Assignment Answers

T.B Page 53

Q1)
a) Join OA

Since $O A=O B \& O C=O A$,
$\triangle O A B \& \triangle O A C$ are isosceles triangles Given $\angle \mathbf{O B A}=\mathbf{2 0 ^ { \circ }}$, Given $\angle \mathbf{O C A}=30^{\circ}$

$$
\therefore \angle \mathrm{OAB}=20^{\circ} \quad \therefore \angle \mathrm{OAC}=30^{\circ}
$$

$$
\begin{aligned}
\angle \mathrm{BAC} & =\angle O A B+\angle O A C \\
& =20^{\circ}+30^{\circ}=50^{\circ} \\
\angle B O C & =2 \times 50^{\circ}=100^{\circ}
\end{aligned}
$$

Since $O B=O C, \triangle O B C$ is an isosceles triangle.

$$
\therefore \angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{180^{\circ}-100^{\circ}}{2}=\frac{80^{\circ}}{2}=40^{\circ}
$$

Angles of $\triangle A B C$ are $\angle A=50^{\circ}, \angle B=60^{\circ}, \angle C=70^{\circ}$
Angles of $\triangle \mathrm{OBC}$ are $\angle \mathrm{OBC}=40^{\circ}, \angle \mathrm{OCB}=40^{\circ}, \angle \mathrm{BOC}=100^{\circ}$

b)

$\triangle O A C$ is an isosceles triangle.
Given \angle OAC $=40^{\circ}$
$\therefore \angle O C A=40^{\circ}$
$\angle A O C=180^{\circ}-80^{\circ}=100^{\circ}$
$\therefore \angle \mathrm{ABC}==\frac{100^{\circ}}{2}=50^{\circ}$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Join $\mathrm{OB}, \triangle \mathrm{OBC}$ is an isosceles triangle
So $\angle \mathrm{OCB}=\angle \mathrm{OBC}=30^{\circ}$

$$
\therefore \angle O B A=50^{\circ}-\mathbf{3 0}^{\circ}=\mathbf{2 0 ^ { \circ }}
$$

\triangle OBA is an isosceles triangle, So $\angle O A B=20^{\circ}$
Angles of $\triangle A B C$ are $\angle A=60^{\circ}, \angle B=50^{\circ}, \angle C=70^{\circ}$
Angles of $\triangle O B C$ are $\angle O B C=30^{\circ}, \angle O C A=30^{\circ}, \angle B O C=180^{\circ}-60^{\circ}$
c) Given $\angle \mathrm{BOC}=70^{\circ}$
$\triangle \mathrm{OBC}$ is an isosceles triangle
$\angle \mathrm{OBC}=\angle \mathrm{OCB}=\frac{180^{\circ}-70^{\circ}}{2}$

$$
=\frac{110^{\circ}}{2}=55^{\circ}
$$

Angles of $\triangle O B C$ are $\angle O B C=55^{\circ}$,

$$
\angle B O C=70^{\circ}, \angle O C B=55^{\circ}
$$

Since $\angle A O C=40^{\circ}, \angle A B C=\frac{40^{\circ}}{2}=20^{\circ}$
Since $\angle B O C=70^{\circ}, \angle B A C=\frac{70^{\circ}}{2}=35^{\circ}$
$\angle A C B=180^{\circ}-\left(20^{\circ}+35^{\circ}\right)=180^{\circ}-55^{\circ}=125^{\circ}$
Angles of $\triangle A B C$ are $125^{\circ}, 20^{\circ}, 35^{\circ}$

TB Page 53

Q2)
The numbers $1,4,8$ on a clock's face are joined to make a triangle.

Calculate the angles of this triangle.
How many equilateral triangles can we make by joining numbers on the clock's face?

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Ans)
a) In a clock's face

60 minute $=360^{\circ}$
1 minute $=\frac{360^{\circ}}{60^{\circ}}=6^{\circ}$
5 minute $=30^{\circ}$

$$
\begin{aligned}
& \angle B O C=4 \times 30^{\circ}=120^{\circ} \\
& \therefore \angle A=\frac{120^{\circ}}{2}=60^{\circ} \\
& \angle A O C=5 \times 30^{\circ}=150^{\circ} \\
& \therefore \angle B=\frac{150^{\circ}}{2}=75^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{AOB}=3 \times 30^{\circ}=90^{\circ}
$$

$$
\therefore \angle C=\frac{90^{\circ}}{2}=45^{\circ}
$$

b)

We can make 4 equilateral triangles by joining the numbers on the clock
(1, 5, 9),
$(2,6,10)$,
$(3,7,11)$, $(4,8,12)$

Assignment

Q) In the figure O is the centre of the circle and $A B C$ is an equilateral triangle.

Find $\angle B A C$ and $\angle A B O$.

T.B Page 54

(5) In the picture, O is the centre of the circle and A, B, C, are points on it. Prove that $\angle O A C+\angle A B C=90^{\circ}$.

