ONLINE MATHS CLASS - X - 36 (14 / 09 / 2021)

4. SECOND DEGREE EQUATIONS - CLASS -3

Activity 1

1 is added to the product of two consecutive even numbers gives 289 . What are the numbers?

Answer
First even number $=x$
Second even number $=x+2$
Product $+1=289$

$$
\begin{aligned}
\Longrightarrow x(x+2)+1 & =289 \\
x^{2}+2 x+1 & =289 \\
x^{2}+2 x+1^{2} & =289 \\
(x+1)^{2} & =289 \\
x+1 & =\sqrt{289}=17 \\
x & =17-1=16
\end{aligned}
$$

Even numbers = 16,18

Activity 2

A rectangle is to be made with perimeter 100 metres and area 525 square metres. What should be the length of the sides?

Answer
Perimeter $=100 \mathrm{~m}==>2$ length +2 breadth $=100 \mathrm{~m}$

$$
\text { length }+ \text { breadth }=\frac{100}{2}=50 \mathrm{~m}
$$

Take, length $=x m$, then breadth $=50-x \quad m$
Area $=525$ sq.m $\quad \Longrightarrow \quad x(50-x)=525$

$$
\begin{aligned}
50 x-x^{2}=525 \Longrightarrow \quad x^{2}-50 x & =-525 \\
x^{2}-50 x+25^{2} & =-525+25^{2} \\
(x-25)^{2} & =-525+625=100 \\
x-25 & =\sqrt{100}=10 \\
x & =10+25=35
\end{aligned}
$$

Length $=x=35 m$
Breadth $=50-x=50-35=15 m$

NOTE : (Another method)

Perimeter $=100 \mathrm{~m}==>2$ length +2 breadth $=100 \mathrm{~m}$

$$
\text { length }+ \text { breadth }=\frac{100}{2}=50 \mathrm{~m}
$$

If we take, length $=25+x m$, then breadth $=25-x m$

$$
\text { Area }=525 \mathrm{sq} . \mathrm{m} . \Longrightarrow \quad \begin{aligned}
(25+x)(25-x) & =525 \\
25^{2}-x^{2} & =525 \\
625-x^{2} & =525 \\
625-525 & =x^{2} \\
x^{2} & =100 \\
x & =\sqrt{100}=10
\end{aligned}
$$

Length $=25+x=25+10=35 m$
Breadth $=25-x=25-10=15 m$

Activity 3

16 were added to the sum of the first few terms of the arithmetic sequence $9,11,13, \ldots$ gave 256 . How many terms were added ?

Answer

Common difference $=11-9=2$

$$
\begin{aligned}
\text { Sum of the first } n \text { terms } & =p n^{2}+q n \\
& =1 n^{2}+8 n \\
& =n^{2}+8 n
\end{aligned}
$$

$$
\begin{gathered}
p=\frac{d}{2}=\frac{2}{2}=1 \\
p+q=f \\
1+q=9 \Longrightarrow q=9-1=8
\end{gathered}
$$

Sum of the first \boldsymbol{n} terms $+16=256$

$$
\Longrightarrow \begin{aligned}
n^{2}+8 n+16 & =256 \\
n^{2}+8 n+4^{2} & =256 \\
(n+4)^{2} & =256 \\
n+4 & =\sqrt{256}=16 \\
n & =16-4=12
\end{aligned}
$$

Number of terms = 12

Activity 4

An isosceles triangle has to be made like this .
The height should be $\mathbf{2}$ metres less than the base and the area of the triangle should be 12 square metres . What should be the length of its sides ?

Answer

Take, base $=x \quad m$, then , height $=x-2 m$
Area $=12$ sq. $m \quad \Longrightarrow \quad \frac{1}{2} \times x(x-2)=12$

$$
\begin{aligned}
\frac{1}{2} \times\left(x^{2}-2 x\right) & =12 \\
x^{2}-2 x & =12 \times 2=24 \\
x^{2}-2 x+1^{2} & =24+1^{2} \\
(x-1)^{2} & =24+1=25 \\
x-1 & =\sqrt{25}=5
\end{aligned}
$$

$$
x=5+1=6
$$

Base $=x=6 m$
Height $=x-2=6-2=4 m$
(In right triangle $A B C, A B=A C, A D$ is perpendicular to $B C$, $B D=C D=3 m \quad)$

$$
A B^{2}=3^{2}+4^{2}=9+16=25
$$

$$
A B=\sqrt{25}=5 m
$$

Length of the sides of the triangle $=5 m, 5 m, 6 m$

Activity 5

A 2.6 metres long rod leans against a wall, its foot 1 metre from the wall. When the foot is moved a little from the wall , its upper end slides the same length down. How much farther is the foot moved ?

Answer

In right triangle ABC ,

$$
\begin{aligned}
& B C^{2}+A B^{2}=A C^{2} \Longrightarrow 1^{2}+A B^{2}=2.6^{2} \\
& A B^{2}=2.6^{2}-1^{2}=6.76-1=5.76 \\
& A B=\sqrt{5.76}=\sqrt{\frac{576}{100}}=\frac{24}{10}=2.4 \mathrm{~m}
\end{aligned}
$$

Height of the wall $=A B=2.4 \mathrm{~m}$.

Take, the distance moved by the foot of the rod $=x \mathrm{~m}$.
The distance slided by the upper end of the rod= $x m$.

In right triangle PQR ,

$$
\begin{aligned}
& Q R^{2}+P Q^{2}=P R^{2} \\
& (1+x)^{2}+(2.4-x)^{2}=2.6^{2} \\
& 1+2 x+x^{2}+5.76-4.8 x+x^{2}=6.76 \\
& 2 x^{2}-2.8 x+6.76=6.76 \\
& 2 x^{2}-2.8 x=0 \\
& 2 x^{2}=2.8 x \\
& 2 x=2.8 \\
& x=\frac{2.8}{2}=1.4
\end{aligned}
$$

The distance moved by the foot of the rod $=x=1.4 \mathrm{~m}$

Activity 6

9 added to the product of two consecutive multiples of $\mathbf{6}$ gives 729 .What are the numbers?

Answer
Take, two consecutive multiples of $6=x, x+6$

$$
\text { Product }+9=729 \Longrightarrow \quad \begin{aligned}
x(x+6)+9 & =729 \\
x^{2}+6 x+9 & =729 \\
x^{2}+6 x+3^{2} & =729 \\
(x+3)^{2} & =729 \\
x+3 & =\sqrt{729}=27 \\
x & =27-3=24
\end{aligned}
$$

Two consecutive multiples of $6=24,30$

