ONLINE MATHS CLASS-X-30(02/09/2021)

3. MATHEMATICS OF CHANCE - CLASS-3

What did we study in the last class ?

The probability of something we have to find is how much part of the total number of results to the number of results favourable to it .

In some situations, probability can be calculated in terms of the areas of the geometrical figures. Here probability is how much part is the desired area out of the total area . It is known as the geometrical probability

Activity 1

A cardboard rectangle is cut out and the midpoint of one side is joined to the ends of the opposite sides to make a

triangle .If you shut your eyes and put a dot in this

rectangle, what is the probability that it would be within the red triangle?

Answer-

(Here the triangle and rectangle have the same base and the height)

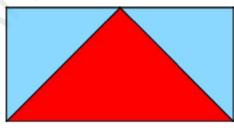
Take the length of the rectangle asband the breadth

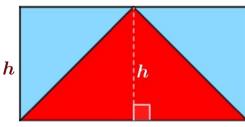
as h .

Area of the rectangle = $b \times h$

Area of the triangle $=\frac{1}{2} \times b \times h$

That is , area of the triangle is $\frac{1}{2}$ of the area of the rectangle . Therefore, probability of the dot falling within green triangle $=\frac{1}{2}$





SARATH AS, GHS ANCHACHAVADI, MALAPPURAM

Activity 2

A cardboard parallelogram is cut out and divide it into two triangles by drawing a diagonal . If you shut your eyes and put a dot in this parallelogram , what is the probability that it would be within the green triangle ?

<u>Answer</u>

We know that diagonal of a parallelogram divide it into two equal triangles . So their areas are equal .

That is , area of a triangle is $\frac{1}{2}$ of the area of the parallelogram .

Therefore, probability of the dot falling within the green triangle $=\frac{1}{2}$

NB:

In parallelogram ABCD,

AB = CD, **AD = BC** (Opposite sides of a

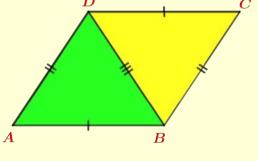
parallelogram are equal)

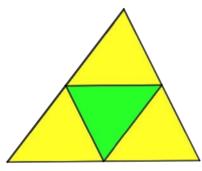
ABD and BCD are equal triangles .

(AB = CD, AD = BC, BD = BD)

Activity 3

In the figure midpoints of the sides of the larger triangle are joined . If you shut your eyes and put a dot in this figure , what is the probability that it would be within the green triangle ?





Answer

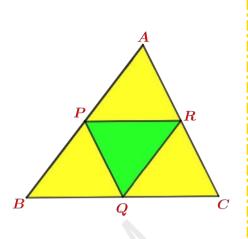
In the figure P,Q, R are the midpoints of the sides of

triangle ABC .

AP = BP, BQ = CQ, AR = CR

Also,

 $PR = \frac{BC}{2}$, $PQ = \frac{AC}{2}$, $QR = \frac{AB}{2}$



the third side) BPQ , CQR , APR and PQR are equal triangles . That is , the areas of these triangles are equal . That is , area of the green triangle is $\frac{1}{4}$ of the area of

(The length of the line joining the midpoints of two sides of a triangle is half the length of

triangle ABC .

Therefore, probability of the dot falling within the green triangle = $\frac{1}{4}$

Activity 4

In the figure a square is got by joining the midpoints of a big square

If you shut your eyes and put a dot in this figure , what is the

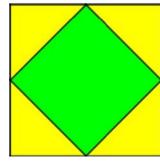
probability that it would be within the green part?

<u>Answer</u>

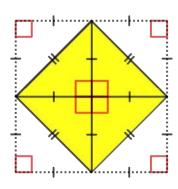
When all the yellow triangles are folded into the green square $% \left({{{\mathbf{r}}_{i}}} \right)$,

all will be all exactly aligned inside the green square .

That is , the sum of the areas of the yellow triangles is equal to the area of the green square .



 \boldsymbol{Q}



That is , area of the green square is $\frac{1}{2}$ of the area of the larger square . Therefore, probability of the dot falling within the green part $=\frac{1}{2}$ Another method Here, side of the larger square = diagonal of the smaller square Take the length of the side of the smaller square is а. Length of the side of the larger square = Length of the diagonal of the smaller square $= a\sqrt{2}$ **Area of the smaller square** = side \times side = $a \times a = a^2$ Area of the larger square $= a\sqrt{2} \times a\sqrt{2} = a^2 \times 2 = 2a^2$ Area of the smaller square is $\frac{a^2}{2a^2}$ of the area of the larger square . That is , probability of the dot falling within the green part $=\frac{a^2}{2a^2}=\frac{1}{2}$ **NB**: a The length of the diagonal of a square with a side a is $a\sqrt{2}$ $a\sqrt{2}$ \boldsymbol{a} \boldsymbol{a} Diagonal = $\sqrt{a^2 + a^2} = \sqrt{2a^2} = \sqrt{2} \times \sqrt{a^2} = a\sqrt{2}$) (\boldsymbol{a} Activity 5 In the figure a square is drawn with all vertices on a circle. If you shut your eyes and put a dot in this figure , what is the 2 സെ.മീ probability that it would be within the green part? Answer **Diagonal of the square** = **Diameter of the circle Diagonal of the square** = $2\sqrt{2}$ *cm* **Diameter of the circle** = $2\sqrt{2}$ *cm* $2\ cm$ SARATH AS, GHS ANCHACHAVADI, MALAPPURAM

Radius of the circle $=\frac{2\sqrt{2}}{2} = \sqrt{2} cm$

Area of the square = side \times side = 2 \times 2 = 4 sq.cm Area of the circle = $\pi r^2 = \pi \times (\sqrt{2})^2 = 2\pi sq.cm$

That is , area of the square is $\frac{4}{2\pi}$ of the area of the circle . That is , probability of the dot falling within the green part = $\frac{4}{2\pi} = \frac{2}{\pi}$

Activity 6

In the figure a triangle is got by joining alternate vertices of a regular hexagon . If you shut your eyes and put a dot in this figure, what is the probability that it would be within the green part ?

Answer

Here , If each yellow triangle is folded into the green triangle , all will be exactly aligned inside the green triangle. That is sum of the areas of the yellow triangles is equal to the area of green triangle.

That is , area of the green triangle is $\frac{1}{2}$ of the area of the regular hexagon .

That is , probability of the dot falling within the green part $=rac{1}{2}$

Activity 7

Looking for a clean dress, Johny found a pair of blue pants and three shirts, red, green and blue. In how many ways he can wear the dress?

SARATH AS, GHS ANCHACHAVADI, MALAPPURAM

