

To view class $\quad D$ Answers of last class assignment Q1) Draw a line of length $\sqrt{7} \mathrm{~cm}$. Ans) Find two numbers whose product is 7. 7, 1 are the numbers.
Draw line AB of length $7+1=8 \mathrm{~cm}$ and do the construction as per the steps given under construction 4 (Q1).

Q2) Draw a square of area $8 \mathrm{~cm}^{2}$.
Ans) Given, area of square $=8 \mathrm{~cm}^{2}$

$$
\therefore \text { side of square }=\sqrt{8} \mathrm{~cm}
$$

Find two numbers whose product is 8 .
8,1 are the numbers.

$$
(8 \times 1=8)
$$

Draw line AB of length $8+1=9 \mathrm{~cm}$ and do the construction as per the steps given under construction 4 (Q2).

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Q3) Draw a square of area $24 \mathrm{~cm}^{2}$.
Ans) Given, area of square $=24 \mathrm{~cm}^{2}$

$$
\therefore \text { side of square }=\sqrt{24} \mathrm{~cm}
$$

Find two numbers whose product is 24.
Let us take 6 \& 4 ($6 \times 4=24$)
Draw line AB of length $6+4=10 \mathrm{~cm}$ and do the construction as per the steps given under construction 4 (Q2).

Q) Draw an equilateral triangle of side $\sqrt{12} \mathrm{~cm}$.

Ans) Find two numbers whose product is 12.
Let us take 6 \& 2
$(6 \times 2=12)$

1. Draw line $A B$ of length $6+2=8 \mathrm{~cm}$.

2 . Mark the mid point.
3. Draw a circle with $A B$ as diameter.
4. Mark the point P on $A B$ such that $A P=6 \mathrm{~cm}$ and $P B=2 \mathrm{~cm}$.
5. Through P draw line $P Q$ perpendicular to $A B$. now $P Q=\sqrt{12} \mathrm{~cm}$
6. Measure $P Q$ on the compass, using this measurement draw arcs with \mathbf{P} \& \mathbf{Q} as centres to intersect at R.
7. Complete triangle $P Q R$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Construction 5

Q) Draw a rectangle of width 5 centimetres and height 3 centimetres and draw a square of the same area.

Ans) Steps:

1. Draw a rectangle of width 5 cm and height 3 cm .
2. Let the name of the rectangle be ABCD .
3. Extend $A B$ to Y such that $B Y=3 c m$.
4. Draw the perpendicular bisector of AY.
5. Mark the midpoint of AY as M.
6. Now draw a semicircle below, with AY as diameter. Extend the side CB of the rectangle downwards to meet the semi circle at P. This line $B P$ is the side of the required square.
7. Extend line $\mathbb{B Y}$, measure $\mathbb{B P}$ on the compass, using this measurement with B as centre draw an arc on this extended line and mark the point R.
8. With the same measurement draw arcs by keeping the compass at \mathbf{P} \& \mathbf{R}. Let these ares meet at Q. Complete the square BPQR .

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Q) Draw a square of area 5 square centimetres in three different ways.
(Recall Pythagoras theorem)

Ans)
Method 1 (Using $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C}^{\mathbf{2}}$)
Area of square $=5 \mathbf{~ c m}^{2} \quad \therefore$ Side of square $=\sqrt{5} \mathrm{~cm}$ Find two numbers whose product is 5.

5,1 are the numbers.
Draw line AB of length 5+1=6 cm and do the construction as per the steps given under construction 4 (Q2)

Method 2 (Using Pythagoras Theorem)

In a right triangle ,
$(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Altitude })^{2}$
If base $=2 \mathrm{~cm}$ \& Altitude $=1 \mathrm{~cm}$, then
$(\text { Hypotenuse })^{2}=(2)^{2}+(1)^{2}$
(Hypotenuse) $^{2}=4+1=5$
Hypotenuse $=\sqrt{5}$

1. Draw line $A B$ of length 2 cm .
2. Draw a line perpendicular to $A B$ at B, mark $B C=1 \mathrm{~cm}$
3. Join $\mathbb{A C}$, now $\mathbb{A C}=\sqrt{5} \mathrm{~cm}$.

$$
\left.\begin{array}{l}
\text { By Pythagoras Theorem } \\
\mathbf{A C} \equiv \sqrt{2^{2}+1^{2}}=\sqrt{4+1}=\sqrt{5}
\end{array}\right)
$$

4. Draw perpendiculars at $\mathbf{A} \& C$, measure $A C$ on the compass, with this measurement draw arcs on these perpendiculars and mark the points $\mathbf{D} \& E$.
5. Complete the square ACDE . Area of square $\mathrm{ACDE}=5 \mathrm{~cm}^{2}$ 。

Method 3 (Using Pythagoras Theorem)

In a right triangle ,
$(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Altitude })^{2}$
so, $(\text { Altitude })^{2}=(\text { Hypotenuse })^{2}-(\text { Base })^{2}$
If base $=2 \mathrm{~cm} \&$ hypotenuse $=3 \mathrm{~cm}$, then

$$
\begin{aligned}
{\text { (Altitude })^{2}}^{2} & =(3)^{2}-(2)^{2} \\
& =9-4 \\
& =5 \\
\text { Altitude } & =\sqrt{5}
\end{aligned}
$$

1. Draw line $A B$ of length 2 cm .
2. Draw a perpendicular at B.
3. Measure 3 cm on the compass, with \mathbb{A} as centre draw an arc on this perpendicular and mark point \mathbb{C}.
Now $B C=\sqrt{5} \mathrm{~cm}$.
4. Draw perpendiculars at B \& C, measure $B C$ on the compass, draw arcs on these perpendiculars with this
measurement and mark the points E \& D .
5. Complete the square BCDE.

Area of square $B C D E=5 \mathrm{~cm}^{2}$.

