Online Class - X - 18

02 / 08 / 2021

2. Circles - Class 6

Assignment Answers

T.B Page 53

Q1)

a) Join OA

Since OA = OB & OC = OA,

 Δ OAB & Δ OAC are isosceles triangles

Given \angle OBA = 20°, Given \angle OCA = 30°

$$\therefore \angle OAB = 20^{\circ}$$

$$\angle BAC = \angle OAB + \angle OAC$$

= $20^{\circ} + 30^{\circ} = 50^{\circ}$
 $\angle BOC = 2 \times 50^{\circ} = 100^{\circ}$

Since OB = OC, $\triangle OBC$ is an isosceles triangle.

$$\therefore \angle OBC = \angle OCB = \frac{180^{\circ} - 100^{\circ}}{2} = \frac{80^{\circ}}{2} = 40^{\circ}$$

Angles of \triangle ABC are \angle A = 50°, \angle B = 60°, \angle C = 70° Angles of \triangle OBC are \angle OBC = 40°, \angle OCB = 40°, \angle BOC = 100°

b)

ΔOAC is an isosceles triangle.

Given ∠ OAC= 40°

$$\angle AOC = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

$$\therefore \angle ABC = \frac{100^{\circ}}{2} = 50^{\circ}$$

Join OB, \triangle OBC is an isosceles triangle

So
$$\angle$$
 OCB = \angle OBC = 30°

$$\therefore$$
 $\angle OBA = 50^{\circ} - 30^{\circ} = 20^{\circ}$

 \triangle OBA is an isosceles triangle, So \angle OAB= 20°

Angles of \triangle ABC are \angle A = 60°, \angle B = 50°, \angle C = 70°

Angles of \triangle OBC are \angle OBC = 30°, \angle OCA = 30°, \angle BOC = 180° - 60° = 120°

c) Given $\angle BOC = 70^{\circ}$

Δ OBC is an isosceles triangle

$$\angle$$
 OBC = \angle OCB = $\frac{180^{\circ} - 70^{\circ}}{2}$
= $\frac{110^{\circ}}{2}$ = 55°

Angles of $\triangle OBC$ are $\angle OBC = 55^{\circ}$, $\angle BOC = 70^{\circ}$, $\angle OCB = 55^{\circ}$

Since
$$\angle AOC = 40^{\circ}$$
, $\angle ABC = \frac{40^{\circ}}{2} = 20^{\circ}$

Since
$$\angle BOC = 70^{\circ}$$
, $\angle BAC = \frac{70^{\circ}}{2} = 35^{\circ}$

$$\angle ACB = 180^{\circ} - (20^{\circ} + 35^{\circ}) = 180^{\circ} - 55^{\circ} = 125^{\circ}$$

Angles of AABC are 125°, 20°, 35°

TB Page 53

Q2)

The numbers 1, 4, 8 on a clock's face are joined to make a triangle.

Calculate the angles of this triangle.

How many equilateral triangles can we make by joining numbers on the clock's face?

Ans)

a) In a clock's face

60 minute =
$$360^{\circ}$$

1 minute = $\frac{360^{\circ}}{60^{\circ}}$ = 6°
5 minute = 30°

$$\angle$$
 BOC = $4 \times 30^{\circ} = 120^{\circ}$
 $\therefore \angle A = \frac{120^{\circ}}{2} = 60^{\circ}$

$$\angle AOC = 5 \times 30^{\circ} = 150^{\circ}$$

 $\therefore \angle B = \frac{150^{\circ}}{2} = 75^{\circ}$

$$\angle$$
 AOB = $3 \times 30^{\circ} = 90^{\circ}$
 \therefore \angle C = $\frac{90^{\circ}}{2}$ = 45°

b)

We can make 4 equilateral triangles by joining the numbers on the clock

(1,5,9), (2,6,10), (3,7,11), (4,8,12)

Assignment

Q) In the figure O is the centre of the circle and ABC is an equilateral triangle.

Find ZBAC and ZABO.

T.B Page 54

(5) In the picture, O is the centre of the circle and A, B, C, are points on it. Prove that $\angle OAC + \angle ABC = 90^{\circ}$.

