FIRST YEAR HIGHER SECONDARY EXAMINATION, SEPTEMBER 2021

UNOFFICIAL ANSWER KEY

ZOOLOGY

I Answer any 3 questions from 1 to 6. Each carries 1 score Heart Sound Caused due to	Qn No.	Scoring key		Score
Lab(Question error, its LUB) Lab(Question error, its LUB) Closure Of AV valves/Ventricuspid and bicuspid valves/Ventricular systole Dub Closure of Semilunar valves/ Ventricular diastole 0.5 2 a)Cnidoblast b)Functions: Defence/Capture of prey/Anchorage (Any one) 3 a)Corpus callosum 0.5 b)Corpora quadrigemina 4 Emphysema 1 Domatidia: Sense Organs Cardiac tissue: Intercalated disc 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin , Myoglobin, (Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth		I Answer any 3 questions from 1 to 6. Each carries 1 score		
and bicuspid valves/Ventricular systole Dub Closure of Semilunar valves/ Ventricular diastole 2 a)Cnidoblast b)Functions: Defence/Capture of prey/Anchorage (Any one) 3 a)Corpus callosum b)Corpora quadrigemina 5 Ommatidia: Sense Organs Cardiac tissue: Intercalated disc 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) II Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 8 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin , Myoglobin, (Any two) 9 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	1	Heart Sound Caused due to		
Systole Dub Closure of Semilunar valves 0.5		Lab(Question error, its LUB)	Closure Of AV valves/Tricuspid	
Dub Closure of Semilunar valves/ Ventricular diastole 0.5 a)Cnidoblast b)Functions: Defence/Capture of prey/Anchorage (Any one) 0.5 a)Corpus callosum 0.5 b)Corpora quadrigemina 0.5 4 Emphysema 1 5 Ommatidia : Sense Organs Cardiac tissue: Intercalated disc 0.5 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) II Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin 0.5 b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin , Myoglobin, (Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			and bicuspid valves/Ventricular	0.5
2 a)Cnidoblast b)Functions: Defence/Capture of prey/Anchorage (Any one) 0.5 3 a)Corpus callosum 0.5 b)Corpora quadrigemina 0.5 4 Emphysema 1 5 Ommatidia : Sense Organs 0.5 Cardiac tissue: Intercalated disc 0.5 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) II Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding 0.5+0.5 joint (any two) b)Actin, Myosin, Troponin. Tropomyosin , Myoglobin, (Any two) 0.5+0.5 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			-	
a)Cnidoblast b)Functions: Defence/Capture of prey/Anchorage (Any one) 3 a)Corpus callosum b)Corpora quadrigemina 4 Emphysema 5 Ommatidia : Sense Organs Cardiac tissue: Intercalated disc 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) II Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin , Myoglobin, (Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth		Dub		
b)Functions: Defence/Capture of prey/Anchorage (Any one) 3 a)Corpus callosum b)Corpora quadrigemina 4 Emphysema 5 Ommatidia : Sense Organs Cardiac tissue: Intercalated disc 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin , Myoglobin, (Any two) 9 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			Ventricular diastole	
Defence/Capture of prey/Anchorage (Any one) a) Corpus callosum b)Corpora quadrigemina 5	2	·		0.5
a)Corpus callosum b)Corpora quadrigemina Emphysema 1 Cardiac tissue: Intercalated disc It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score A)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 3. Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin ,Myoglobin,(Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
b)Corpora quadrigemina 4 Emphysema 5 Ommatidia: Sense Organs Cardiac tissue: Intercalated disc 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) II Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 0.5 8 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin , Myoglobin, (Any two) 9 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			rage (Any one)	
4 Emphysema 1 5 Ommatidia: Sense Organs 0.5 Cardiac tissue: Intercalated disc 0.5 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin 0.5 b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin, Myoglobin, (Any two) 0.5+0.5 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	3	•		
5 Ommatidia: Sense Organs Cardiac tissue: Intercalated disc 6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 0.5 8 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) 9 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
Cardiac tissue: Intercalated disc 0.5 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin 0.5 b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin, Myoglobin, (Any two) 0.5+0.5 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			-01.	
6 It's a graph showing the relationship between temperature and Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint,Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin ,Myoglobin,(Any two) 0.5+0.5 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	5			
Enzymatic action/ Graph shows effect of temperature on enzymatic action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 0.5 8 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) 9 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
action/ Graph shows optimum temperature of Enzymatic action/ Low temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) II Answer any 9 questions from 7 to 24. Each carries 2 score 7 a) ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c) Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d) Insulin 0.5 a) Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b) Actin, Myosin, Troponin. Tropomyosin, Myoglobin, (Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	6		•	
temperature preserves the enzymes in a temporarily inactive state whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin, Myoglobin, (Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
whereas high temperature destroy enzyme activity because proteins are denatured by heat. (any one) Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin 0.5 8 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) 9 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
Il Answer any 9 questions from 7 to 24. Each carries 2 score 7 a)ADH/Antidiuretic hormone/Vasopressin 0.5 b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) 0.5+0.5 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
a)ADH/Antidiuretic hormone/Vasopressin b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			om 7 to 24. Each corries 2 seems	
b) (Question error: Grave's disease due to hyperthyroidism. Its not a deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin 0.5 8 a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin, Myoglobin, (Any two) 9 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	7			
deficiency disorder) c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	,		·	
c)Thyroid Hormones / Thyroxines / T4 / T3 / Tetraiodothyronine /Tri iodothyronine : (Spelling error in question paper, its Cretinism) d)Insulin a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			due to hyperthyroldishi. Its hot a	0.5
iodothyronine: (Spelling error in question paper, its Cretinism) d)Insulin a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
d)Insulin a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding 0.5+0.5 joint (any two) b)Actin, Myosin, Troponin. Tropomyosin, Myoglobin, (Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
a)Ball and socket joint, Hinge joint, Pivot joint, saddle joint, Gliding joint (any two) b)Actin, Myosin, Troponin. Tropomyosin, Myoglobin, (Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
joint (any two) b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) O.5+0.5 Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	8			
b)Actin,Myosin,Troponin.Tropomyosin,Myoglobin,(Any two) Diphyodont: human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth				
9 <u>Diphyodont:</u> human beings forms two sets of teeth during their life, a set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth			osin ,Myoglobin.(Any two)	0.5+0.5
set of temporary milk or deciduous teeth replaced by a set of permanent or adult teeth	9			
permanent or adult teeth				
		Heterodont : Humans have four different types of teeth like		

NAVAS CHEEMADAN SOHSS AREEKODE				
	incisor,canines,premolar and molar/Humans have different types of			
	teeth			
10	a)Sexual dimorphism			
	b)(Any one difference)			
	Male Cockroach Female cockroach			
	Wings extend beyond the tip of Wings extend upto abdomen			
	the abdomen			
	Anal style present	Anal style absent		
	Abdomen long and narrow	Abdomen broad		
11	a)Decrease Reabsorption of wate	r(Key copied from hand teachers	0.5	
	book)/Reabsorption of Na+ and	Water from the distal part of	0.5	
	nephrons		0.5	
	b)adrenal gland/Adrenal cortex		0.5	
	c)Pituitary gland/Posterior pituitary	/Neurohypophysis/Pars nervosa		
	d)Increases Reabsorption of water/	Prevent Diuresis/Constrictory		
	effect on blood vessel			
12	a)Radula		0.5	
	b)Bioluminescence		0.5	
	c)metagenesis		0.5	
	d)Pneumatic bone		0.5	
13	 Index to plant species found in 	n an area-Flora	0.5	
	 Specialised garden with co 	llection of living plants-Botanical	0.5	
	Garden			
	 Collection of preserved plants 	s and animals-Museum	0.5	
	Information of any one taxon-Monograph			
14	A-Hepatic caeca/Gastric caeca		0.5	
	Function: It's a digestive gland/It	secrete digestive juice	0.5	
	B-Malpighian Tubule		0.5	
	Function: Excretory organ of cockroach		0.5	
15	15 Bowman's capsule-Proximal convoluted tubule-Henle's loop-Distal convoluted tubule-Collecting duct			
16	a)Mucosa			
	b)Sub mucosa			
	c)Lumen			
	d)Serosa			
17	Bones in Forelimb	Bones in Hindlimb		
	Humerus	Tibia	0.5+0.5	
	carpals Fibula			
18	a)Adrenaline and nor adrenaline/E	pinephrine and nor epinephrine	0.5	

/Fight or flight hormone/Catacholamines/emergency hormones/ adrenal medullary hormones b) Fight or flight hormone/Catacholamines/emergency hormones c)Adrenal gland/Supra renal gland/Adrenal medulla d)Anterior part of each kidney/above kidney 19 a)A-SAN/Sino-atrial node/Pacemaker/Heart of heart B-AVN/Atrio-ventricular node b)SAN is called pace maker because SAN can generate 70-75 min¹ action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H−C−NH₂ CH₃ Alanine b) COOH H−C−NH₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)⇒generation of action potential in the Sarcolemma- →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm> calcium ion binds with a subunit of troponin on actin filament and thereby remove	NAVAS CHEEMADAN SOHSS AREEKODE			
b) Fight or flight hormone/Catacholamines/emergency hormones c)Adrenal gland/Supra renal gland/Adrenal medulla 0.5 d)Anterior part of each kidney/above kidney 0.5 0.5 19 a)A-SAN/Sino-atrial node/Pacemaker/Heart of heart B-AVN/Atrio-ventricular node b)SAN is called pace maker because SAN can generate 70-75 min action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata 0.5 21 a) COOH H−C−NH₂ CH₃ Alanine b) COOH H−C−NH₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma-→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		/Fight or flight hormone/Catacholamines/emergency hormones/		
c)Adrenal gland/Supra renal gland/Adrenal medulla d)Anterior part of each kidney/above kidney 19 a)A-SAN/Sino-atrial node/Pacemaker/Heart of heart B-AVN/Atrio-ventricular node b)SAN is called pace maker because SAN can generate 70-75 min¹ action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H - C - NH₂ CH₃ Alamine b) COOH H - C - NH₂ I I Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma- →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm-→ calcium ion binds		adrenal medullary hormones		
d)Anterior part of each kidney/above kidney 19 a)A-SAN/Sino-atrial node/Pacemaker/Heart of heart B-AVN/Atrio-ventricular node b)SAN is called pace maker because SAN can generate 70-75 min¹ action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H-C-NH₂ CH₃ Alanine b) COOH H-C-NH₂ IH Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma- →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm-→ calcium ion binds		b) Fight or flight hormone/Catacholamines/emergency hormones	0.5	
a)A-SAN/Sino-atrial node/Pacemaker/Heart of heart B-AVN/Atrio-ventricular node b)SAN is called pace maker because SAN can generate 70-75 min¹ action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata a) COOH H−C−NH₂ CH₃ Alanine b) COOH H−C−NH₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma- →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm-→ calcium ion binds		c)Adrenal gland/Supra renal gland/Adrenal medulla		
B-AVN/Atrio-ventricular node b)SAN is called pace maker because SAN can generate 70-75 min action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H−C−NH₂ CH₃ Alanine b) COOH H−C−NH₂ H−C−NH₂ I H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma- →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		d)Anterior part of each kidney/above kidney	0.5	
b)SAN is called pace maker because SAN can generate 70-75 min action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata • Calotes=Class Reptilia/Phylum Chordata • Calotes=Class Reptilia/Phylum Chordata • COOH H−C−NH₂	19	a)A-SAN/Sino-atrial node/Pacemaker/Heart of heart	0.5	
action potential and is responsible for initiating and maintaining the rhythmic contractile activity of heart. 20 • Spongilla= Phylum Porifera • Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H-C-NH₂ CH₃ Alanine b) COOH H-C-NH₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		B-AVN/Atrio-ventricular node	0.5	
rhythmic contractile activity of heart. 20 Spongilla= Phylum Porifera Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora Laccifer=Phylum Arthropoda Calotes=Class Reptilia/Phylum Chordata 21 COOH H−C−NH₂ CH₃ Alanine b) COOH H−C−NH₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)⇒generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		b)SAN is called pace maker because SAN can generate 70-75 min ⁻¹	0.5+0.5	
Spongilla= Phylum Porifera Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora Laccifer=Phylum Arthropoda Calotes=Class Reptilia/Phylum Chordata 1 COOH H-C-NH₂ CH₃ Alanine b) COOH H-C-NH₂ IH Glycine Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)⇒generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		action potential and is responsible for initiating and maintaining the		
Ctenoplasa (Question spelling error, its ctenoplana)=Phylum Ctenophora Laccifer=Phylum Arthropoda Calotes=Class Reptilia/Phylum Chordata 1 COOH H−C−NH₂ CH₃ Alanine b) COOH H−C−NH₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)⇒generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		rhythmic contractile activity of heart.		
Ctenophora • Laccifer=Phylum Arthropoda • Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H-C-NH₂ CH₃ Alanine b) COOH H-C-NH₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds	20	Spongilla= Phylum Porifera	0.5	
Laccifer=Phylum Arthropoda Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H - C - NH₂ CH₃ Alanine b) COOH H - C - NH₂ H Cooh H - C - NH₂ I Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→ Neural signals reached the neuromuscular junction/motor-end plate-→ Release of neurotransmitter (Acetyl choline)→ generation of action potential in the Sarcolemma→ Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		 Ctenoplasa (Question spelling error, its ctenoplana)=Phylum 	0.5	
• Calotes=Class Reptilia/Phylum Chordata 21 a) COOH H—C—NH2 CH3 Alanine b) COOH H—C—NH2 H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		Ctenophora		
21 a) COOH H-C-NH2 CH3 Alanine b) COOH H-C-NH2 H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		Laccifer=Phylum Arthropoda	0.5	
COOH H—C—NH ₂ CH ₃ Alanine b) COOH H—C—NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		Calotes=Class Reptilia/Phylum Chordata	0.5	
H-C-NH ₂ CH ₃ Alanine b) COOH H-C-NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds	21	a)		
H-C-NH ₂ CH ₃ Alanine b) COOH H-C-NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds				
Alanine b) COOH H—C—NH2 H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		СООН		
Alanine b) COOH H—C—NH2 H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		H-C-NH		
Alanine b) COOH H—C—NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma- →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		11 0 11112	1	
Alanine b) COOH H—C—NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma- →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		CH.		
D) COOH H—C—NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds				
COOH H—C—NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds				
H—C—NH ₂ H Glycine 22 Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds				
Glycine Signal for muscle contraction sent by central nervous system (CNS) via motor neuron>Neural signals reached the neuromuscular junction/motor-end plate>Release of neurotransmitter (Acetyl choline)>generation of action potential in the Sarcolemma>Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm> calcium ion binds		COOH		
Glycine Signal for muscle contraction sent by central nervous system (CNS) via motor neuron>Neural signals reached the neuromuscular junction/motor-end plate>Release of neurotransmitter (Acetyl choline)>generation of action potential in the Sarcolemma>Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm> calcium ion binds				
Glycine Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		$H-C-NH_2$		
Glycine Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds				
Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		H		
Signal for muscle contraction sent by central nervous system (CNS) via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds				
via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		Glycine		
via motor neuron-→Neural signals reached the neuromuscular junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds				
junction/motor-end plate-→Release of neurotransmitter (Acetyl choline)→generation of action potential in the Sarcolemma→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds	22	Signal for muscle contraction sent by central nervous system (CNS)		
choline)→generation of action potential in the Sarcolemma →Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		via motor neuron-→Neural signals reached the neuromuscular		
→Action potential spread through the muscle fibre causes the release of calcium ions into the sarcoplasm→ calcium ion binds		junction/motor-end plate-→Release of neurotransmitter (Acetyl	2	
release of calcium ions into the sarcoplasm> calcium ion binds		choline)→generation of action potential in the Sarcolemma		
		→Action potential spread through the muscle fibre causes the		
with a subunit of troponin on actin filament and thereby remove		release of calcium ions into the sarcoplasm→ calcium ion binds		
		with a subunit of troponin on actin filament and thereby remove		

NAVAS CHEEMA			SOHSS AREEKODE	
	the masking of active sites for myosin- utilising the energy from			
	ATP hydrolysis, the myosin head now binds to the exposed active			
	sites on actin to form cross bridge			
23				0.5
	B-Catla/Osteichthyes			0.5
	Class - Class -			0.5
	Chondrichthyes	Osteichthyes		0.5
				0.3
	They are marine animals	It includes both marine and fresh water fishes		
	They have cartilaginous	They have bony		
	endoskeleton	endoskeleton.		
	Mouth is located	Mouth is mostly		
	ventrally	terminal		
	Gill slits are separate and	They have four pairs of		
	without operculum (gill	gills which are covered		
	cover).	by an operculum on		
	The skin minute	each side Skin is covered with		
	placoid scales	cycloid/ctenoid scales		
	Air bladder absent	Air bladder is present		
	many of them are	They are mostly		
	viviparous	oviparous		
	(any two difference)			
24	Asymmetry	Radial symmetry	Bilateral symmetry	0.5×4=2
	c)Spongilla	a)Hydra/Star fish	b)Shark	
		d) Star fish/ Hydra	(Larva of starfish is	
	4		bilateral)	
	III Answer any 3 qu	estions from 25 to 30. I	Each carries 3 score	
25		h/ electrocardiogram /		
		the electrical activity of	• .	0.5
		•	achine is used to obtain	
	an electrocardiogram (ECG).			
b)				
	P			
	, A second secon			
				1
	P Q S T			
	Diagrammatic pres	entation of a		
	standard ECG			
•	The P-wave			
	-	-	depolarisation) of the	
atı	atria, which leads to the contraction of both the atria.			1.5

MADAN SUHSS AREEKUDE	
• The QRS complex It represents the depolarisation of the ventricles which initiates the ventricular contraction.	
• The T-wave It represents the return of the ventricles from excited to normal state (repolarisation).	
a)Apoenyme	0.5
b) i)Prosthetic group • They are organic compounds and are distinguished from other cofactors in that they are tightly bound to the apoenzyme.	0.5
Example:	
• in peroxidase and catalase, which catalyze the breakdown of hydrogen peroxide to water and oxygen, haem is the prosthetic group and it is a part of the active site of the enzyme.	0.5
ii)Co-enzymes: They are also organic compounds but their association with the apoenzyme is only transient, usually occurring during the course of	0.5
catalysis. Examples	0.5
Coenzyme nicotinamide adenine dinucleotide (NAD) and NADP	
iii)Metal ions :	
time form one or more cordination bonds with the substrate, Examples	
zinc is a cofactor for the proteolytic enzyme carboxypeptidase.	
(Mention any two kinds of cofactor with examples)	
c)Catalytic activity is lost when the co-factor is removed from the	0.5
	0.5
	J.5
	0.5
hence the name Echinodermata/Spiny bodied	
c)Presence of milk producing mammary gland	0.5
d)Presence of notochord	0.5
e)In Latin ,annulus : liitle ring/Their body surface is distinctly marked out into segments or metamere /metamerically segmented body	0.5
	The QRS complex It represents the depolarisation of the ventricles which initiates the ventricular contraction. The T-wave It represents the return of the ventricles from excited to normal state (repolarisation). a) Apoenyme b) i) Prosthetic group They are organic compounds and are distinguished from other cofactors in that they are tightly bound to the apoenzyme. Example: in peroxidase and catalase, which catalyze the breakdown of hydrogen peroxide to water and oxygen, haem is the prosthetic group and it is a part of the active site of the enzyme. ii) Co-enzymes: They are also organic compounds but their association with the apoenzyme is only transient, usually occurring during the course of catalysis. Examples Coenzyme nicotinamide adenine dinucleotide (NAD) and NADP iii) Metal ions: A number of enzymes require metal ions for their activity which form coordination bonds with side chains at the active site and at the same time form one or more cordination bonds with the substrate, Examples zinc is a cofactor for the proteolytic enzyme carboxypeptidase. (Mention any two kinds of cofactor with examples) c) Catalytic activity is lost when the co-factor is removed from the enzyme a) Presence of ciliated comb plate (Greek ctene, or "comb" and phora, or "bearer": this Greek terms Not explained in Text book) b) These animals have an endoskeleton of calcareous ossicles and hence the name Echinodermata/Spiny bodied c) Presence of milk producing mammary gland d) Presence of notochord e) In Latin , annulus: liitle ring/Their body surface is distinctly marked

	f)Arthros-Joint, Poda-appendages/ They have jointed appendages	0.5
28	a) Oxygen dissociation curve/The graph shows the relation between	1
	pO2 and percentage saturation of haemogloin with oxygen/	0.5+0.5
	b)Po2/pCO2/Temperature/pH/H+ (Write any 3)	1
	c) It is highly useful in studying the effect of factors like pCO2, H+	
	concentration, etc., on binding of O2 with haemoglobin.	
29	a)Receptor-Afferent neuron-Interneuron in spinal cord-Motor neuron-	2.5
	Effector organ	
	b)Any one example	0.5
30	Question error, its name and comment on the different types of cell	
	junctions	
	i) Tight junctions:	
	Tight junctions help to stop substances from leaking across a tissue.	1
	ii) Adhering junctions	
	it perform cementing to keep neighboring cells together.	1
	iii) Gap junctions	
	it facilitate the cells to communicate with each other by connecting	
	the cytoplasm of adjoining cells, for rapid transfer of ions, small	1
	molecules and sometimes big molecule	