ONLINE MATHS CLASS - X - 34 ($10 / 09 / 2021$)

4. SECOND DEGREE EQUATIONS - CLASS - 1

Activity 1

When each side of a square increased by 1 metre , the perimeter became 36 metres .
What is the length of a side of the original square ?
Answer
Perimeter of the new square $=36 \mathrm{~m}$
Length of a side of the new square $=\frac{36}{4}=9 \mathrm{~m}$

Length of a side of the original square $=9-1=8 \mathrm{~m}$

Activity 2

When each side of a square was reduced by 2 metres, the area became 25 square metres .
What was the length of the original square ?
Answer
Area of the new square $=25$ sq. m
Length of a side of the new square $=\sqrt{25}=5 \mathrm{~m}$
Length of a side of the original square $=5+2=7 \mathrm{~m}$

Activity 3

A box is to be made by cutting off small squares from each corner of a square of thick paper, and bending upwards. The height of the box is to be 10 centimetres and volume 1 litre . What should be the length of a side of the square sheet we start with ?

Volume of the box = 1 litre $=1000 \mathrm{cu} . \mathrm{cm}$
Base area \times height $=1000$
Base area $\times 10=1000$

$$
\text { Base area }=\frac{1000}{10}=100 \mathrm{sq} . \mathrm{cm}
$$

Length of one side of base $==\sqrt{100}=10 \mathrm{~cm}$
Length of a side of the square sheet $=10+10+10=30 \mathrm{~cm}$

Activity 4

The square of a term in the arithmetic sequence $2,5,8$, . . is 2500 . What is its position ?

Answer

$$
\begin{aligned}
n^{\text {th }} \text { term } & =d n+f-d=3 n+2-3=3 n-1 \\
(3 n-1)^{2} & =2500 \\
3 n-1 & =\sqrt{2500}=50 \\
3 n-1 & =50 \\
3 n & =50+1=51 \\
n & =\frac{51}{3}=17
\end{aligned}
$$

