

To view class

Relation between the central angle of a non diametrical chord and the angles formed by joining the ends of the chord to the points on the smaller part of the circle.

Consider the given figure
Draw OA, OB, OQ
Let $\angle A Q O=x^{\circ} \& \angle B Q O=\mathbf{y}^{\circ}$

$$
\angle Q=x^{\circ}+y^{\circ}
$$

Consider \triangle AOQ,
$\triangle A O Q$ is an isosceles triangle ($O A=O Q$)

$$
\angle \mathbf{A Q O}=\angle \mathbf{Q A O}=\mathbf{x}^{\circ}
$$

$$
\begin{aligned}
\angle A O Q & =180^{\circ}-\left(x^{\circ}+x^{\circ}\right) \\
& =180^{\circ}-2 x^{\circ}
\end{aligned}
$$

Consider \triangle BOQ,
$\triangle B O Q$ is an isosceles triangle ($O B=O Q$)
$\angle B Q O=\angle Q B O=y^{\circ}$
$\angle B O Q=180^{\circ}-\left(y^{\circ}+y^{\circ}\right)$
$=180^{\circ}-2 y^{\circ}$
$\angle A O B=\angle A O Q+\angle B O Q$
Let $\angle A O B=c^{\circ}$
So, $\quad c^{\circ}=180^{\circ}-2 x^{\circ}+180^{\circ}-2 y^{\circ}$
$=360^{\circ}-2\left(x^{\circ}+y^{\circ}\right)$
$=360^{\circ}-2 \angle Q$
$2 \angle \mathbf{Q}=360^{\circ}-\mathbf{c}^{\circ}$
$\angle \mathbf{Q}=\frac{360^{\circ}-c^{\circ}}{2}=180^{\circ}-\frac{c^{\circ}}{2}$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Looking at the angles in the tuo parts of the circle and the angle at the centre together ube have,

Any chord which is not a diameter splits the circle into unequal parts.

The angle got by joining any point on the larger part to the ends of the chord is half the angle got by joining the centre of the circle to these ends.

The angle got by joining any point on the smaller part to the ends of the chord is half the angle at the centre subtracted from 180°.

Q) If the chord $A B$ makes an angle 140° at the centre of the circle find $\angle A P B \& \angle A Q B$.
Ans)

$$
\begin{aligned}
\angle \mathrm{APB} & =\frac{\angle A O B}{2} \\
& =\frac{140^{\circ}}{2} \\
& =70^{\circ}
\end{aligned}
$$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

$$
\begin{aligned}
\angle A Q B & =180^{\circ}-\frac{\angle A O B}{2} \\
& =180^{\circ}-\frac{140^{\circ}}{2} \\
& =180^{\circ}-\mathbf{7 0}^{\circ} \\
& =110^{\circ}
\end{aligned}
$$

Puttins the results obtained in terms of ares and their central angles

Any two points on a circle divide it into two arcs.
Each of these two arcs can be called the alternate arc or complementary arc of the other.
In the figure the two arcs are are $A P B$ and arc $A Q B$.

Alternate arc or complementary arc of arc $A P B$ is arc $A Q B$ Alternate arc or complementary arc of arc $A Q B$ is arc APB

Central angle of an arc is the angle made by the arc at the centre of the circle . Let central angle of arc $\mathrm{AQB}=\mathrm{c}^{\circ}$ and central angle of $\operatorname{arc} \mathrm{APB}=\mathrm{d}^{\circ}$

We know angle around a point is 360°

$$
\text { So, } \begin{aligned}
\mathbf{c}^{\circ}+\mathbf{d}^{\circ} & =360^{\circ} \\
\mathbf{d}^{\circ} & =360^{\circ}-\mathbf{c}^{\circ} \\
\frac{d^{\circ}}{2} & =\frac{360^{\circ}-c^{\circ}}{2} \\
\frac{d^{\circ}}{2} & =180^{\circ}-\frac{c^{\circ}}{2}
\end{aligned}
$$

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

Conclusion

The angle made by any arc of a circle on the alternate arc is
half the angle made at the centre

Note:

Sum of the angles on an arc and its alternate arc

$$
\begin{aligned}
\mathbf{c} L & =\angle P+\angle Q \\
& =\frac{c \circ}{2}+180^{\circ}-\frac{c \circ}{2} \\
& =180^{\circ}
\end{aligned}
$$

Sum of the angles on an arc and its alternate arc is 180°.
Pairs of angles of sum 180° are usually called supplementary angles.

Conclusion

All angles made by an arc on the alternate arc are equal and
a pair of angles on an arc and its alternate arc are supplementary

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

In the figure, $A B$ is the diameter of the circle.
Arc APB and arc AQB are semicircles.
Central angle of a semicircle is 180°.
$\angle P$ is the angle made by the arc AQB at its alternate arc APB and
$\angle Q$ is the angle made by the arc APB at its alternate arc AQB

$$
\begin{aligned}
& \angle \mathbf{P}=\frac{180^{\circ}}{2}=90^{\circ} \\
& \angle \mathbf{Q}=\frac{180^{\circ}}{2}=90^{\circ}
\end{aligned}
$$

Angles in semicircle are right or 90°

Assignment

T. B Page 53

(1) In all the pictures given below, O is the centre of the circle and A, B, C are points on it. Calculate all angles of $\triangle A B C$ and $\triangle O B C$ in each.

Cecilia Joseph, St. John De Britto's A. I. H. S, Fortkochi

