FY 224 Date of Exam : 04.10.2021

FIRST YEAR HIGHER SECONDARY EXAMINATION, SEPTEMBER 2021

Part – III PHYSICS

Maximum : 60 Scores

ANSWER KEY

Qn No	Qn Sub No	Split Scores	Total Score
1		i) Gravitational force	1
2		Astrophysics or Astronomy	1
3		Vector	1
4		Moment of inertia	1
5		$PV = nRT$ or $PV = \mu RT$	1
6		Plane angle is the ratio of length of an arc to radius or Plane angle = $\frac{arc length}{radius}$	2
7		Velocity = 0 Acceleration = $-g = -9.8$ m/s ²	2
8		$\vec{B} = \vec{A}$	2
9		Two vectors are equal if they have same magnitude and same direction	2
10	a	Negative 1	
	b	Zero 1	2
11		Unit : joule or J or Nm1Dimensional formula : ML2T-21	2
12		Every body in this universe attract every other body with a force which is directly proportional to product of their masses and inversly proportional to square of the	2

	distance between them	
	OR	
	Cm m	
	$F = -\frac{Gm_1m_2}{r^2}$	
13	Within elastic limit stress on a body is directly proportional to strain	
	OR	2
	$\frac{stress}{1}$ = a constatut	2
	strain	
14	A : Proportinal limit 1	
	B : Yield point or Elastic limit 1	2
15	Heat given to a system is the sum of increase in internal energy and work done	
	$\Delta Q = \Delta U + W$	2
16	Isobaric process is a process taking place at consstant pressure.	
	$Or W = P\Delta V $ 1	2
	or $W = 0$ 1	2
17	Name of Base quantity Name of SI unit	
	Length metre	
	Mass kilogram	
	Time second	3
	Electric Current ampere	
	Thermodynamic Temperature kelvin	
	Amount of substance mole	
	Luminous Intensity candela	
18	T Velastri molsz	
	67 1	
	4	
		3
	-2 Rine(S)	
	-6-	
19	Rate of change of momentum of a body is directly proportional to applied force and takesplace in the direction of force.	
		3
	$F = \frac{\Delta P}{\Delta t}$ or $F = ma$ 2	

20Maximum static friction is independant of area of contact
Maximum static friction
$$f_m \propto N$$
, normal reaction or $f_m = \mu_n N$ or $f_n \leq \mu_n N$
321aIt is the angular displacement in unit time or
Angle covered by radius ector in unit time or $\omega = \frac{\Delta \Theta}{\Delta t}$
2321b $v = r\omega$ or $\vec{V} = \vec{\omega} \times \vec{r}$ 2221. Mass
2. distribution of mass around the axis of rotation/ distance of mass from axis of
rotation / Size and shape of body / Orientation of the body about axis323 $\frac{Q}{g} = \frac{R^2}{(R+h)^2} = (1+\frac{h}{R})^2$ $\frac{Q}{g} = \frac{R^2}{(R+h)^2} = (1+\frac{h}{R})^2$ 324 $\frac{P = \frac{1}{3} \text{ mm } \vec{v}^2}{Nk_0 T = \frac{1}{3} Nm v^2}, \frac{1}{2} m v^2 = \frac{3}{2} k_0 T, KE = \sqrt{\frac{3}{2}k_n T} 2 \text{ score}$ 324 $Consider vertical motion upto maximum height $v^2 = u^2 + 2as$ 1425 $H = \frac{u^2 \sin^2 O - 2gH}{2q}$ 1426 $H = \frac{u^2 \sin^2 O - 2gH}{2q}$ 14$

	$T = \frac{25}{14} = 1.785 s 1$	
26	$\omega = \frac{25}{T} = \frac{6.28}{1.785} = 3.52 \text{ rad/s} $	4
	$\begin{vmatrix} a = r\omega^2 & 1 \\ = 0.8 X 3.52^2 = 9.91 \text{m/s}^2 & 1 \end{vmatrix}$	
	Elastic collision : both momentum and KE are conservedInelastic collision : Momentum is conserve but KE is not conserved1	
	$A \xrightarrow{u_1} B \qquad A \xrightarrow{b} \xrightarrow{v}$	
	$m_1u_1 + 0 = (m_1 + m_2) v$	
27	$\mathbf{v} = \frac{m_1 u_1}{m_1 + m_2} \tag{1}$	4
	loss of KE = $\frac{1}{2}m_1u_1^2$ - $\frac{1}{2}(m_1+m_2)v^2$ = $\frac{1}{2}m_1u_1^2$ - $\frac{1}{2}(m_1+m_2)(\frac{m_1u_1}{m_1+m_2})^2$	
	$= \frac{1}{2} \frac{m_1 m_2 u_1^2}{m_1 + m_2} $ 2	
28		4
	Principle of conservation of energy states that energy can neither be created nor be distroyed	
	At point A	
	K.E=0	
	P.E=mgh	
	Total Energy=mgh	
	At point B,	
	$K F = \frac{1}{2} mv^2$	
	1 = 2	
	$2gx=V^2-O^2$	
	V ² =2gx	
	K.E= $\frac{1}{2}$ mv ² = $\frac{1}{2}$ mX 2gx = mgx	
	P.E=m.g.(h-x)	
	Total Energy = $K.E+P.E = mgx+mg(h-x)=mgh$	
	At point C,	

	P.E=0	
	$2gh=v^2-0^2 = v^2$ $V = \frac{1}{1} m v^2 = mV 2gh = mgh$	
	$\mathbf{K} = \frac{1}{2} \mathbf{I} = \frac{1}{2} \mathbf{I} = \mathbf{I} $	
	Total Energy = $K.E+P.E = mgh+0 = mgh$	
	Thus, in all the points the energy is same.	
29	P = 100W Energy = P X t = 100 X 10 = 1000 Wh = 1kWh or	4
	$P = 1000 \text{ X } 3600 = 3600000 \text{ Ws} = 3.6 \text{ X } 10^{\circ} \text{ J}$	
	On the surface $PE = \frac{1}{R}$	
	$KE = \frac{1}{2} mv_e^2$	
	Total Energy = PE + KE = $\frac{-GMm}{R}$ + $\frac{1}{2}$ mv _e ² 1	
	At infinity Toal Energy = 0	
30	By Conservation of Energy Total Energy at surface = Total Energy at infinity $\frac{-GMm}{R} + \frac{1}{2} mv_e^2 = 0$ 1	4
	$\frac{1}{2} m v_e^2 = \frac{GMm}{R}$	
	$Ve = \sqrt{\frac{2 GM}{R}} \text{or } Ve = \sqrt{2 gR} \qquad 1$	
31	According to <u>Pascal's law</u> for the transmission of fluids, whenever external pressure is applied on any part of a fluid contained in a vessel, it is transmitted undiminished and equally in all directions.	4
	F_{t} In a hydraulic lift, two pistons are separated by the space filled with a liquid. A piston of small cross-	
	section A_1 is used to exert a force F_1 directly on the liquid. The pressure $P = F/A$ is transmitted throughout the liquid to the larger cylinder attached to a larger pictor.	
	uansinueu unoughout the inquiti to the larger cylinder attached to a larger piston	

	of area A_2 , which results in an upward force F_2	
	Therefore, the piston is capable of supporting a large force	
	$\frac{F_1}{A_1} = \frac{F_2}{A_2}$	
	$F_2 = \frac{F_1 X A_2}{A_1}$	
	Thus, the applied force has been increased by a factor of A_2/A_1	
32	Bernoulli's Theorem:	4
	According to Bernoulli's theorem, the sum of the energies possessed by a flowing ideal liquid at a point is constant provided that the liquid is incompressible and non-viscous and flow in streamline.	
	Consider the flow of liquid. Let at any time, the liquid lies between two areas of flowing liquid A_1 and A_2 . In time interval Δt , the liquid displaces from A_1 by $\Delta x_1 = v_1 \Delta t$ and displaces from A_2 by $\Delta x_2 = v_2 \Delta t$. Here v_1 and v_2 are the velocities of the liquid at A_1 and A_2 .	
	The work done on the liquid is $P_1A_1\Delta x_1$ by the force and $P_2A_2\Delta x_2$ against the force respectively.	
	Net work done,	
	$W=P_1A_1\Delta x_1-P_2A_2\Delta x_2$	
	$=(P_1-P_2)\Delta V$ (1)	
	Here, $\Delta V \rightarrow$ the volume of liquid that flows through a cross-section is same (from equation of continuity).	
	But, the work done is equal to net change in energy (K.E. + P.E.) of the liquid, and	
	$\Delta K = \frac{1}{2} \rho \Delta V (v_1^2 - v_2^2) \dots$	
	and $\Delta U = \rho \Delta V(h_2 - h_1)$	
	$\therefore (P_1 - P_2)\Delta V = \rho \Delta V (v_1^2 - v_2^2) + \rho g \Delta V (h_2 - h_1)$	
	$P_{1} + \frac{1}{2} v_{1}^{2} + \rho g h_{1} = P_{2} + \frac{1}{2} v_{2}^{2} + \rho g h_{2}$	
	or P+ $\frac{1}{2}$ $\rho v^2 + \rho gh = constant$	

a)
 Latent heat of fusion is the amount of heat required to convert 1kg of a substance from solid state to liquid state.
 1

 33
 b)
 Steam will produce more severe burns than boiling water because steam has more heat energy than water due to its latent heat of vaporisation.
 2

 34
 The torque tending to bring the mass to its equilibrium position,
 4

 34
 The torque tending to bring the mass to its equilibrium position,
 2

 34
 The torque tending to bring the mass to its equilibrium position,
 4

 a = -
$$\frac{mgL\theta}{1}$$
 $-\omega^2 \theta = -\frac{mgL\theta}{1}$
 $-\omega^2 \theta = -\frac{mgL\theta}{1}$
 $\omega = \sqrt{\frac{mgL}{1}}$
 $\omega = \sqrt{\frac{mgL}{1}}$
 $\omega = \sqrt{\frac{mgL}{1}}$

 Using 1 = ML², [where 1 denote the moment of inertia of bob]
 we get, $\omega = \sqrt{\frac{g}{1}}$

 Therefore, for $= -mgsin\theta$
 For small angles of oscillations $\sin \theta \approx \theta$,

 Therefore, the time period of a simple pendulum is given by,
 T = $2n/\omega = 2n$

 T = $2n/\omega = 2n$
 $\sqrt{\frac{L}{g}}$
 OR

 Restoring force $F = -mgsin\theta$
 For small angles of oscillations $\sin \theta \approx \theta$,

 F = -mg0 = - $\frac{mgx}{L}$
 $-\omega^2 = \frac{g}{L}$

		we get, $\omega = \sqrt{\frac{g}{L}}$	
		Therefore, the time period of a simple pendulum is given by,	
		$T = 2\pi/\omega = 2\pi \sqrt{\frac{L}{g}}$	
		Y = $a \sin (kx - \omega t)$ y = 0.005 sin (80x - 3t)	
		Amplitude A = 0.005 m	
		$k = \frac{2\pi}{\lambda} = 80 \text{ rad/s}$	
35		$\lambda = \frac{2\pi}{80} = \frac{\pi}{40} = 0.0785 \mathrm{m}$	4
		$\omega = 3$	
		$T = \frac{2\pi}{\omega} = \frac{2\pi}{3}$	
		Frequency $v = \frac{1}{T} = \frac{3}{2\pi} = 0.477$ Hz	
		Dimensions of each term on either side of an equation are same	
		T α $r^{a}M^{b}G^{c}$ T = K $r^{a}M^{b}G^{c}$ (1) Equating dimensions	
		$M^{0}L^{0}T^{1} = L^{a}M^{b} (M^{-1}L^{3}T^{-2})^{C}$	
36		b-c = 0 a + 3c = 0	5
		-2c = 1 a = 3/2 $b = -1/2$ $c = -1/2$	
		T = K r ^{3/2} M ^{-1/2} G ^{-1/2} = $k\sqrt{\frac{r^3}{GM}}$	
37		Displacement = Area under the graph	5
		$x = CD X AC + \frac{1}{2} AC X BC$	
		$= v_0 t + \frac{1}{2} t (v - v_0)$	
		$= v_0 t + \frac{1}{2} a t^2$	

		x = average velocity X time $= \frac{v + v_0}{2} X \frac{v - v_0}{a}$ $= \frac{v^2 - v_0^2}{2a}$	
		$2ax = v^2 - v_0^2$	
	a	Force A = Normal reaction or N 1	
		Force B = Centrepital Force or $\frac{mv}{r}$ or Nsin Θ + fcos Θ 1	
38	b	$v = \sqrt{\mu_s rg} $ $= \sqrt{0.1 X 3 X 9.8} $ 1	5
		= 1.71 m/s 1	
	a	Moment of inertia of aplane lamina about any axis perpendicular to its plane is the sum of moments of inertia about two mutually perpendicular axes on the plane passing through the point of intersection or $I_Z = I_X + I_Y$ 2	
39	b	$I_{X} = I_{Y} = I_{d}$ $\frac{MR^{2}}{2} = I_{d} + I_{d} = 2I_{d}$ 1 1	5
		$Id = \frac{MR^2}{4} $ 1	
	а	$Nm^{2}kg^{-2}$; $M^{-1}L^{3}T^{-2}$ 2	
	b	On the surface $g = \frac{GM}{R^2} = \frac{G\frac{4}{3}\pi R^3\rho}{R^2} = \frac{4}{3}\pi GR\rho$ 1	
40		At depth d, $g' = \frac{4}{3}\pi G(R-d)\rho$ 1	5
		$\frac{g'}{g} = \frac{R-d}{R} = 1-\frac{d}{R}$	
		g' = g ($1 - \frac{d}{R}$) 1	

PREPARED BY : HIGHER SECONDARY PHYSICS ASSOCIATION KANNUR (HSPTA KANNUR)