SAMAGRA SHIKSHA, KERALA SECOND TERMINAL EVALUATION 2018 CHEMISTRY Answer key <u>SSLC</u>

Q	Answer/ Hint					Total Score	
1	Mg					Any Four	
2	PVC / Poly Vinyl Chloride						
3	Vanadium Pentoxide						
4	Keto Group						
5	Hydrogen / H ₂						
	a) Activity 2/ Zn rod dipped in FeSO ₄ solution						
O	b) $Zn^{0}_{(s)} + Fe^{2+}SO_{4}^{2-}_{(aq)} \rightarrow Zn^{2+}SO_{4}^{2-}_{(aq)} + Fe^{0}_{(s)}$						
7	a) Test tube A/ The heated one						
	b) Sulphur / S						
8	a) CH ₃ -COOH						
	b) Ethanoic acid				2		
9	Metal	Ore	Mode of Concentration	1	2	Any Four	
	Zinc	Zinc Blende (ZnS)	(a) Froth floatation				
	Tin	Tin stone (SnO ₂)	(b) Magnetic Separation	1			
10	a) Copper / Cu						
	b) $2Cl^- \rightarrow Cl_2 + 2 \dot{e}$						
	a) Rate of forward reaction increases				3		
11	b) Rate of forward reaction increases						
	c) Rate of forward reaction decreases					11-15 Any Four	
	a) Hex						
12	b) Methyl				3		
	c) 3- Methyl hexane						

	a) Electrical energy is converted into chemical energy			1 1		
13	b)Hydrogen gas / H ₂				3	
	c) Purification of metals / Electroplating/ Production of chemicals / Production of metals and non metals.					
	i) B / $2 ZnS + 3 O_2 + Heat \rightarrow ZnO + CO_2$			1		
14	ii) Calcination is the process of heating the concentrated ore at a temperature below its melting point to remove the volatile impurities. When subjected to calcination, impurities like water, organic matter and other volatile impurities are expelled from the ore. Metal carbonates and hydroxides decompose to form oxides. Oxygen will not take part in the reaction.				3	
	Roasting is the process of heating the concentrated ore at a temperature below its melting point in a current of air. During roasting, the ore gets converted into its oxide. When the concentrated ore is subjected to roasting, the water present in it is removed as vapour. Other impurities like sulphur, phosphorus and organic matter are oxidised and expelled. The sulphide ore combines with oxygen to form oxide.Oxygen will take part in the reaction.					
15	a) Alkene					
	b) CH ₃ -CH ₂ -CH=CH-CH ₃ or CH ₃ -CH ₂ -CH=CH ₂				3	
	c) Pent-2- ene or Pent-1- ene			1		
		A	В			
	1	$CH_2=CH_2 + H_2 \rightarrow CH_3-CH_3$	Addition Reaction			
16	2	CH_3 - CH_2 - CH_3 \rightarrow CH_2 = CH_2 + CH_4	Thermal cracking	4	4	
	3	$CH_4+Cl_2 \rightarrow CH_3Cl +HCl$	Substitution reaction			
	4	$n CH_2 = CH_2 \rightarrow - (CH_2 - CH_2)_{n}$	Polymerisation			
	a) Leaching					
17	b) Cryolite is added to alumina to reduce its melting point and increase its electrical conductivity.					16-20
	c) Carbon lining				4	Any
	d) During electrolysis, oxygen is liberated at the carbon anode.It combines with the carbon blocks to form carbon dioxide. In this way the carbon blocks get destroyed.				-	Four
	a) A, C / CH ₃ -O-CH ₂ -CH ₃ , CH ₃ -CH ₂ -CH ₂ -OH			1		
	· ·		b) Functional Isomerism			
	b) Fun	ctional Isomerism		1		
19	b) Fun c) CF	ctional Isomerism H ₃ -CH-CH ₃		1	4	
18	b) Fun c) CF	Actional Isomerism H ₃ -CH-CH ₃ OH		1	4	

