Assignments in Mathematics Class X (Term I)
 2. POLYNOMIALS

IMPORTANT TERMS, DEFINITIONS AND RESULTS

- An expression of the form

$$
\mathrm{p}(\mathrm{x})=\mathrm{a}_{\mathrm{a}}+a_{1} x+a_{2} x^{2}+\ldots . a_{n} x^{n}
$$

where $a x^{2}+b x+c$, is called a polynomial in x of degree n.
Here, $\mathrm{a}_{\mathrm{o}}, a_{1}, a_{2}, \ldots a_{n}$, are real numbers and each power of x is a non-negative integer.

- The exponent of the highest degree term in a polynomial is known as its degree. A polynomial of degree 0 is called a constant polynomial.
- A polynomial of degree 1 is called a linear polynomial. A linear polynomial is of the form $p(x)=a x+b$, where $a \neq 0$,
- A polynomial of degree 2 is called a quadratic polynomial. A quadratic polynomial is of the form $p(x)=a x^{2}+b x+c$, where $a \neq 0$,
- A polynomial of degree 3 is called a cubic polynomial. A cubic polynomial is of the form $p(x)=a x^{3}+b x^{2}+c x+d$, where $a \neq 0$,
- A polynomial of degree 4 is called a biquadratic polynomial. A biquadratic polynomial is of the form $p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$, where $a \neq 0$,
- If $p(x)$ is a polynomial in x and if α is any real number, then the value obtained by putting $x=\alpha$ in $p(x)$ is called the value of $p(x)$ at x $=\alpha$. The value of $p(x)$ at $x=\alpha$ is denoted by $p(\alpha)$.
- A real number α is called a zero of the polynomial $p(x)$, if $p(\alpha)=0$.
- A polynomial of degree n can have at most n real zeroes.
- Geometrically the zeroes of a polynomial $p(x)$ are the x-coordinates of the points, where the graph of $p(\alpha)=0$. intersects x-axis.
- Zero of the linear polynomial $a x+b$ is
$-\frac{b}{a}=\frac{- \text { constant term }}{\text { coefficient of } x}$
- If α and β are the zeroes of a quadratic polynomial $p(x)=a x^{2}+b x+c, a \neq 0$, then $\alpha+\beta=-\frac{b}{a}=\frac{- \text { coefficient of } x}{\text { coefficient of } x^{2}}$,
$\alpha \beta=\frac{c}{a}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
- If α, β and γ are the zeroes of a cubic polynomial $p(x)=a x^{3}+b x^{2}+c x+d, a \neq 0$, then
$\alpha+\beta+\gamma=\frac{-b}{a}=-\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{\text { coefficient of } x}{\text { coefficient of } x^{3}}$
$\alpha \beta \gamma=-\frac{d}{a}=-\frac{\text { constant term }}{\text { coefficient of } x^{3}}$
- A quadratic polynomial whose zeroes are α, β is given by
$p(x)=x^{2}-(\alpha+\beta) x+\alpha \beta=x^{2}-($ sum of the zeroes) $x+$ product of the zeroes.
- A cubic polynomial whose zeroes are α, β, γ is given by

$$
\begin{aligned}
p(x) & =x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma \\
& =x^{3}-(\text { sum of the zeroes }) x^{2}
\end{aligned}
$$

+ (sum of the products
of the zeroes taken two at a time) x
- product of the zeroes.
- The division algorithm states that given any polynomial $p(x)$ and any non-zero polynomial $g(x)$, there are polynomial $q(x)$ and $r(x)$ such that $p(x)$ $=g(x) q(x)+r(x)$, where $r(x)=0$ or degree $r(x)$ $<$ degree $g(x)$.

SUMMATIVE ASSESSMENT

A. Important Questions

1. Which of the following is a polynomial?
(a) $x^{2}-6 \sqrt{x}+2$
(b) $\sqrt{x}+\frac{1}{\sqrt{x}}$
(c) $\frac{5}{x^{2}-3 x+1}$
(d) none of these
2. If $p(x)=2 x^{2}-3 x+5$, then $p(-1)$ is equal to :
(a) 7
(b) 8
(c) 9
(d) 10
3. The zero of the polynomial $3 x+2$ is:
(a) $-\frac{2}{3}$
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) $-\frac{3}{2}$
4. The following figure shows the graph of $y=p(x)$, where $p(x)$ is a polynomial. $p(x)$ has :

(a) 1 zero
(b) 2 zeroes
(c) 3 zeroes
(d) 4 zeroes
5. The following figure shows the graph of $y=p(x)$, where $p(x)$ is a polynomial. $p(x)$ has :

(a) no zero
(b) 1 zero
(c) 2 zeroes
(d) 3 zeroes
6. If zeroes of the quadratic polynomial $2 x^{2}-8 x-m$ are $\frac{5}{2}$ and $\frac{3}{2}$ respectively, then the value of m
is
(a) $-\frac{15}{2}$
(b) $\frac{15}{2}$
(c) 2
(d) 15
7. If one zero of the quadratic polynomial $2 x^{2}-8 x-m$ is $\frac{5}{2}$, then the other zero is:
(a) $\frac{2}{3}$
(b) $-\frac{2}{3}$
(c) $\frac{3}{2}$
(d) $\frac{-15}{2}$
8. If α and β are zeroes of $x^{2}+5 x+8$, then the value of $\alpha+\beta$ is :
(a) 5
(b) -5
(c) 8
(d) -8
9. The sum and product of the zeroes of a quadratic polynomial are 2 and -15 respectively. The quadratic polynomial is :
(a) $x^{2}-2 x+15$
(b) $x^{2}-2 x-15$
(c) $x^{2}+2 x-15$
(d) $x^{2}+2 x+15$
10. If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}-x-4$, then the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$ is :
(a) $\frac{15}{4}$
(b) $\frac{-15}{4}$
(c) 4
(d) 15
11. If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}-p(x+1)-c$, then $(\alpha+1)(\beta+1)$ is equal to :
(a) $1+c$
(b) $1-c$
(c) $c-1$
(d) $2+c$
12. If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}-5 x+k$ such that $\alpha-\beta=1$, then value of k is :
(a) 6
(b) 0
(c) 1
(d) -1
13. If α and β are the zeroes of the polynomial $f(x)$ $=x^{2}-p(x+1)-c$ such that $(\alpha-1)(\beta+1)=0$, then c is equal to:
(a) 1
(b) 0
(c) -1
(d) 2
14. The value of k such that the quadratic polynomial $x^{2}-(k+6) x+(2 k+1)$ has sum of the zeroes as half of their product is :
(a) 2
(b) 3
(c) -5
(d) 5
15. If α and β are the zeroes of the polynomial $p(x)=4 x^{2}-5 x-1$, then value of $\alpha^{2} \beta+\alpha \beta^{2}$ is :
(a) $-\frac{1}{4}$
(b) $\frac{1}{4}$
(c) $\frac{5}{16}$
(d) $-\frac{5}{16}$
16. If sum of the squares of zeroes of the quadratic polynomial $f(x)=x^{2}-8 x+k$ is 40 , the value of k is :
(a) 10
(b) 12
(c) 14
(d) 16
17. The graph of the polynomial $p(x)$ cuts the x-axis 5 times and touches it 3 times. The number of zeroes of $p(x)$ is :
(a) 5
(b) 3
(c) 8
(d) 2
18. If the zeroes of the quadratic polynomial $x^{2}+(a+1) x+b$ are 2 and -3 , then :
(a) $a=-7, b=-1$
(b) $a=5, b=-1$
(c) $a=2, b=-6$
(d) $a=0, b=-6$
19. The zeroes of the quadratic polynomial $x^{2}+89 x+720$ are :
(a) both are negative
(b) both are positive
(c) one is positive and one is negative
(d) both are equal
20. If the zeroes of the quadratic polynomial $a x^{2}+b x+c, c \neq 0$, are equal, then :
(a) c and a have opposite signs
(b) c and b have opposite sign
(c) c and a have the same sign
(d) c and b have the same sign
21. If one of the zeroes of a quadratic polynomial of the form $x^{2}+a x+b$ is the negative of the other, then it :
(a) has no linear term and the constant term is positive.
(b) has no linear term and the constant term is negative.
(c) can have a linear term but the constant term is negative.
(d) can have a linear term but the constant term is positive.
22. If one zero of the quadratic polynomial
$x^{2}+3 x+k$ is 2 , then the value of k is :
(a) 10
(b) -10
(c) 5
(d) -5
23. A polynomial of degree 7 is divided by a polynomial of degree 4. Degree of the quotient is :
(a) less than 3
(b) 3
(c) more than 3
(d) more than 5
24. The number of zeroes, the polynomial $f(x)=(x-3)^{2}+1$ can have is :
(a) 0
(b) 1
(c) 2
(d) 3
25. A polynomial of degree 7 is divided by a polynomial of degree 3 . Degree of the remainder is :
(a) less than 2
(b) 3
(c) more than 2
(d) 2 or less than 2
26. If one of the zeroes of the quadratic polynomial $(k+1) x^{2}+k x-1$ is -3 , then the value of k is :
(a) $\frac{4}{3}$
(b) $\frac{-4}{3}$
(c) $\frac{2}{3}$
(d) $\frac{-2}{3}$
27. The graph of $y=f(x)$, where $f(x)$ is a quadratic
polynomial meets the x-axis at $A(-2,0)$ and $B(-3$, 0), then the expression for $f(x)$ is :
(a) $x^{2}+5 x+6$
(b) $x^{2}-5 x+6$
(c) $x^{2}+5 x-6$
(d) $x^{2}-5 x-6$
28. The graphs of $y=f(x)$, where $f(x)$ is a polynomial in x are given below. In which case $f(x)$ is not a quadratic polynomial?
(a)

(b)

(c)

(d)

29. The graph of $y=f(x)$, where $f(x)$ is a polynomial in x is given below. The number of zeroes lying between -2 to 0 of $f(x)$ is :

(a) 3
(b) 6
(c) 2
(d) 4

B. Questions From CBSE Examination Papers

1. If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is (-3), then k equal to :
[2010 (T-I)]
(a) $\frac{4}{3}$
(b) $-\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$
2. If α and β are the zeroes of the polynomial $5 x^{2}-7 x+2$, then sum of their reciprocals is :
[2010 (T-I)]
(a) $\frac{7}{2}$
(b) $\frac{7}{5}$
(c) $\frac{2}{5}$
(d) $\frac{14}{25}$
3. The graph of $y=f(x)$ is shown. The number of zeroes of $f(x)$ is :
[2010 (T-I)]
(a) 3
(b) 1
(c) 0
(d) 2

4. If α and β are the zeroes of the polynomial $4 x^{2}+3 x+7$, then $\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to :

010 (T-I)]
(a) $\frac{7}{3}$
(b) $-\frac{7}{3}$
(c) $\frac{3}{7}$
(d) $-\frac{3}{7}$
5. The quadratic polynomial $p(x)$ with -81 and 3 as product and one of the zeroes respectively is :
[2010 (T-I)]
(a) $x^{2}+24 x-81$
(b) $x^{2}-24 x-81$
(c) $x^{2}-24 x+81$
(d) $x^{2}+24 x+81$
6. The graph of $y=p(x)$, where $p(x)$ is a polynomial is shown. The number of zeroes of $p(x)$ is :
[2010 (T-I)]

(a) 1
(b) 2
(c) 3
(d) 4
7. If α, β are zeroes of the polynomial $f(x)=x^{2}+$ $p x+q$, then polynomial having $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ as its zeroes is :
[2010 (T-I)]
(a) $x^{2}+q x+p$
(b) $x^{2}-p x+q$
(c) $q x^{2}+p x+1$
(d) $p x^{2}+q x+1$
8. If α and β are zeroes of $x^{2}-4 x+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$ is :
[2010 (T-I)]
(a) 3
(b) 5
(c) -5
(d) -3
9. The quadratic polynomial having zeroes as 1 and -2 is :
[2010 (T-I)]
(a) $x^{2}-x+2$
(b) $x^{2}-x-2$
(c) $x^{2}+x-2$
(d) $x^{2}+x+2$
10. The value of p for which the polynomial $x^{3}+4 x^{2}$ $-p x+8$ is exactly divisible by $(x-2)$ is :
[2010 (T-I)]
(a) 0
(b) 3
(c) 5
(d) 16
11. If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1)$ $x-1$, then the value of a is :
[2010 (T-I)]
(a) 1
(b) -1
(c) 2
(d) -2
12. If -4 is a zero of the polynomial $x^{2}-x-(2+2 k)$, then the value of k is :
[2010 (T-I)]
(a) 3
(b) 9
(c) 6
(d) -9
13. The degree of the polynomial $(x+1)\left(x^{2}-x-x^{4}+1\right)$ is :
[2010 (T-I)]
(a) 2
(b) 3
(c) 4
(d) 5
14. The graph of $y=p(x)$, where $p(x)$ is a polynomial is shown. The number of zeroes of $p(x)$ is :
[2010 (T-I)]

(a) 3
(b) 4
(c) 1
(d) 2
15. If α, β are zeroes of $x^{2}-6 x+k$, what is the value of k if $3 \alpha+2 \beta=20$?
[2010 (T-I)]
(a) -16
(b) 8
(c) 2
(d) -8
16. If one zero of $2 x^{2}-3 x+k$ is reciprocal to the other, then the value of k is :
[2010 (T-I)]
(a) 2
(b) $\frac{-2}{3}$
(c) $\frac{-3}{2}$
(d) -3
17. The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is : [2010 (T-I)]
(a) $x^{2}+3 x-2$
(b) $x^{2}-2 x+3$
(c) $x^{2}-3 x+2$
(d) $x^{2}-3 x-2$
18. If $(x+1)$ is a factor of $x^{2}-3 a x+3 a-7$, then the value of a is :
[2010 (T-I)]
(a) 1
(b) -1
(c) 0
(d) -2
19. The number of polynomials having zeroes -2 and 5 is :
[2010 (T-I)]
(a) 1
(b) 2
(c) 3
(d) more than 3
20. The quadratic polynomial $p(y)$ with -15 and -7 as sum and one of the zeroes respectively is :
[2010 (T-I)]
(a) $y^{2}-15 y-56$
(b) $y^{2}-15 y+56$
(c) $y^{2}+15 y+56$
(d) $y^{2}+15 y-56$
[2 Marks]

SHORT ANSWER TYPE QUESTIONS

A. Important Questions

1. The graph of $y=f(x)$ cuts the x-axis at $(1,0)$ and $\left(\frac{-3}{2}, 0\right)$. Find all the zeroes of $f(x)$.
2. Show that $1,-1$ and 3 are the zeroes of the polynomial $x^{3}-3 x^{2}-x+3$.
3. For what value of $k,(-4)$ is a zero of the polynomial $x^{2}-x-(2 k+2) ?$
4. If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1)$ $x-1$, then find the value of a.
5. Write the polynomial, the product and sum of whose zeroes are $\frac{-9}{2}$ and $\frac{-3}{2}$ respectively.
6. If $(x+a)$ is a factor of $2 x^{2}+2 a x+5 x+10$, find a.
7. If α and β are the zeroes of the quadratic polynomial $f(t)=t^{2}-4 t+3$, find the value of $\alpha^{4} \beta^{3}+\alpha^{3} \beta^{4}$
8. Write the zeroes of the polynomial $x^{2}-x-6$.
9. Find a quadratic polynomial, the sum and product of whose zeroes are 3 and 2 respectively.
10. Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{2}$ and $\frac{1}{3}$ respectively.
11. Find a quadratic polynomial, the sum and product of whose zeroes are 0 and $\sqrt{5}$ respectively.

B. Questions From CBSE Examination Papers

1. Divide $6 x^{3}+13 x^{2}+x-2$ by $2 x+1$, and find the quotient and remainder.
[2010 (T-I)]
2. Divide $x^{4}-3 x^{2}+4 x+5$ by $x^{2}-x+1$, find quotient and remainder.
[2010 (T-I)]
3. α, β are the roots of the quadratic polynomial $p(x)=x^{2}-(k-6) x+(2 k+1)$. Find the value of k, if $\alpha+\beta=\alpha \beta$.
[2010 (T-I)]
4. α, β are the roots of the quadratic polynomial $p(x)=x^{2}-(k+6) x+2(2 k-1)$. Find the value of k, if $\alpha+\beta=\frac{1}{2} \alpha \beta$.
[2010 (T-I)]
5. Find the zeroes of the polynomial $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$
[2010 (T-I)]
6. Find a quadratic polynomial whose zeroes are $3+\sqrt{5}$ and $3-\sqrt{5}$.
[2010 (T-I)]
7. What must be added to polynomial $f(x)=x^{4}+2 x^{3}$ $-2 x^{2}+x-1$ so that the resulting polynomial is exactly divisible by $x^{2}+2 x-3$.
[2010 (T-I)]
8. Find a quadratic polynomial, the sum of whose zeroes is 7 and their product is 12 . Hence find the zeroes of the polynomial.
[2010 (T-I)]
9. Find a quadratic polynomial whose zeroes are 2 and -6 . Verify the relation betweeen the coefficients and zeroes of the polynomial.
[2010 (T-I)]
10. If α and $\frac{1}{\alpha}$ are the zeroes of the polynomial $4 x^{2}$ $-2 x+(k-4)$, find the value of k. [2010 (T-I)]
11. Find the zeroes of the polynomial $100 x^{2}-81$.
[2010 (T-I)]
12. Divide the polynomial $p(x)=3 x^{2}-x^{3}-3 x+5$ by $g(x)=x-1-x^{2}$ and find its quotient and remainder.
[2010 (T-I)]
13. Can $(x+3)$ be the remainder on the division of a polynomial $p(x)$ by $(2 x-5)$? Justify your answer.
[2010 (T-I)]
14. Can $(x-3)$ be the remainder on division of a polynomial $p(x)$ by $(3 x+2)$? Justify your answer.
[2010 (T-I)]
15. Find the zeroes of the polynomial $2 x^{2}-7 x+3$ and hence find the sum of product of its zeroes.
[2010 (T-I)]
16. It being given that 1 is one of the zeros of the polynomial $7 x-x^{3}-6$. Find its other zeros.
[2010 (T-I)]
17. Find the zeroes of the quadratic polynomial $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$
[2010 (T-I)]
18. Check whether $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
[2010 (T-I)]
19. Check whether $x^{2}-x+1$ is a factor of $x^{3}-3 x^{2}+3 x-2$.
[2010 (T-I)]
20. Find the zeroes of the quadratic polynomial $x^{2}+7 x+12$ and verify the relationship between the zeroes and its coefficients.
[2010 (T-I)]
21. Divide $\left(2 x^{2}+x-20\right)$ by $(x+3)$ and verify division algorithm.
[2010 (T-I)]
22. If α and β are the zeroes of $x^{2}+7 x+12$, then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta$.
[2010 (T-I)]
23. For what value of k, is -2 a zero of the polynomial $3 x^{2}+4 x+2 k ?$
[2010 (T-I)]
24. For what value of k, is -3 a zero of the polynomial $x^{2}+11 x+k ?$
[2010 (T-I)]
25. If α and β are the zeroes of the polynomial $2 y^{2}+7 y+5$, write the value of $\alpha+\beta+\alpha \beta$.
[2010 (T-I)]
26. For what value of k, is 3 a zero of the polynomial $2 x^{2}+x+k ?$
[2010 (T-I)]
27. If the product of zeroes of the polynomial $a x^{2}-6 x-6$ is 4, find the value of a. [2008]
28. Find the quadratic polynomial, sum of whose zeroes is 8 and their product is 12 . Hence, find the zeroes of the polynomial.
[2008]
29. If one zero of the polynomial $\left(a^{2}+9\right) x^{2}+13 x+6 a$ is reciprocal of the other, find the value of a.
[2008]

A. Important Questions

1. Find the zeroes of the quadratic polynomial $f(x)=$ $a b x^{2}+\left(b^{2}-a c\right) x-b c$ and verify the relationship between the zeroes and its coefficients.
2. Find the zeroes of the quadratic polynomial $p(x)$ $=x^{2}-(\sqrt{3}+1) x+\sqrt{3}$ and verify the relationship between the zeroes and its coefficients.
3. Find a cubic polynomial with the sum, sum of the products of its zeroes taken two at a time and product of its zeroes as $3,-1$ and -3 respectively.
4. If α and β are zeroes of the quadratic polynomial $f(x)=x^{2}-1$, find a quadratic polynomial whose zeroes and $\frac{2 \alpha}{\beta}$ and $\frac{2 \beta}{\alpha}$.
5. If α and β are zeroes of the quadratic polynomial $f(x)=k x^{2}+4 x+4$ such that $\alpha^{2}+\beta^{2}=24$, find the value of k.
6. If the square of the difference of the zeroes of the quadratic polynomial $f(x)=x^{2}+p x+45$ is equal to 144 , find the value of p.
7. If the sum of the zeroes of the quadratic polynomial $f(t)=k t^{2}+2 t+3 k$ is equal to their product, find the value of k.
8. If one zero of the quadratic polynomial $f(x)=$ $4 x^{2}-8 k x-9$ is negative of the other, find the value of k.
9. Find the zeroes of the quadratic polynomial $x^{2}+\frac{7}{2} x+\frac{3}{4}$, and verify relationship between the zeroes and the coefficients.
10. Find the zeroes of the polynomial $x^{2}-5$ and verify the relationship between the zeroes and the coefficients.
11. Find the zeroes of the polynomial $4 x^{2}+5 \sqrt{2 x}-3$ and verify the relationship between the zeroes and the coefficients.
12. Find the zeroes of the quadratic polynomial $3 x^{2}-6-7 x$ and verify relationship between the zeroes and the coefficients.

B. Questions From CBSE Examination Papers

1. If α and β are zeroes of the quadratic polynomial $x^{2}-6 x+a$; find the value of a if $3 \alpha+2 \beta=20$.
[2010 (T-I)]
2. Divide $\left(6+19 x+x^{2}-6 x^{3}\right)$ by $\left(2+5 x-3 x^{2}\right)$ and verify the division algorithm.
[2010 (T-I)]
3. If α, β, γ are zeroes of the polynomial $6 x^{3}+3 x^{2}-$ $5 x+1$, then find the value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$.
[2010 (T-I)]
4. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a$ and $a+b$, find the values of a and b.
[2010 (T-I)]
5. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$ respectively. Find $g(x)$.
[2010 (T-I)]
6. If α, β are zeroes of the polynomial $x^{2}-2 x-8$, then form a quadratic polynomial whose zeroes are 2α and 2β.
[2010 (T-I)]
7. If α, β are the zeroes of the polynomial $6 y^{2}-7 y$ +2 , find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
[2010 (T-I)]
8. If α, β are zeroes of the polynomial $x^{2}-4 x+3$, then form a quadratic polynomial whose zeroes are
3α and 3β.
[2010 (T-I)]
9. Obtain all zeroes of $f(x)=x^{4}-3 x^{3}-x^{2}+9 x-6$ if two of its zeroes are $(-\sqrt{3})$ and $\sqrt{3} \cdot[2010$ (T-I)]
10. Check whether the polynomial $g(x)=x^{3}-3 x+1$ is the factor of polynomial $p(x)=x^{5}-4 x^{3}+x^{2}+3 x+1$
[2010 (T-I)]
11. Find the zeroes of the quadratic polynomial $6 x^{2}$ $-3-7 x$, and verify the relationship between the zeroes and the coefficients.
[2010 (T-I)]
12. Find the zeroes of $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ and verify the relation between the zeroes and coefficients of the polynomial.
[2010 (T-I)]
13. If α, β are the zeroes of the polynomial $25 p^{2}-15 p$ +2 , find a quadratic polynomial whose zeroes are $\frac{1}{2 \alpha}$ and $\frac{1}{2 \beta}$.
[2010 (T-I)]
14. Divide $3 x^{2}-x^{3}-3 x+5$ by $x-1-x^{2}$ and verify the division algorithm.
15. If α, β are the zeroes of the polynomial $21 y^{2}-y$ -2 , find a quadratic polynomial whose zeroes are 2α and 2β.
[2010 (T-I)]
16. Find the zeroes of $3 \sqrt{2} x^{2}+13 x+6 \sqrt{2}$ and verify the relation between the zeroes and coefficients of the polynomial.
[2010 (T-I)]
17. Find the zeroes of $4 \sqrt{5} x^{2}+17 x+3 \sqrt{5}$ and verify the relation between the zeroes and coefficients of the polynomial.
[2010 (T-I)]
18. If the polynomial $6 x^{4}+8 x^{3}+17 x^{2}+21 x+7$ is divided by another polynomial $3 x^{2}+4 x+1$, the remainder comes out to be $(a x+b)$, find a and b.
[2009]
19. If the polynomial $x^{4}+2 x^{3}+8 x^{2}+12 x+18$ is divided by another polynomial $x^{2}+5$, the remainder comes out to be $p x+q$. Find the values of p and q.
[2009]
20. Find all the zeroes of the polynomial $x^{3}+3 x^{2}-$ $2 x-6$, if two of its zeroes are $-\sqrt{2}$ and $\sqrt{2}$.
[2009]
21. Find all the zeroes of the polynomial $2 x^{3}+x^{2}-$ $6 x-3$, if two of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$.
[2009]
[4 Marks]

A. Important Questions

1. If α and β are the zeroes of the quadratic polynomial $p(s)=3 s^{2}-6 s+4$, find the value of $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3 \alpha \beta$.
2. If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}-p x+q$, prove that $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{p^{4}}{q^{2}}-\frac{4 p^{2}}{q}+2$.
3. If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}+p x+q$, form a polynomial whose zeroes are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$.
4. If α and β are the zeroes of the polynomial $f(x)=$ $x^{2}-2 x+3$, find a polynomial whose zeroes are $\alpha+2$ and $\alpha+\beta$
5. Obtain all the zeroes of the polynomial $f(x)=$ $2 x^{4}+x^{3}-14 x^{2}-19 x-6$, if two of its zeroes are -2 and -1 .
6. Find the value of k for which the polynomial $x^{4}+10 x^{3}+25 x^{2}+15 x+k$ is exactly divisible by $x+7$.
7. Find the value of p for which the polynomial $x^{3}+4 x^{2}-p x+8$ is exactly divisible by $x-2$.
8. What must be added to $6 x^{5}+5 x^{4}+11 x^{3}-3 x^{2}$ $+x+5$ so that it may be exactly divisible by $3 x^{2}-2 x+4$?
9. What must be subtracted from the polynomial $f(x)$ $=x^{4}+2 x^{3}-13 x^{2}-12 x+21$ so that the resulting polynomial is exactly divisible by $g(x)=x^{2}-$ $4 x+3$?

B. Questions From CBSE Examination Papers

1. What must be added to the polynomial $f(x)=x^{4}+$ $2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is exactly divisible by $x^{2}+2 x-3$? [2010 (T-I)]
2. Find the other zeroes of the polynomial $2 x^{4}-3 x^{3}$ $-3 x^{2}+6 x-2$, if $\sqrt{ }$ and $\sqrt{ }$ are the zeroes of the given polynomial.
[2010 (T-I)]
3. If the remainder on division of $x^{3}+2 x^{2}+k x+3$ by $x-3$ is 21 , find the quotient and the value of k. Hence, find the zeroes of the cubic polynomial $x^{3}+2 x^{2}+k x-18$
[2010 (T-I)]
4. If two zeroes of $p(x)=x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find the other zeroes.
[2010 (T-I)]
5. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $(x+a)$, find the values of k and a.
[2010 (T-I)]
6. Find all the zeroes of the polynomial $2 x^{4}+$ $7 x^{3}-19 x^{2}-14 x+30$, if two of its zeros are $\sqrt{2},-\sqrt{2}$.
[2010 (T-I)]
7. Find other zeroes of the polynomial $x^{4}+x^{3}-9 x^{2}$ $-3 x+18$, if it is given that two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
[2010 (T-I)]
8. Divide $2 x^{4}-9 x^{3}+5 x^{2}+3 x-8$ by $x^{2}-4 x+1$ and verify the division algorithm.
[2010 (T-I)]
9. Divide $30 x^{4}+11 x^{3}-82 x^{2}-12 x+48$ by $\left(3 x^{2}+2 x\right.$ $-4)$ and verify the result by division algorithm.
[2010 (T-I)]
10. Find all zeroes of the polynomial $4 x^{4}-20 x^{3}+23 x^{2}+$ $5 x-6$, if two of its zeroes are 2 and 3. [2010 (T-I)]
11. Find all the zeroes of the polynomial $2 x^{4}-10 x^{3}+$ $5 x^{2}+15 x-12$, if it is given that two of its zeroes are $\sqrt{\frac{3}{2}}$ and $-\sqrt{\frac{3}{2}}$.
[2010 (T-I)]
12. Find all the zeroes of the polynomial $2 x^{4}-3 x^{3}-$ $5 x^{2}+9 x-3$, it being given that two of its zeros are $\sqrt{3}$ and $-\sqrt{3}$.
[2010 (T-I)]
13. Obtain all the zeroes of $x^{4}-7 x^{3}+17 x^{2}-17 x+6$, if two of its zeroes are 1 and 2. [2010 (T-I)]
14. Find all other zeroes of the polynomial $p(x)=$ $2 x^{3}+3 x^{2}-11 x-6$, if one of its zero is -3 .
[2010 (T-I)]
15. What must be added to the polynomial $P(x)=$ $5 x^{4}+6 x^{3}-13 x^{2}-44 x+7$ so that the resulting
polynomial is exactly divisible by the polynomial $Q(x)=x^{2}+4 x+3$ and the degree of the polynomial to be added must be less than degree of the polynomial $Q(x)$.
[2010 (T-I)]
16. Find all the zeroes of the polynomial $x^{4}+x^{3}-34 x^{2}$ $-4 x+120$, if two of its zeroes are 2 and -2 .
[2009]
17. If the polynomial $6 x^{4}+8 x^{3}-5 x^{2}+a x+b$ is exactly divisible by the polynomial $2 x^{2}-5$, then find the values of a and b.
[2009]

FORMATIVE ASSESSMENT

Activity

Objective : To understand the geometrical meaning of the zeroes of a polynomial.
Materials Required : Graphs of different polynomials, paper etc.

Procedure :

1. Let us consider a linear equation $y=5 x-10$.

Fig. 1 shows graph of this equation. We will find zero/zeroes of linear polynomial $5 x-10$.
$5 x-10=0 \Rightarrow x=\frac{10}{5}=2 \Rightarrow x=2$ is a zero of $5 x-10$.

Figure 1
2. From graph in Fig.1, the line intersects the x-axis at one point, whose coordinates are $(2,0)$
3. Also, the zero of the polynomial $5 x-10$ is 2 . Thus, we can say that the zero of the polynomial $5 x-10$ is the x coordinate (abscissa) of the point where the line $y=5 x-10$ cuts the x-axis.
4. Let us consider a quadratic equation $y=x^{2}-5 x+6$. Fig. 2 shows graph of this equation.
5. From graph in Fig. 2, the curve intersects the x-axis at two points P and Q, coordinates of P and Q are $(2,0)$ and $(3,0)$ respectively.
6. $x^{2}-5 x+6=0 \Rightarrow(x-3)(x-2)=0 \Rightarrow x=3$ and $x=2 \Rightarrow x=2$ and 3 are zeroes of the polynomial $x^{2}-5 x+6$.

Thus, we can say that the zeroes of the polynomial $x^{2}-5 x+6$ are the x-coordinates (abscissa) of the points where the graph of $y=x^{2}-5 x+6$ cuts the x-axis.
7. Complete the following table by observing graphs shown in Fig. 3 (a), 3 (b) and 3 (c).

Fig. No.	No. of zeroes	\boldsymbol{x}-coordinates
$3(a)$		
$3(b)$		
$3(c)$		

Result : A polynomial of degree n has atmost n-zeroes.

Figure 2

Figure $3(a)$

Figure 3(b)

Figure 3(c)

Exercise 2.1

Question 1:

The graphs of $y=p(x)$ are given in following figure, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.
(i)

(ii)

(iii)

(iv)

(v)

(v)

Answer:
(i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.
(ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point.
(iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.
(iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points.
(v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.
(vi) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.

Exercise 2.2

Question 1:

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$ (ii) $4 s^{2}-4 s+1$ (iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u(\mathrm{v}) t^{2}-15(\mathrm{vi}) 3 x^{2}-x-4$

Answer:
(i) $x^{2}-2 x-8=(x-4)(x+2)$

The value of $x^{2}-2 x-8$ is zero when $x-4=0$ or $x+2=0$, i.e., when x $=4$ or $x=-2$

Therefore, the zeroes of $x^{2}-2 x-8$ are 4 and -2 .
Sum of zeroes $=4-2=2=\frac{-(-2)}{1}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=4 \times(-2)=-8=\frac{(-8)}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
(ii) $4 s^{2}-4 s+1=(2 s-1)^{2}$

The value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, i.e., ${ }^{s=\frac{1}{2}}$
Therefore, the zeroes of $4 s^{2}-4 s+1$ are ${ }^{\frac{1}{2}}$ and $\frac{1}{2}$.
Sum of zeroes $=\frac{\frac{1}{2}+\frac{1}{2}=1=\frac{-(-4)}{4}=\frac{-(\text { Coefficient of } s)}{\left(\text { Coefficient of } s^{2}\right)}}{(\text { Con }}$

Product of zeroes $=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { Constant term }}{\text { Coefficient of } s^{2}}$
(iii) $6 x^{2}-3-7 x=6 x^{2}-7 x-3=(3 x+1)(2 x-3)$

The value of $6 x^{2}-3-7 x$ is zero when $3 x+1=0$ or $2 x-3=0$, i.e., $x=\frac{-1}{3}$ or $\quad x=\frac{3}{2}$

Therefore, the zeroes of $6 x^{2}-3-7 x$ are $\frac{-1}{3}$ and $\frac{3}{2}$.
Sum of zeroes $=\frac{-1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=\frac{-1}{3} \times \frac{3}{2}=\frac{-1}{2}=\frac{-3}{6}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
(iv) $4 u^{2}+8 u=4 u^{2}+8 u+0$

$$
=4 u(u+2)
$$

The value of $4 u^{2}+8 u$ is zero when $4 u=0$ or $u+2=0$, i.e., $u=0$ or $u=-2$

Therefore, the zeroes of $4 u^{2}+8 u$ are 0 and -2 .
Sum of zeroes $=0+(-2)=-2=\frac{-(8)}{4}=\frac{-(\text { Coefficient of } u)}{\text { Coefficient of } u^{2}}$
Product of zeroes $=0 \times(-2)=0=\frac{0}{4}=\frac{\text { Constant term }}{\text { Coefficient of } u^{2}}$
(v) $t^{2}-15$

$$
\begin{aligned}
& =t^{2}-0 . t-15 \\
& =(t-\sqrt{15})(t+\sqrt{15})
\end{aligned}
$$

The value of $t^{2}-15$ is zero when $t-\sqrt{15}=0$ or $t+\sqrt{15}=0$, i.e., when $t=\sqrt{15}$ or $t=-\sqrt{15}$

Therefore, the zeroes of $t^{2}-15$ are $\sqrt{15}$ and $-\sqrt{15}$.
Sum of zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{-(\text { Coefficient of } t)}{\left(\text { Coefficient of } t^{2}\right)}$
Product of zeroes $=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
(vi) $3 x^{2}-x-4$

$$
=(3 x-4)(x+1)
$$

The value of $3 x^{2}-x-4$ is zero when $3 x-4=0$ or $x+1=0$, i.e.,
when ${ }^{x=\frac{4}{3}}$ or $x=-1$
Therefore, the zeroes of $3 x^{2}-x-4$ are $\frac{4}{3}$ and -1 .
Sum of zeroes $=\frac{4}{3}+(-1)=\frac{1}{3}=\frac{-(-1)}{3}=\frac{-(\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$
Product of zeroes $=\frac{4}{3}(-1)=\frac{-4}{3}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$

Question 2:

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) $\frac{1}{4},-1$ (ii) $\quad \sqrt{2}, \frac{1}{3}$ (iii) $0, \sqrt{5}$
(iv) $\quad 1,1(\mathrm{v}) \quad-\frac{1}{4}, \frac{1}{4}(\mathrm{vi}) \quad 4,1$

Answer:
(i) $\frac{1}{4},-1$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β.
$\alpha+\beta=\frac{1}{4}=\frac{-b}{a}$
$\alpha \beta=-1=\frac{-4}{4}=\frac{c}{a}$
If $a=4$, then $b=-1, c=-4$
Therefore, the quadratic polynomial is $4 x^{2}-x-4$.
(ii) $\sqrt{2}, \frac{1}{3}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β.
$\alpha+\beta=\sqrt{2}=\frac{3 \sqrt{2}}{3}=\frac{-b}{a}$
$\alpha \beta=\frac{1}{3}=\frac{c}{a}$
If $a=3$, then $b=-3 \sqrt{2}, c=1$
Therefore, the quadratic polynomial is $3 x^{2}-3 \sqrt{2} x+1$.
(iii) $0, \sqrt{5}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β.
$\alpha+\beta=0=\frac{0}{1}=\frac{-b}{a}$
$\alpha \times \beta=\sqrt{5}=\frac{\sqrt{5}}{1}=\frac{c}{a}$
If $a=1$, then $b=0, c=\sqrt{5}$

Therefore, the quadratic polynomial is $x^{2}+\sqrt{5}$.
(iv) 1,1

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β.
$\alpha+\beta=1=\frac{1}{1}=\frac{-b}{a}$
$\alpha \times \beta=1=\frac{1}{1}=\frac{c}{a}$
If $a=1$, then $b=-1, c=1$
Therefore, the quadratic polynomial is $x^{2}-x+1$.
(v) $-\frac{1}{4}, \frac{1}{4}$

Let the polynomial be $a x^{2}+b x+c$, and its zeroes be α and β.
$\alpha+\beta=\frac{-1}{4}=\frac{-b}{a}$
$\alpha \times \beta=\frac{1}{4}=\frac{c}{a}$
If $a=4$, then $b=1, c=1$
Therefore, the quadratic polynomial is $4 x^{2}+x+1$.
(vi) 4,1

Let the polynomial be $a x^{2}+b x+c$.
$\alpha+\beta=4=\frac{4}{1}=\frac{-b}{a}$
$\alpha \times \beta=1=\frac{1}{1}=\frac{c}{a}$
If $a=1$, then $b=-4, c=1$
Therefore, the quadratic polynomial is $x^{2}-4 x+1$.

Exercise 2.3

Question 1:

Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, \quad g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, \quad g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, \quad g(x)=2-x^{2}$

Answer:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3$
$q(x)=x^{2}-2$
$x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 }$
$x^{3}-2 x$
$\frac{-\quad+}{-3 x^{2}+7 x-3}$

$$
-3 x^{2} \quad+6
$$

$+\quad-$

Quotient $=x-3$
Remainder $=7 x-9$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5=x^{4}+0 . x^{3}-3 x^{2}+4 x+5$

$$
q(x)=x^{2}+1-x=x^{2}-x+1
$$

$$
\begin{array}{r}
x^{2}-x+1 \begin{array}{l}
x^{2}+x-3 \\
x^{4}+0 x^{3}-3 x^{2}+4 x+5 \\
x^{4}-x^{3}+x^{2} \\
-+\quad- \\
\hline x^{3}-4 x^{2}+4 x+5
\end{array} \\
\begin{array}{r}
x^{3}-x^{2}+x \\
-\quad+\quad- \\
\hline \begin{array}{r}
-3 x^{2}+3 x+5 \\
-3 x^{2}+3 x-3 \\
+\quad+ \\
\hline
\end{array} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Quotient $=x^{2}+x-3$
Remainder $=8$
(iii) $p(x)=x^{4}-5 x+6=x^{4}+0 . x^{2}-5 x+6$

$$
q(x)=2-x^{2}=-x^{2}+2
$$

$$
- x ^ { 2 } + 2 \longdiv { - x ^ { 2 } - 2 }
$$

$$
x^{4}-2 x^{2}
$$

$$
-\quad+
$$

$$
2 x^{2}-5 x+6
$$

$$
2 x^{2} \quad-4
$$

\qquad $-5 x+10$

Quotient $=-x^{2}-2$
Remainder $=-5 x+10$

Question 2:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Answer:
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

$$
t^{2}-3=t^{2}+0 . t-3
$$

$$
\begin{array}{r}
t ^ { 2 } + 0 . t - 3 \longdiv { 2 t ^ { 4 } + 3 t + 4 } \begin{array} { r }
{ 2 t ^ { 3 } - 2 t ^ { 2 } - 9 t - 1 2 } \\
{ 2 t ^ { 4 } + 0 . t ^ { 3 } - 6 t ^ { 2 } } \\
{ - \quad - \quad + } \\
{ 3 t ^ { 3 } + 4 t ^ { 2 } - 9 t - 1 2 } \\
{ 3 t ^ { 3 } + 0 . t ^ { 2 } - 9 t } \\
{ - \quad - \quad + } \\
{ \hline 4 t ^ { 2 } + 0 . t - 1 2 } \\
{ 4 t ^ { 2 } + 0 . t - 1 2 } \\
{ - \quad - \quad + } \\
{ \hline }
\end{array} \\
\hline
\end{array}
$$

Since the remainder is 0 ,
Hence, $t^{2}-3$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

$$
\begin{aligned}
& x^{2}+3 x+1 \begin{array}{l}
3 x^{2}-4 x+2 \\
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
3 x^{4}+9 x^{3}+3 x^{2}
\end{array} \\
&-\quad-\quad- \\
&-4 x^{3}-10 x^{2}+2 x+2 \\
&-4 x^{3}-12 x^{2}-4 x \\
&+\quad+\quad+ \\
& 2 x^{2}+6 x+2 \\
& 2 x^{2}+6 x+2 \\
& 0
\end{aligned}
$$

Since the remainder is 0 ,
Hence, $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

$$
\begin{array}{r}
x^{2}-1 \\
x^{3}-3 x+1 \begin{array}{ll}
x^{5}-4 x^{3}+x^{2}+3 x+1 \\
x^{5}-3 x^{3}+x^{2}
\end{array} \\
-\quad+\quad- \\
\hline \begin{array}{lr}
-x^{3} & +3 x+1 \\
-x^{3} & +3 x-1 \\
+ & - \\
\hline
\end{array}+\begin{array}{l}
2 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Since the remainder $\neq 0$,
Hence, $x^{3}-3 x+1$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$.

Question 3:

Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Answer:
$p(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$
Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$,
$\therefore\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=\left(x^{2}-\frac{5}{3}\right)$ is a factor of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$.
Therefore, we divide the given polynomial by $x^{2}-\frac{5}{3}$.

$$
\begin{aligned}
& x^{2}+0 x-\frac{5}{3} \begin{array}{l}
\frac{3 x^{2}+6 x+3}{} \begin{array}{l}
3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 \\
3 x^{4}+0 x^{3}-5 x^{2}
\end{array} \\
\hline
\end{array} \\
& \frac{-\quad+}{6 x^{3}+3 x^{2}-10 x-5} \\
& 6 x^{3}+0 x^{2}-10 x \\
& \frac{-\quad+}{3 x^{2}+0 x-5} \\
& 3 x^{2}+0 x-5 \\
& \begin{array}{c}
-\quad+\quad+ \\
\hline 0
\end{array} \\
& 3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(x^{2}-\frac{5}{3}\right)\left(3 x^{2}+6 x+3\right) \\
& =3\left(x^{2}-\frac{5}{3}\right)\left(x^{2}+2 x+1\right)
\end{aligned}
$$

We factorize $x^{2}+2 x+1$
$=(x+1)^{2}$
Therefore, its zero is given by $x+1=0$
$x=-1$
As it has the term $(x+1)^{2}$, therefore, there will be 2 zeroes at $x=-1$.
Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1$ and -1 .

Question 4:

On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

Answer:
$p(x)=x^{3}-3 x^{2}+x+2 \quad$ (Dividend)
$g(x)=$? (Divisor)
Quotient $=(x-2)$
Remainder $=(-2 x+4)$
Dividend $=$ Divisor \times Quotient + Remainder
$x^{3}-3 x^{2}+x+2=g(x) \times(x-2)+(-2 x+4)$
$x^{3}-3 x^{2}+x+2+2 x-4=g(x)(x-2)$
$x^{3}-3 x^{2}+3 x-2=g(x)(x-2)$
$g(x)$ is the quotient when we divide ${ }^{\left(x^{3}-3 x^{2}+3 x-2\right)}$ by ${ }^{(x-2)}$
$\frac{x^{2}-x+1}{x - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 }}$
$x^{3}-2 x^{2}$
$-\quad+$
$-x^{2}+3 x-2$
$-x^{2}+2 x$
$+\quad-$
$x-2$
$x-2$
\qquad
0
$\therefore g(x)=\left(x^{2}-x+1\right)$

Question 5:

Give examples of polynomial $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} r(x)=0$

Answer:
According to the division algorithm, if $p(x)$ and $g(x)$ are two polynomials with
$g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that
$p(x)=g(x) \times q(x)+r(x)$,
where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$
Degree of a polynomial is the highest power of the variable in the polynomial.
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$

Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant).
Let us assume the division of $6 x^{2}+2 x+2$ by 2 .
Here, $p(x)=6 x^{2}+2 x+2$
$g(x)=2$
$q(x)=3 x^{2}+x+1$ and $r(x)=0$
Degree of $p(x)$ and $q(x)$ is the same i.e., 2.
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$6 x^{2}+2 x+2=2\left(3 x^{2}+x+1\right)$
$=6 x^{2}+2 x+2$
Thus, the division algorithm is satisfied.
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$

Let us assume the division of $x^{3}+x$ by x^{2},
Here, $p(x)=x^{3}+x$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=x$
Clearly, the degree of $q(x)$ and $r(x)$ is the same i.e., 1 .
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+x=\left(x^{2}\right) \times x+x$
$x^{3}+x=x^{3}+x$
Thus, the division algorithm is satisfied.
(iii)deg $r(x)=0$

Degree of remainder will be 0 when remainder comes to a constant.
Let us assume the division of $x^{3}+1$ by x^{2}.
Here, $p(x)=x^{3}+1$
$g(x)=x^{2}$
$q(x)=x$ and $r(x)=1$
Clearly, the degree of $r(x)$ is 0 .
Checking for division algorithm,
$p(x)=g(x) \times q(x)+r(x)$
$x^{3}+1=\left(x^{2}\right) \times x+1$
$x^{3}+1=x^{3}+1$
Thus, the division algorithm is satisfied.

Exercise 2.4

Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 x^{3}+x^{2}-5 x+2 ; \quad \frac{1}{2}, 1,-2$
(ii) $x^{3}-4 x^{2}+5 x-2 ; \quad 2,1,1$

Answer:
(i) $p(x)=2 x^{3}+x^{2}-5 x+2$.

Zeroes for this polynomial are $\frac{1}{2}, 1,-2$

$$
\begin{aligned}
p\left(\frac{1}{2}\right) & =2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-5\left(\frac{1}{2}\right)+2 \\
& =\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2 \\
& =0
\end{aligned}
$$

$p(1)=2 \times 1^{3}+1^{2}-5 \times 1+2$
$=0$
$p(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2$
$=-16+4+10+2=0$
Therefore, $\frac{1}{2}, 1$, and -2 are the zeroes of the given polynomial.
Comparing the given polynomial with $a x^{3}+b x^{2}+c x+d$, we obtain $a=2$, $b=1, c=-5, d=2$

We can take $\alpha=\frac{1}{2}, \beta=1, \gamma=-2$
$\alpha+\beta+\gamma=\frac{1}{2}+1+(-2)=-\frac{1}{2}=\frac{-b}{a}$
$\alpha \beta+\beta \gamma+\alpha \gamma=\frac{1}{2} \times 1+1(-2)+\frac{1}{2}(-2)=\frac{-5}{2}=\frac{c}{a}$
$\alpha \beta \gamma=\frac{1}{2} \times 1 \times(-2)=\frac{-1}{1}=\frac{-(2)}{2}=\frac{-d}{a}$
Therefore, the relationship between the zeroes and the coefficients is verified.
(ii) $p(x)=x^{3}-4 x^{2}+5 x-2$

Zeroes for this polynomial are 2, 1, 1 .

$$
\begin{aligned}
p(2) & =2^{3}-4\left(2^{2}\right)+5(2)-2 \\
& =8-16+10-2=0 \\
p(1) & =1^{3}-4(1)^{2}+5(1)-2 \\
& =1-4+5-2=0
\end{aligned}
$$

Therefore, 2, 1, 1 are the zeroes of the given polynomial.
Comparing the given polynomial with $a x^{3}+b x^{2}+c x+d$, we obtain $a=1$, $b=-4, c=5, d=-2$.

Verification of the relationship between zeroes and coefficient of the given polynomial
Sum of zeroes $=2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$
Multiplication of zeroes taking two at a time $=(2)(1)+(1)(1)+(2)(1)$
$=2+1+2=5=\frac{(5)}{1}=\frac{c}{a}$

Multiplication of zeroes $=2 \times 1 \times 1=2=\frac{-(-2)}{1}=\frac{-d}{a}$
Hence, the relationship between the zeroes and the coefficients is verified.

Question 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Answer:
Let the polynomial be $a x^{3}+b x^{2}+c x+d$ and the zeroes be α, β, and γ.
It is given that
$\alpha+\beta+\gamma=\frac{2}{1}=\frac{-b}{a}$
$\alpha \beta+\beta \gamma+\alpha \gamma=\frac{-7}{1}=\frac{c}{a}$
$\alpha \beta \gamma=\frac{-14}{1}=\frac{-d}{a}$
If $a=1$, then $b=-2, c=-7, d=14$
Hence, the polynomial is $x^{3}-2 x^{2}-7 x+14$.

Question 3:

If the zeroes of polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.
Answer:
$p(x)=x^{3}-3 x^{2}+x+1$
Zeroes are $a-b, a+a+b$
Comparing the given polynomial with $p x^{3}+q x^{2}+r x+t$, we obtain
$p=1, q=-3, r=1, t=1$
Sum of zeroes $=a-b+a+a+b$
$\frac{-q}{p}=3 a$
$\frac{-(-3)}{1}=3 a$
$3=3 a$
$a=1$
The zeroes are ${ }^{1-b, 1,1+b}$.
Multiplication of zeroes $=1(1-b)(1+b)$
$\frac{-t}{p}=1-b^{2}$
$\frac{-1}{1}=1-b^{2}$
$1-b^{2}=-1$
$1+1=b^{2}$
$b= \pm \sqrt{2}$
Hence, $a=1$ and $b=\sqrt{2}$ or $-\sqrt{2}$.

Question 4:

]It two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

Answer:
Given that $2+\sqrt{3}$ and $2-\sqrt{3}$ are zeroes of the given polynomial.
Therefore, $(x-2-\sqrt{3})(x-2+\sqrt{3})=x^{2}+4-4 x-3$
$=x^{2}-4 x+1$ is a factor of the given polynomial

For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ by $x^{2}-4 x+1$.

$$
\begin{array}{r}
x^{2}-2 x-35 \\
x ^ { 2 } - 4 x + 1 \longdiv { x ^ { 4 } - 6 x ^ { 3 } - 2 6 x ^ { 2 } + 1 3 8 x - 3 5 } \\
x^{4}-4 x^{3}+x^{2} \\
-+\quad- \\
-2 x^{3}-27 x^{2}+138 x-35 \\
-2 x^{3}+8 x^{2}-2 x \\
+\quad+\quad+ \\
+\begin{array}{c}
-35 x^{2}+140 x-35 \\
-35 x^{2}+140 x-35 \\
+\quad-\quad+
\end{array}
\end{array}
$$

Clearly, $x^{4}-6 x^{3}-26 x^{2}+138 x-35=\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right)$
It can be observed that $\left(x^{2}-2 x-35\right)$ is also a factor of the given polynomial.
And $\left(x^{2}-2 x-35\right)=(x-7)(x+5)$
Therefore, the value of the polynomial is also zero when $x-7=0$ or
$x+5=0$
Or $x=7$ or -5
Hence, 7 and -5 are also zeroes of this polynomial.

Question 5:

If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $x+a$, find k and a.

Answer:
By division algorithm,
Dividend $=$ Divisor \times Quotient + Remainder
Dividend - Remainder $=$ Divisor \times Quotient
$x^{4}-6 x^{3}+16 x^{2}-25 x+10-x-a=x^{4}-6 x^{3}+16 x^{2}-26 x+10-a$ will be perfectly
divisible by $x^{2}-2 x+k$.
Let us divide $x^{4}-6 x^{3}+16 x^{2}-26 x+10-a$ by $x^{2}-2 x+k$

$$
\begin{aligned}
& (8-k) x^{2}-(16-2 k) x+\left(8 k-k^{2}\right) \\
& -\quad+\quad- \\
& (-10+2 k) x+\left(10-a-8 k+k^{2}\right)
\end{aligned}
$$

It can be observed that $(-10+2 k) x+\left(10-a-8 k+k^{2}\right)$ will be 0 .

Therefore, $(-10+2 k)=0$ and $\left(10-a-8 k+k^{2}\right)=0$
For ${ }^{(-10+2 k)}=0$,
$2 k=10$
And thus, $k=5$
For $\left(10-a-8 k+k^{2}\right)=0$
$10-a-8 \times 5+25=0$
$10-a-40+25=0$
$-5-a=0$
Therefore, $a=-5$
Hence, $k=5$ and $a=-5$

