Assigmment Answer

Q) Draw a rectangle of length 4 centimetres and width 3 centimetres.
Draw another rectangle of the same area with one side 5 centimetres.

Ans)

> Finding the relation betupeen parts of tupo intersecting chords. when one chord is a dicumeter and other chord isperpendicular. to the diameter.

In the picture given,
$A B$ is a diameter and $C D$ is a chord perpendicular to $A B$.
Since the chords AB \& CD intersect at P.

$$
\begin{equation*}
\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D} \ldots \ldots \tag{1}
\end{equation*}
$$

We know, the perpendicular drawn from the centre of a circle bisects the chord.
So AP bisects CD
$\therefore \mathrm{PC}=\mathbf{P D}$

$$
\begin{aligned}
& \text { Substituting in (1) we have, } \\
& \text { PA } \times P B=P C \times P C \\
& P A \times P B=P C^{2}
\end{aligned}
$$

The product of the parts into which a diameter of a circle is cut by a perpendicular chord, is equal to the square of half the chord.

$$
P A \times P B=P C^{2}
$$

The relation $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C}^{2}$ can be put in geometric language as below:

The area of the rectangle formed of parts into which a diameter of a circle is cut by a perpendicular chord is equal to the area of the square formed by half the chord.

Since AB is the diameter, by considering the semi circle we can observe above relation as ,

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Q1) In the picture $P A=4 \mathrm{~cm}, P B=2 \mathrm{~cm}$, find $P C$?

Ans) Given $\mathbf{P A}=\mathbf{4 c m}, \mathbf{P B}=\mathbf{2 c m}$

$$
\begin{aligned}
& \mathbf{P A} \times \mathbf{P B}=\mathbf{P C}^{2} \\
& \mathbf{4} \times \mathbf{2}=\mathbf{P C}^{2} \\
& \mathbf{P C}^{2}=\mathbf{8} \\
& \therefore \mathbf{P C}=\sqrt{8} \mathrm{~cm}
\end{aligned}
$$

Q2) In the picture $P A=6 \mathrm{~cm}, P B=4 \mathrm{~cm}$, find $P C$?

Ans) Given $P A=6 \mathrm{~cm}, P B=4 \mathrm{~cm}$
$\mathbf{P A} \times \mathbf{P B}=\mathbf{P C}^{2}$
$6 \times 4=\mathrm{PC}^{2}$
$\mathbf{P C}^{2}=24$
$\therefore P C=\sqrt{24} \mathrm{~cm}$

Q3) In the picture $P A=9 \mathrm{~cm}, P C=6 \mathrm{~cm}$, find $P B$?

Ans) Given $P A=9 \mathrm{~cm}, P C=6 \mathrm{~cm}$

$$
\begin{aligned}
\mathbf{P A} \times \mathbf{P B} & =\mathbf{P C}^{2} \\
9 \times P B & =6^{2} \\
9 \times P B & =36 \\
\mathbf{P B} & =\frac{36}{9}
\end{aligned}
$$

$$
\therefore P B=4 \mathrm{~cm}
$$

Let $\mathbf{P A}=\mathbf{a}, \mathbf{P B}=\mathbf{b}$ $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C}^{\mathbf{2}}$

$$
\mathbf{a} \times \mathbf{b}=\mathbf{P C}^{2}
$$

$$
\mathbf{P C}^{2}=\mathbf{a b}
$$

$$
\mathbf{P C}=\sqrt{a b}
$$

$$
\begin{aligned}
& \text { If } P A=a, P B=b \\
& \text { then } P C \equiv \sqrt{a b}
\end{aligned}
$$

We can use this relation to draw lines of irrational lengths like $\sqrt{8}, \sqrt{15}, \sqrt{24}$ etc.

Construction 4

Q1) Draw a line of length $\sqrt{12} \mathrm{~cm}$.
Ans)
Find two numbers whose product is 12.
$4,3 \quad 6,2 \quad 12,1$ are the numbers.
Choose any pair, let us choose 6, 2 .

Steps

1: Draw line $A B$ of length $6+2=8 \mathrm{~cm}$.
2: Mark the mid point.
3 : Draw a semicircle with $A B$ as diameter.
4 : Mark the point P on $A B$ such that $A P=6 \mathrm{~cm}$ and $P B=2 \mathrm{~cm}$.
5 : Through \mathbb{P} draw line $C P$ perpendicular to $A B$.

$$
\begin{aligned}
6 \times 2 & =P^{2} \\
P C^{2} & =12 \\
P C & =\sqrt{12} \mathrm{~cm}
\end{aligned}
$$

Q2) Draw a square of area $15 \mathrm{~cm}^{2}$.
Ans) Given, area of square $=15 \mathrm{~cm}^{2}$
\therefore side of square $=\sqrt{15} \mathrm{~cm}$

Find two numbers whose product is 15.
$5,315,1$ are the numbers.
Choose any pair, let us choose 5,3 .

Steps

1: Draw line $A B$ of length $5+3=8 \mathrm{~cm}$.
2 : Mark the mid point.
3 : Draw a semicircle with $A B$ as diameter.
4 : Mark the point P on $A B$ such that $A P=5 \mathrm{~cm}$ and $P B=3 \mathrm{~cm}$.
5 : Through \mathbb{P} draw line $C P$ perpendicular to $A B$.

$$
\begin{aligned}
5 \times 3 & =\mathbb{P C}^{2} \\
P^{2} & =15 \\
\mathbb{P C} & =\sqrt{15} \mathrm{~cm}
\end{aligned}
$$

6 : Extend line $P B$, measure $P C$ on the compass, using this measurement with P as centre draw an are on this line and mark the point Q.
7 : With the same measurement draw ares by keeping the compass at Q \& C to obtain the point \mathbb{R}. Complete the square $P Q R C$.

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Assignments

Q1) Draw a line of length $\sqrt{7} \mathrm{~cm}$.

Q2) Draw a square of area $8 \mathrm{~cm}^{2}$.

Q3) Draw a square of area $24 \mathrm{~cm}^{2}$.

