 10x - 5$ , if two of its zeroes are

$$\sqrt{\frac{5}{3}}$$
 and  $-\sqrt{\frac{5}{3}}$ 

Answer:

$$p(x) = 3x^4 + 6x^3 - 2x^2 - 10x - 5$$

Since the two zeroes are 
$$\sqrt{\frac{5}{3}}$$
 and  $-\sqrt{\frac{5}{3}}$ ,

 $\therefore \left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right) = \left(x^2 - \frac{5}{3}\right)$  is a factor of  $3x^4 + 6x^3 - 2x^2 - 10x - 5$ .

Therefore, we divide the given polynomial by  $x^2 - \frac{5}{3}$ .



## Chapter 2 – Polynomials

Maths

$$x^{2} + 0.x - \frac{5}{3} \frac{3x^{2} + 6x + 3}{3x^{4} + 6x^{3} - 2x^{2} - 10x - 5}{3x^{4} + 0x^{3} - 5x^{2}}$$

$$- - + \frac{6x^{3} + 3x^{2} - 10x - 5}{6x^{3} + 0x^{2} - 10x}$$

$$- - + \frac{3x^{2} + 0x - 5}{3x^{2} + 0x - 5}$$

$$- - - + \frac{0}{3x^{4} + 6x^{3} - 2x^{2} - 10x - 5} = \left(x^{2} - \frac{5}{3}\right)(3x^{2} + 6x + 3)$$

$$= 3\left(x^{2} - \frac{5}{3}\right)(x^{2} + 2x + 1)$$

We factorize  $x^2 + 2x + 1$ 

$$=(x+1)^2$$

Therefore, its zero is given by x + 1 = 0

$$x = -1$$

As it has the term  $(x+1)^2$ , therefore, there will be 2 zeroes at x = -1.

Hence, the zeroes of the given polynomial are  $\sqrt{\frac{5}{3}}$ ,  $-\sqrt{\frac{5}{3}}$ , -1 and -1. Question 4:

On dividing  $x^3 - 3x^2 + x + 2$  by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).



Maths

## Answer:

$$p(x) = x^{3} - 3x^{2} + x + 2$$
 (Dividend)  

$$g(x) = ?$$
 (Divisor)  
Quotient =  $(x - 2)$   
Remainder =  $(-2x + 4)$   
Dividend = Divisor × Quotient + Remainder  

$$x^{3} - 3x^{2} + x + 2 = g(x) \times (x - 2) + (-2x + 4)$$
  

$$x^{3} - 3x^{2} + x + 2 + 2x - 4 = g(x)(x - 2)$$
  

$$x^{3} - 3x^{2} + 3x - 2 = g(x)(x - 2)$$

g(x) is the quotient when we divide  $(x^3-3x^2+3x-2)$  by (x-2)

$$\begin{array}{r} x-2 \overline{\smash{\big)}\ x^{2}-x+1} \\ x-2 \overline{\smash{\big)}\ x^{3}-3x^{2}+3x-2} \\ x^{3}-2x^{2} \\ -+ \\ \hline -x^{2}+3x-2 \\ -x^{2}+2x \\ +- \\ \hline \\ x-2 \\ x-2 \\ \hline \\ -- \\ \hline \\ g(x) = (x^{2}-x+1) \end{array}$$

Question 5:

Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and



Maths

(i) deg  $p(x) = \deg q(x)$ 

(ii) deg  $q(x) = \deg r(x)$ 

(iii) deg r(x) = 0

Answer:

According to the division algorithm, if p(x) and g(x) are two polynomials with

 $g(x) \neq 0$ , then we can find polynomials q(x) and r(x) such that

 $p(x) = g(x) \times q(x) + r(x),$ 

where r(x) = 0 or degree of r(x) < degree of <math>g(x)

Degree of a polynomial is the highest power of the variable in the polynomial.

(i) deg  $p(x) = \deg q(x)$ 

Degree of quotient will be equal to degree of dividend when divisor is constant ( i.e., when any polynomial is divided by a constant).

Let us assume the division of  $6x^2 + 2x + 2$  by 2.

Here, 
$$p(x) = 6x^2 + 2x + 2$$
  
 $g(x) = 2$   
 $q(x) = 3x^2 + x + 1$  and  $r(x) = 0$   
Degree of  $p(x)$  and  $q(x)$  is the same i.e., 2.  
Checking for division algorithm,  
 $p(x) = g(x) \times q(x) + r(x)$   
 $6x^2 + 2x + 2 = 2(3x^2 + x + 1)$ 

$$= 6x^2 + 2x + 2$$

Thus, the division algorithm is satisfied.



Maths

(ii) deg  $q(x) = \deg r(x)$ Let us assume the division of  $x^3 + x$  by  $x^2$ , Here,  $p(x) = x^{3} + x$  $q(x) = x^2$ q(x) = x and r(x) = xClearly, the degree of q(x) and r(x) is the same i.e., 1. Checking for division algorithm,  $p(x) = q(x) \times q(x) + r(x)$  $x^{3} + x = (x^{2}) \times x + x$  $x^{3} + x = x^{3} + x$ Thus, the division algorithm is satisfied. (iii)deg r(x) = 0Degree of remainder will be 0 when remainder comes to a constant. Let us assume the division of  $x^3 + 1$ by  $x^2$ . Here,  $p(x) = x^3 + 1$  $q(x) = x^2$ q(x) = x and r(x) = 1Clearly, the degree of r(x) is 0. Checking for division algorithm,  $p(x) = q(x) \times q(x) + r(x)$  $x^3 + 1 = (x^2) \times x + 1$ 

 $x^3 + 1 = x^3 + 1$ 

Thus, the division algorithm is satisfied.



# Exercise 2.4

# Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)  $2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$ 

(ii) 
$$x^3 - 4x^2 + 5x - 2;$$
 2,1,1

Answer:

(i) 
$$p(x) = 2x^3 + x^2 - 5x + 2$$
.

Zeroes for this polynomial are  $\frac{1}{2}$ , 1, -2

$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{2} - 5\left(\frac{1}{2}\right) + 2$$
$$= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$$
$$= 0$$
$$p(1) = 2 \times 1^{3} + 1^{2} - 5 \times 1 + 2$$
$$= 0$$
$$p(-2) = 2(-2)^{3} + (-2)^{2} - 5(-2) + 2$$
$$= -16 + 4 + 10 + 2 = 0$$
$$\frac{1}{2}$$

Therefore,  $\overline{2}$ , 1, and -2 are the zeroes of the given polynomial. Comparing the given polynomial with  $ax^3 + bx^2 + cx + d$ , we obtain a = 2, b = 1, c = -5, d = 2



Maths

We can take 
$$\alpha = \frac{1}{2}, \beta = 1, \gamma = -2$$
  
 $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$   
 $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} \times 1 + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$   
 $\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = \frac{-1}{1} = \frac{-(2)}{2} = \frac{-d}{a}$ 

Therefore, the relationship between the zeroes and the coefficients is verified.

(ii) 
$$p(x) = x^3 - 4x^2 + 5x - 2$$

Zeroes for this polynomial are 2, 1, 1.

$$p(2) = 2^{3} - 4(2^{2}) + 5(2) - 2$$
  
= 8 - 16 + 10 - 2 = 0  
$$p(1) = 1^{3} - 4(1)^{2} + 5(1) - 2$$
  
= 1 - 4 + 5 - 2 = 0

Therefore, 2, 1, 1 are the zeroes of the given polynomial.

Comparing the given polynomial with  $ax^3 + bx^2 + cx + d$ , we obtain a = 1, b = -4, c = 5, d = -2.

Verification of the relationship between zeroes and coefficient of the given polynomial

Sum of zeroes =  $2 + 1 + 1 = 4 = \frac{-(-4)}{1} = \frac{-b}{a}$ 

Multiplication of zeroes taking two at a time = (2)(1) + (1)(1) + (2)(1)

 $=2 + 1 + 2 = 5 = \frac{(5)}{1} = \frac{c}{a}$ 



Chapter 2 – Polynomials

Maths

Multiplication of zeroes = 2 × 1 × 1 = 2 =  $\frac{-(-2)}{1} = \frac{-d}{a}$ 

Hence, the relationship between the zeroes and the coefficients is verified.

Question 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Answer:

Let the polynomial be  $ax^3 + bx^2 + cx + d$  and the zeroes be  $\alpha, \beta$ , and  $\gamma$ . It is given that

$$\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$$
If  $a = 1$ , then  $b = -2$ ,  $c = -7$ ,  $d = 14$   
Hence, the polynomial is  $x^3 - 2x^2 - 7x + 14$ .  
Question 3:  
If the zeroes of polynomial  $x^3 - 3x^2 + x + 1$  are  $a - b, a, a + b$ , find  $a$  and  $b$   
Answer:  
 $p(x) = x^3 - 3x^2 + x + 1$   
Zeroes are  $a - b, a + a + b$ 

Comparing the given polynomial with  $px^3 + qx^2 + rx + t$ , we obtain



Maths

p = 1, q = -3, r = 1, t = 1Sum of zeroes = a - b + a + a + b $\frac{-q}{p} = 3a$  $\frac{-(-3)}{1} = 3a$ 3 = 3aa = 1The zeroes are 1 - b, 1, 1 + b. Multiplication of zeroes = 1(1 - b)(1 + b) $\frac{-t}{p} = 1 - b^{2}$  $\frac{-1}{1} = 1 - b^{2}$  $1 - b^{2} = -1$  $1 + 1 = b^{2}$  $b = \pm \sqrt{2}$ Hence, a = 1 and  $b = \sqrt{2}$  or  $-\sqrt{2}$ . Question 4:

] It two zeroes of the polynomial  $x^4 - 6x^3 - 26x^2 + 138x - 35 \operatorname{are}^{2 \pm \sqrt{3}}$ , find other zeroes.

Answer:

Given that 2 +  $\sqrt{3}$  and 2 -  $\sqrt{3}$  are zeroes of the given polynomial.

Therefore,  $(x-2-\sqrt{3})(x-2+\sqrt{3}) = x^2 + 4 - 4x - 3$ 

 $= x^2 - 4x + 1$  is a factor of the given polynomial



For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing  $x^4 - 6x^3 - 26x^2 + 138x - 35$  by  $x^2 - 4x + 1$ .

$$\begin{array}{r} x^2 - 2x - 35 \\ x^2 - 4x + 1 \overline{\smash{\big)}} x^4 - 6x^3 - 26x^2 + 138x - 35 \\ x^4 - 4x^3 + x^2 \\ - + - \\ - 2x^3 - 27x^2 + 138x - 35 \\ - 2x^3 + 8x^2 - 2x \\ + - + \\ \hline - 35x^2 + 140x - 35 \\ - 35x^2 + 140x - 35 \\ + - + \\ \hline 0 \end{array}$$

Clearly, 
$$x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$$

It can be observed that  $(x^2-2x-35)$  is also a factor of the given polynomial.

And  $(x^2 - 2x - 35) = (x - 7)(x + 5)$ 

Therefore, the value of the polynomial is also zero when x-7=0 or

$$x+5=0$$
  
Or  $x = 7$  or  $-5$ 

Hence, 7 and -5 are also zeroes of this polynomial.

Class X



Maths

**Question 5:** 

If the polynomial  $x^4 - 6x^3 + 16x^2 - 25x + 10$  is divided by another

polynomial  $x^2 - 2x + k$ , the remainder comes out to be x + a, find k and

a.

Answer:

By division algorithm,

Dividend = Divisor × Quotient + Remainder

Dividend – Remainder = Divisor × Quotient

 $x^{4}-6x^{3}+16x^{2}-25x+10-x-a=x^{4}-6x^{3}+16x^{2}-26x+10-a$  will be perfectly

divisible by  $x^2 - 2x + k$ .

Let us divide  $x^4 - 6x^3 + 16x^2 - 26x + 10 - a$  by  $x^2 - 2x + k$ 

$$x^{2} - 4x + (8 - k)$$

$$x^{2} - 2x + k x^{4} - 6x^{3} + 16x^{2} - 26x + 10 - a$$

$$x^{2} = 2x + k \int x^{2} = -6x^{2} + 16x^{2} = 26x + 16 - a^{2}$$

$$x^{4} = 2x^{3} + kx^{2}$$

$$-\frac{4x^{3} + (16 - k)x^{2} - 26x}{-4x^{3} + 8x^{2} - 4kx}$$

$$+\frac{-4x^{3} + 8x^{2} - 4kx}{(8 - k)x^{2} - (26 - 4k)x + 10 - a^{2}}$$

$$(8 - k)x^{2} - (16 - 2k)x + (8k - k^{2})$$

$$-\frac{-4x^{2} - 4kx}{(-10 + 2k)x + (10 - a - 8k + k^{2})}$$
The set has a base of the equation of the equat

It can be observed that  $(-10+2k)x+(10-a-8k+k^2)$  will be 0.



Maths

Therefore, (-10+2k) = 0 and  $(10-a-8k+k^2) = 0$ For (-10+2k) = 0, 2 k = 10And thus, k = 5For  $(10-a-8k+k^2) = 0$   $10 - a - 8 \times 5 + 25 = 0$  10 - a - 40 + 25 = 0 -5 - a = 0Therefore, a = -5Hence, k = 5 and a = -5