Circle and Quadrilateral

Finding the relation between the angles of guadrilaterall
if the four vertices are on ancle
Consider quadrilateral ABCD.
Draw diagonals AC \& BD

Diagonals AC \& BD are chords of the circle .
Since a pair of angles on an arc and its alternate arc are supplementary,
we get , $\angle B+\angle D=180^{\circ} \quad \& \quad \angle A+\angle C=180^{\circ}$

Conclusion:

If all the four vertices of a quadrilateral are on a circle, then its opposite angles are supplementary.

$$
\begin{aligned}
& \angle B+\angle D=180^{\circ} \\
& \angle A+\angle C=180^{\circ}
\end{aligned}
$$

To check if the opposite angles of a quadrilateral are. supplementary, then all its vertices are on a circle

Consider quadrilateral ABCD.

We can draw a circle passing through three of the vertices $\mathbf{A}, \mathbf{B}, \mathbf{C}$.

Then fourth vertex D may be
(i) Outside the circle
(ii) Inside the circle
(iii) On the circle

(i)

(ii)

(iii)

Case (i) When the fourth vertex D is outside the circle Let $C D$ intersect the circle at E.
Join AE
Consider quadrilateral ABCE
$\angle B+\angle A E C=180^{\circ} . \ldots . . .$.
Consider \triangle AED
$\angle A E C=\angle E A D+\angle D$
So, $\angle \mathrm{D}<\angle \mathrm{AEC}$. 2

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

From 1 \& 2
$\angle B+\angle D<180^{\circ}$

Case (iii) When the fourth vertex D is inside the circle Extend CD to meet the circle at E

Join AE

Consider quadrilateral ABCE
$\angle B+\angle E=180^{\circ} \ldots \ldots \ldots$.

Consider \triangle AED
$\angle A D C=\angle E+\angle E A D$
So, $\angle A D C>\angle E$

From \& $1 \quad \angle B+\angle A D C>180^{\circ}$

$$
\text { i.e, } \quad \angle B+\angle D>180^{\circ}
$$

Case (iiii)

From case(i) \& case(ii) we have seen,
When the fourth vertex D is outside the circle then

$$
\angle B+\angle D<180^{\circ}
$$

When the fourth vertex D is inside the circle then

$$
\angle B+\angle D>180^{\circ}
$$

So,

$$
\text { If } \angle B+\angle D=180^{\circ}
$$ then, $\angle \mathrm{D}$ must be on the circle

If the opposite angles of a quadrilateral are supplementary, we can draw a circle passing through all four of its vertices.

Conclusion

If vertex D of quadrilateral ABCD is,

(ii)

Outside the circle drawn through the other three veritces, then
$\angle B+\angle D<180^{\circ}$

(iii)

Inside the circle drawn through the other three veritces, then $\angle B+\angle D>180^{\circ}$

(iiii)
On the circle drawn through the other three veritces, then $\angle B+\angle D=180^{\circ}$

If all four vertices of a quadrilateral are on a circle,
then its opposite angles are supplementary,

If the opposite angles of a quadrilateral are supplementary,
\rightarrow then all its vertices are on a circle .

If the opposite angles of a quadrilateral are supplementary, we can draw a circle passing through all four of its vertices.

This quadrilateral can be called as a Cyclic Quadrilateral

Cyclic quadrilaterals are those quadrilaterals with opposite angles supplementary.

* All rectangles are cyclic quadrilaterals

Assigmnent

Q) $A B C D$ is an isosceles trapezium. Check whether it is a cyclic quadrilateral.

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

