Online Class - X - 18 02 / 08 / 2021 2. Circles - Class 6 #### **Assignment Answers** ### **T.B Page 53** **Q1**) a) Join OA Since OA = OB & OC = OA, Δ OAB & Δ OAC are isosceles triangles Given \angle OBA = 20°, Given \angle OCA = 30° $$\therefore \angle OAB = 20^{\circ}$$ $$\angle BAC = \angle OAB + \angle OAC$$ = $20^{\circ} + 30^{\circ} = 50^{\circ}$ $\angle BOC = 2 \times 50^{\circ} = 100^{\circ}$ Since OB = OC, $\triangle OBC$ is an isosceles triangle. $$\therefore \angle OBC = \angle OCB = \frac{180^{\circ} - 100^{\circ}}{2} = \frac{80^{\circ}}{2} = 40^{\circ}$$ Angles of \triangle ABC are \angle A = 50°, \angle B = 60°, \angle C = 70° Angles of \triangle OBC are \angle OBC = 40°, \angle OCB = 40°, \angle BOC = 100° **b**) ΔOAC is an isosceles triangle. Given ∠ OAC= 40° $$\angle AOC = 180^{\circ} - 80^{\circ} = 100^{\circ}$$ $$\therefore \angle ABC = \frac{100^{\circ}}{2} = 50^{\circ}$$ Join OB, \triangle OBC is an isosceles triangle So $$\angle$$ OCB = \angle OBC = 30° $$\therefore$$ $\angle OBA = 50^{\circ} - 30^{\circ} = 20^{\circ}$ \triangle OBA is an isosceles triangle, So \angle OAB= 20° Angles of \triangle ABC are \angle A = 60°, \angle B = 50°, \angle C = 70° Angles of \triangle OBC are \angle OBC = 30°, \angle OCA = 30°, \angle BOC = 180° - 60° = 120° c) Given $\angle BOC = 70^{\circ}$ Δ OBC is an isosceles triangle $$\angle$$ OBC = \angle OCB = $\frac{180^{\circ} - 70^{\circ}}{2}$ = $\frac{110^{\circ}}{2}$ = 55° Angles of $\triangle OBC$ are $\angle OBC = 55^{\circ}$, $\angle BOC = 70^{\circ}$, $\angle OCB = 55^{\circ}$ Since $$\angle AOC = 40^{\circ}$$, $\angle ABC = \frac{40^{\circ}}{2} = 20^{\circ}$ Since $$\angle BOC = 70^{\circ}$$, $\angle BAC = \frac{70^{\circ}}{2} = 35^{\circ}$ $$\angle ACB = 180^{\circ} - (20^{\circ} + 35^{\circ}) = 180^{\circ} - 55^{\circ} = 125^{\circ}$$ Angles of AABC are 125°, 20°, 35° # TB Page 53 **Q2**) The numbers 1, 4, 8 on a clock's face are joined to make a triangle. Calculate the angles of this triangle. How many equilateral triangles can we make by joining numbers on the clock's face? Ans) a) In a clock's face 60 minute = $$360^{\circ}$$ 1 minute = $\frac{360^{\circ}}{60^{\circ}}$ = 6° 5 minute = 30° $$\angle$$ BOC = $4 \times 30^{\circ} = 120^{\circ}$ $\therefore \angle A = \frac{120^{\circ}}{2} = 60^{\circ}$ $$\angle AOC = 5 \times 30^{\circ} = 150^{\circ}$$ $\therefore \angle B = \frac{150^{\circ}}{2} = 75^{\circ}$ $$\angle$$ AOB = $3 \times 30^{\circ} = 90^{\circ}$ \therefore \angle C = $\frac{90^{\circ}}{2}$ = 45° **b**) We can make 4 equilateral triangles by joining the numbers on the clock (1,5,9), (2,6,10), (3,7,11), (4,8,12) ## **Assignment** Q) In the figure O is the centre of the circle and ABC is an equilateral triangle. Find ZBAC and ZABO. ## **T.B Page 54** (5) In the picture, O is the centre of the circle and A, B, C, are points on it. Prove that $\angle OAC + \angle ABC = 90^{\circ}$.