ONLINE MATHS CLASS-X 30 (02/09/2021)

3. MATHEMATICS OF CHANCE - CLASS- 3

What did we study in the last class ?
The probability of something we have to find is how much part of the total number of results to the number of results favourable to it .
$>$ In some situations, probability can be calculated in terms of the areas of the geometrical figures . Here probability is how much part is the desired area out of the total area . It is known as the geometrical probability

Activity 1

A cardboard rectangle is cut out and the midpoint of one side is joined to the ends of the opposite sides to make a triangle .If you shut your eyes and put a dot in this
 rectangle , what is the probability that it would be within the red triangle ?

Answer-

(Here the triangle and rectangle have the same base and the height)

Take the length of the rectangle as b and the breadth
 as h.

Area of the rectangle $=b \times h$
Area of the triangle $=\frac{1}{2} \times b \times h$
That is , area of the triangle is $\frac{1}{2}$ of the area of the rectangle .
Therefore, probability of the dot falling within green triangle $=\frac{1}{2}$

Activity 2

A cardboard parallelogram is cut out and divide it into two triangles by drawing a diagonal. If you shut your eyes and put a dot in this parallelogram, what is the

probability that it would be within the green triangle ?

Answer

We know that diagonal of a parallelogram divide it into two equal triangles. So their areas are equal .

That is, area of a triangle is $\frac{1}{2}$ of the area of the parallelogram .
Therefore, probability of the dot falling within the green triangle $=\frac{1}{2}$

NB :
In parallelogram ABCD ,
$A B=C D \quad, \quad A D=B C \quad($ Opposite sides of a parallelogram are equal)

ABD and BCD are equal triangles .

$(A B=C D, A D=B C, B D=B D)$

Activity 3

In the figure midpoints of the sides of the larger triangle are joined. If you shut your eyes and put a dot in this figure, what is the probability that it would be within the green triangle ?

Answer

In the figure P, Q, R are the midpoints of the sides of triangle ABC.

$$
\mathbf{A P}=\mathbf{B P}, \mathbf{B Q}=\mathbf{C Q}, \mathbf{A R}=\mathbf{C R}
$$

Also ,

$$
P R=\frac{B C}{2} \quad, \quad P Q=\frac{A C}{2} \quad, \quad Q R=\frac{A B}{2}
$$

(The length of the line joining the midpoints of two sides of a triangle is half the length of the third side)
$B P Q, C Q R, A P R$ and $P Q R$ are equal triangles .
That is, the areas of these triangles are equal .
That is , area of the green triangle is $\frac{1}{4}$ of the area of triangle ABC.

Therefore, probability of the dot falling within the green triangle $=\frac{1}{4}$

Activity 4

In the figure a square is got by joining the midpoints of a big square If you shut your eyes and put a dot in this figure , what is the probability that it would be within the green part? Answer

When all the yellow triangles are folded into the green square, all will be all exactly aligned inside the green square . That is , the sum of the areas of the yellow triangles is equal to the area of the green square .

That is, area of the green square is $\frac{1}{2}$ of the area of the larger square .
Therefore, probability of the dot falling within the green part $=\frac{1}{2}$

Another method

Here , side of the larger square $=$ diagonal of the smaller square Take the length of the side of the smaller square is a.

Length of the side of the larger square $=$ Length of the diagonal

$$
\text { of the smaller square }=a \sqrt{2}
$$

Area of the smaller square $=$ side \times side $=a \times a=a^{2}$
Area of the larger square $=a \sqrt{2} \times a \sqrt{2}=a^{2} \times 2=2 a^{2}$
Area of the smaller square is $\frac{a^{2}}{2 a^{2}}$ of the area of the larger square .
That is , probability of the dot falling within the green part $=\frac{a^{2}}{2 a^{2}}=\frac{1}{2}$

NB :

The length of the diagonal of a square with a side a is $a \sqrt{2}$
(Diagonal $\left.=\sqrt{a^{2}+a^{2}}=\sqrt{2 a^{2}}=\sqrt{2} \times \sqrt{a^{2}}=a \sqrt{2}\right)$

Activity 5

In the figure a square is drawn with all vertices on a circle .
If you shut your eyes and put a dot in this figure , what is the probability that it would be within the green part?

Answer

Diagonal of the square = Diameter of the circle
Diagonal of the square $=2 \sqrt{2} \mathrm{~cm}$
Diameter of the circle $=2 \sqrt{2} \mathrm{~cm}$

Radius of the circle $=\frac{2 \sqrt{2}}{2}=\sqrt{2} \mathrm{~cm}$

Area of the square $=$ side \times side $=2 \times 2=4$ sq.cm
Area of the circle $=\pi r^{2}=\pi \times(\sqrt{2})^{2}=2 \pi$ sq. cm
That is , area of the square is $\frac{4}{2 \pi}$ of the area of the circle.
That is , probability of the dot falling within the green part $=\frac{4}{2 \pi}=\frac{2}{\pi}$

Activity 6

In the figure a triangle is got by joining alternate vertices of a regular hexagon. If you shut your eyes and put a dot in this figure, what is the probability that it would be within the green part ?

Here, If each yellow triangle is folded into the green triangle, all will be exactly aligned inside the green triangle .

That is sum of the areas of the yellow triangles is equal to the area of green triangle .

Answer

That is, area of the green triangle is $\frac{1}{2}$ of the area of the regular hexagon .

That is, probability of the dot falling within the green part $=\frac{1}{2}$

Activity 7

Looking for a clean dress, Johny found a pair of blue pants and three shirts, red, green and blue. In how many ways he can wear the dress ?

He can wear the dress in three different ways as shown above .

We can write these as pairs .
(Blue pants , Red shirt) , (Blue pants, Green shirt), (Blue pants, Blue shirt)

Activity 8

If Johny got two pants, blue and green in colour and three shirts red, green and blue in colour, in how many ways he could have worn the dress? What was the probability of wearing shirt and pants of the same colour ?

He could have worn the dress in six different ways as shown above .

We can write these as pairs .
(Blue pants , Red shirt) , (Blue pants, Green shirt), (Blue pants, Blue shirt)
(Green pants , Red shirt) , (Green pants , Green shirt) , (Green pants, Blue shirt)

Total number of results $=6$
Favourable results = (Blue pants, Blue shirt), (Green pants, Green shirt)
Number of favourable results = 2
Probability of wearing shirt and pants of the same colour

$$
=\frac{\text { Number of favourable results }}{\text { Number of total results }}=\frac{2}{6}=\frac{1}{3}
$$

