ONLINE MATHS CLASS- X - 39 (17 / 09/2021)

4. SECOND DEGREE EQUATIONS - CLASS - 6

Important points

\geqslant Any second degree polynomial can be put in the form $\boldsymbol{p}(x)=a x^{2}+b x+c$
To get $a x^{2}+b x+c=0$, we must take $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Activity 1

A rectangle is to be made on the ground using a 20 metre long rope, with a wall as one side . The area enclosed must be 50 square metres. What should be the length of the sides ?

Answer

$$
20-2 x m
$$

Take, the length of the left and the right sides $=x$ metres.
Length of the bottom side $=20-2 x$ metres.

$$
\text { Area }=50 \text { sq.m. }=\Rightarrow x(20-2 x)=50
$$

$$
\begin{aligned}
20 x-2 x^{2} & =50 \\
2 x^{2}-20 x & =-50 \\
\frac{2 x^{2}-20 x}{2} & =-\frac{50}{2} \\
\frac{2 x^{2}}{2}-\frac{20 x}{2} & =-\frac{50}{2}
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-10 x & =-25 \\
x^{2}-10 x+5^{2} & =-25+5^{2} \\
(x-5)^{2} & =-25+25=0 \\
x-5 & =\sqrt{0}=0 \\
x & =0+5=5
\end{aligned}
$$

Length of the shorter side of the rectangle $=x=5 \mathrm{~m}$.
Length of the longer side of the rectangle $=20-2 x=20-2 \times 5=20-10$

$$
=10 \mathrm{~m} .
$$

Another method

$$
\begin{aligned}
& 2 x^{2}-20 x=-50==2 x^{2}-20 x+50=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \begin{aligned}
x & =\frac{-(-20) \pm \sqrt{0}}{2 \times 2} \\
& =\frac{20 \pm 0}{4}
\end{aligned} \\
& x=\frac{a=2, b=-20, c=50}{4}=5
\end{aligned}
$$

Length of the shorter side of the rectangle $=x=5 \mathrm{~m}$.
Length of the longer side of the rectangle $=20-2 x=20-2 \times 5=20-10$

$$
=10 \mathrm{~m}
$$

Activity 2

A rectangle is to be made on the ground using a 20 metre long rope, with a wall as one side . Can the area of the rectangle be 51 square metres ? Check .

Answer

Take, the length of the left and the right sides $=x$ metres.
Length of the bottom side $=20-2 x$ metres.

$$
\begin{aligned}
& \text { Area }=51 \text { sq.m. } \begin{array}{c}
==>x(20-2 x)=51 \\
20 x-2 x^{2}=51 \\
2 x^{2}-20 x=-51 \\
2 x^{2}-20 x+51=0
\end{array} \\
& \qquad \begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x= \frac{-(-20) \pm \sqrt{-8}}{2 \times 2} \\
&= \frac{20 \pm \sqrt{-8}}{4}
\end{aligned}
\end{aligned}
$$

Since negative numbers don't have square roots, the equation $2 x^{2}-20 x+51=0$ does not have a solution .

NOTE :

Whether a number is positive or negative, its square is positive

Activity 3

The perimeter of a rectangle is 42 metres and its diagonal is 15 metres . What are the lengths of its sides ?

Answer

$$
\begin{aligned}
\text { perimeter }=42 \text { metres } . & ==>2 \text { length }+2 \text { breadth }=42 \mathrm{~m} . \\
& ==>\quad \text { length }+ \text { breadth }=\frac{42}{2}=21 \mathrm{~m} .
\end{aligned}
$$

Take, length $=x$ metres. ,
then breadth $=21-x$ metres.

Diagonal $=15$ metres. $\Longrightarrow x^{2}+(21-x)^{2}=15^{2}$

$$
\begin{aligned}
x^{2}+21^{2}-2 \times 21 \times x+x^{2} & =15^{2} \\
x^{2}+441-42 x+x^{2} & =225 \\
2 x^{2}-42 x+441 & =225 \\
2 x^{2}-42 x+441-225 & =0=92 x^{2}-42 x+216=0 \\
\frac{2 x^{2}-42 x+216}{2} & =\frac{0}{2}
\end{aligned}
$$

$$
\frac{2 x^{2}}{2}-\frac{42 x}{2}+\frac{216}{2}=0
$$

$$
x^{2}-21 x+108=0
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(-21) \pm \sqrt{9}}{2 \times 1} \quad a=1, b=-21, c=108
$$

$$
=\frac{21 \pm 3}{2}
$$

$$
x=\frac{21+3}{2} \quad \text { Or } \quad x=\frac{21-3}{2}
$$

$$
\begin{array}{lll}
x=\frac{24}{2} & \text { Or } & x=\frac{18}{2} \\
x=12 & \text { Or } & x=9
\end{array}
$$

Length $=x=12 \mathrm{~m} . \quad==>$ breadth $=21-x=21-12=9 \mathrm{~m}$.

Activity 4

In writing the equation to construct a rectangle of specified perimeter and area, the perimeter was wrongly written as 24 instead of 42 . The length of a side was found to be 10 .
a) What is the area in the problem ?
b) What are the lengths of the sides of the rectangle in the correct problem ?

Answer

Wrongly written perimeter $=24==>2$ length +2 breadth $=24$

$$
==>\text { length }+ \text { breadth }=\frac{24}{2}=12
$$

Length of a sides = 10 , 2
a) Area $=$ length \times breadth $=10 \times 2=20$

$$
\begin{aligned}
\text { Correct perimeter }=42 & ==>2 \text { length }+2 \text { breadth }=42 \\
& ==>\text { length }+ \text { breadth }=\frac{42}{2}=21
\end{aligned}
$$

Take, length $=x$, then breadth $=21-x$

$$
\text { Area }=20 \quad==>\quad \begin{aligned}
x(21-x) & =20 \\
21 x-x^{2} & =20 \\
x^{2}-21 x & =-20 \\
x^{2}+21 x+20 & =0
\end{aligned}
$$

$$
\begin{array}{cl}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x & =\frac{-(-21) \pm \sqrt{361}}{2 \times 1} \\
& =\frac{21 \pm 19}{2} \\
x & =\frac{21+19}{2} \\
x=\frac{b^{2}-4 a c=(-2}{2} & x=\frac{21-19}{2} \\
x & \text { Or } \\
x=20 & x=\frac{2}{2} \\
x & \text { Or } \\
x=1
\end{array}
$$

b) Length $=x=20 \Rightarrow=>$ Breadth $=21-x=21-20=1$

