CHAPTER 2

ELECTRICAL CIRCUITS \& FIELDS

MCQ 2.1 In the circuit shown below, the current through the inductor is

(A) $\frac{2}{1+j} \mathrm{~A}$
(B) $\frac{-1}{1+j} \mathrm{~A}$
(C) $\frac{1}{1+j} \mathrm{~A}$
(D) 0 A

MCQ 2.2 The impedance looking into nodes 1 and 2 in the given circuit is

(A) 50Ω
(B) 100Ω
(C) $5 \mathrm{k} \Omega$
(D) $10.1 \mathrm{k} \Omega$

MCQ 2.3 A system with transfer function $G(s)=\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)}$ is excited by $\sin (\omega t)$. The steady-state output of the system is zero at
(A) $\omega=1 \mathrm{rad} / \mathrm{s}$
(B) $\omega=2 \mathrm{rad} / \mathrm{s}$
(C) $\omega=3 \mathrm{rad} / \mathrm{s}$
(D) $\omega=4 \mathrm{rad} / \mathrm{s}$

MCQ 2.4 The average power delivered to an impedance $(4-j 3) \Omega$ by a current $5 \cos (100 \pi t+100) \mathrm{A}$ is
(A) 44.2 W
(B) 50 W
(C) 62.5 W
(D) 125 W

MCQ 2.5 In the following figure, C_{1} and C_{2} are ideal capacitors. C_{1} has been charged to 12 V before the ideal switch S is closed at $t=0$. The current $i(t)$ for all t is

(A) zero
(B) a step function
(C) an exponentially decaying function
(D) an impulse function

YEAR 2012

TWO MARKS
MCQ 2.6 If $V_{A}-V_{B}=6 \mathrm{~V}$ then $V_{C}-V_{D}$ is

(A) -5 V
(B) 2 V
(C) 3 V
(D) 6 V

MCQ 2.7 Assuming both the voltage sources are in phase, the value of R for which maximum power is transferred from circuit A to circuit B is

(A) 0.8Ω
(B) 1.4Ω
(C) 2Ω
(D) 2.8Ω

Common Data for Questions 8 and 9 :

With 10 V dc connected at port A in the linear nonreciprocal two-port network shown below, the following were observed :
(i) 1Ω connected at port B draws a current of 3 A
(ii) 2.5Ω connected at port B draws a current of 2 A

MCQ 2.8 With 10 V dc connected at port A, the current drawn by 7Ω connected at port B is
(A) $3 / 7 \mathrm{~A}$
(B) $5 / 7 \mathrm{~A}$
(C) 1 A
(D) $9 / 7 \mathrm{~A}$

MCQ 2.9 For the same network, with 6 V dc connected at port $A, 1 \Omega$ connected at port B draws $7 / 3 \mathrm{~A}$. If 8 V dc is connected to port A, the open circuit voltage at port B is
(A) 6 V
(B) 7 V
(C) 8 V
(D) 9 V

Linked Answer Question

Statement for Linked Answer Questions 10 and 11 :

In the circuit shown, the three voltmeter readings are $V_{1}=220 \mathrm{~V}, V_{2}=122 \mathrm{~V}$, $V_{3}=136 \mathrm{~V}$.

MCQ 2.10 The power factor of the load is
(A) 0.45
(B) 0.50
(C) 0.55
(D) 0.60

MCQ 2.11 If $R_{L}=5 \Omega$, the approximate power consumption in the load is
(A) 700 W
(B) 750 W
(C) 800 W
(D) 850 W

YEAR 2011 ONE MARK

MCQ 2.12 The r.m.s value of the current $i(t)$ in the circuit shown below is
(A) $\frac{1}{2} \mathrm{~A}$
(B) $\frac{1}{\sqrt{2}} \mathrm{~A}$
(C) 1 A
(D) $\sqrt{2} \mathrm{~A}$

MCQ 2.13 The voltage applied to a circuit is $100 \sqrt{2} \cos (100 \pi t)$ volts and the circuit draws a current of $10 \sqrt{2} \sin (100 \pi t+\pi / 4)$ amperes. Taking the voltage as the reference phasor, the phasor representation of the current in amperes is
(A) $10 \sqrt{2} /-\pi / 4$
(B) $10 /-\pi / 4$
(C) $10 /+\pi / 4$
(D) $10 \sqrt{2} /+\pi / 4$

MCQ 2.14 In the circuit given below, the value of R required for the transfer of maximum power to the load having a resistance of 3Ω is

(A) zero
(B) 3Ω
(C) 6Ω
(D) infinity

YEAR 2011
TWO MARKS
MCQ 2.15 A lossy capacitor C_{x}, rated for operation at $5 \mathrm{kV}, 50 \mathrm{~Hz}$ is represented by an equivalent circuit with an ideal capacitor C_{p} in parallel with a resistor R_{p}.

The value C_{p} is found to be $0.102 \mu \mathrm{~F}$ and value of $R_{p}=1.25 \mathrm{M} \Omega$. Then the power loss and $\tan \delta$ of the lossy capacitor operating at the rated voltage, respectively, are
(A) 10 W and 0.0002
(B) 10 W and 0.0025
(C) 20 W and 0.025
(D) 20 W and 0.04

MCQ 2.16 A capacitor is made with a polymeric dielectric having an ε_{r} of 2.26 and a dielectric breakdown strength of $50 \mathrm{kV} / \mathrm{cm}$. The permittivity of free space is $8.85 \mathrm{pF} / \mathrm{m}$. If the rectangular plates of the capacitor have a width of 20 cm and a length of 40 cm , then the maximum electric charge in the capacitor is
(A) $2 \mu \mathrm{C}$
(B) $4 \mu \mathrm{C}$
(C) $8 \mu \mathrm{C}$
(D) $10 \mu \mathrm{C}$

Common Data questions: $17 \& 18$

The input voltage given to a converter is $v_{i}=100 \sqrt{2} \sin (100 \pi t) \mathrm{V}$
The current drawn by the converter is

$$
\begin{aligned}
& i_{i}=10 \sqrt{2} \sin (100 \pi t-\pi / 3)+5 \sqrt{2} \sin (300 \pi t+\pi / 4) \\
&+ 2 \sqrt{2} \sin (500 \pi t-\pi / 6) \mathrm{A}
\end{aligned}
$$

MCQ 2.17 The input power factor of the converter is
(A) 0.31
(B) 0.44
(C) 0.5
(D) 0.71

MCQ 2.18 The active power drawn by the converter is
(A) 181 W
(B) 500 W
(C) 707 W
(D) 887 W

Common Data questions: 19 \& 20

An RLC circuit with relevant data is given below.

MCQ 2.19 The power dissipated in the resistor R is
(A) 0.5 W
(B) 1 W
(C) $\sqrt{2} \mathrm{~W}$
(D) 2 W

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

MCQ 2.20 The current $\overline{I_{C}}$ in the figure above is
(A) $-j 2 \mathrm{~A}$
(B) $-j \frac{1}{\sqrt{2}} \mathrm{~A}$
(C) $+j \frac{1}{\sqrt{2}} \mathrm{~A}$
(D) $+j 2 \mathrm{~A}$

YEAR 2010
ONE MARK
MCQ 2.21 The switch in the circuit has been closed for a long time. It is opened at $t=0$. At $t=0^{+}$, the current through the $1 \mu \mathrm{~F}$ capacitor is

(A) 0 A
(B) 1 A
(C) 1.25 A
(D) 5 A

MCQ 2.22 As shown in the figure, a 1Ω resistance is connected across a source that has a load line $v+i=100$. The current through the resistance is

(A) 25 A
(B) 50 A
(C) 100 A
(C) 200 A

YEAR 2010 TWO MARKS

MCQ 2.23 If the 12Ω resistor draws a current of 1 A as shown in the figure, the value of resistance R is

(A) 4Ω
(B) 6Ω
(C) 8Ω
(D) 18Ω

MCQ 2.24 The two-port network P shown in the figure has ports 1 and 2 , denoted by terminals (a,b) and (c,d) respectively. It has an impedance matrix Z with parameters denoted by $Z_{i j}$. A 1Ω resistor is connected in series with the network at port 1 as shown in the figure. The impedance matrix of the modified two-port network (shown as a dashed box) is

(A) $\left(\begin{array}{cc}Z_{11}+1 & Z_{12}+1 \\ Z_{21} & Z_{22}+1\end{array}\right)$
(B) $\left(\begin{array}{cc}Z_{11}+1 & Z_{12} \\ Z_{21} & Z_{22}+1\end{array}\right)$
(C) $\left(\begin{array}{cc}Z_{11}+1 & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right)$
(D) $\left(\begin{array}{ll}Z_{11}+1 & Z_{12} \\ Z_{21}+1 & Z_{22}\end{array}\right)$

YEAR 2009
ONE MARK
MCQ 2.25 The current through the $2 \mathrm{k} \Omega$ resistance in the circuit shown is

(A) 0 mA
(B) 1 mA
(C) 2 mA
(D) 6 mA

MCQ 2.26 How many $200 \mathrm{~W} / 220 \mathrm{~V}$ incandescent lamps connected in series would consume the same total power as a single $100 \mathrm{~W} / 220 \mathrm{~V}$ incandescent lamp ?
(A) not possible
(B) 4
(C) 3
(D) 2

YEAR 2009

TWO MARKS
MCQ 2.27 In the figure shown, all elements used are ideal. For time $t<0, S_{1}$ remained closed and S_{2} open. At $t=0, S_{1}$ is opened and S_{2} is closed. If the voltage $V_{c 2}$ across the capacitor C_{2} at $t=0$ is zero, the voltage across the capacitor combination at $t=0^{+}$will be

(A) 1 V
(B) 2 V
(C) 1.5 V
(D) 3 V

MCQ 2.28 The equivalent capacitance of the input loop of the circuit shown is

(A) $2 \mu \mathrm{~F}$
(B) $100 \mu \mathrm{~F}$
(C) $200 \mu \mathrm{~F}$
(D) $4 \mu \mathrm{~F}$

MCQ 2.29 For the circuit shown, find out the current flowing through the 2Ω resistance. Also identify the changes to be made to double the current through the 2Ω resistance.

(A) $\left(5 \mathrm{~A} ;\right.$ Put $\left.V_{S}=30 \mathrm{~V}\right)$
(B) $\left(2 \mathrm{~A} ;\right.$ Put $\left.V_{S}=8 \mathrm{~V}\right)$
(C) $\left(5 \mathrm{~A} ;\right.$ Put $\left.I_{S}=10 \mathrm{~A}\right)$
(D) $\left(7 \mathrm{~A} ;\right.$ Put $\left.I_{S}=12 \mathrm{~A}\right)$

Statement for Linked Answer Question 30 and 31 :

MCQ 2.30 For the circuit given above, the Thevenin's resistance across the terminals A and B is
(A) $0.5 \mathrm{k} \Omega$
(B) $0.2 \mathrm{k} \Omega$
(C) $1 \mathrm{k} \Omega$
(D) $0.11 \mathrm{k} \Omega$

MCQ 2.31 For the circuit given above, the Thevenin's voltage across the terminals A and B is
(A) 1.25 V
(B) 0.25 V
(C) 1 V
(D) 0.5 V

YEAR 2008

ONE MARK
MCQ 2.32 The number of chords in the graph of the given circuit will be

(A) 3
(B) 4
(C) 5
(D) 6

MCQ 2.33 The Thevenin's equivalent of a circuit operation at $\omega=5 \mathrm{rads} / \mathrm{s}$, has $V_{o c}=3.71 \angle-15.9^{\circ} \mathrm{V}$ and $Z_{0}=2.38-j 0.667 \Omega$. At this frequency, the minimal realization of the Thevenin's impedance will have a
(A) resistor and a capacitor and an inductor
(B) resistor and a capacitor
(C) resistor and an inductor
(D) capacitor and an inductor

YEAR 2008
TWO MARKS
MCQ 2.34 The time constant for the given circuit will be

(A) $1 / 9 \mathrm{~s}$
(B) $1 / 4 \mathrm{~s}$
(C) 4 s
(D) 9 s

MCQ 2.35 The resonant frequency for the given circuit will be

(A) $1 \mathrm{rad} / \mathrm{s}$
(B) $2 \mathrm{rad} / \mathrm{s}$
(C) $3 \mathrm{rad} / \mathrm{s}$
(D) $4 \mathrm{rad} / \mathrm{s}$

MCQ 2.36 Assuming ideal elements in the circuit shown below, the voltage $V_{a b}$ will be

(A) -3 V
(B) 0 V
(C) 3 V
(D) 5 V

Statement for Linked Answer Question 38 and 39.

The current $i(t)$ sketched in the figure flows through a initially uncharged 0.3 nF capacitor.

MCQ 2.37 The charge stored in the capacitor at $t=5 \mu \mathrm{~s}$, will be
(A) 8 nC
(B) 10 nC
(C) 13 nC
(D) 16 nC

MCQ 2.38 The capacitor charged upto 5 ms , as per the current profile given in the
figure, is connected across an inductor of 0.6 mH . Then the value of voltage across the capacitor after 1μ s will approximately be
(A) 18.8 V
(B) 23.5 V
(C) -23.5 V
(D) -30.6 V

MCQ 2.39 In the circuit shown in the figure, the value of the current i will be given by

(A) 0.31 A
(B) 1.25 A
(C) 1.75 A
(D) 2.5 A

MCQ 2.40 Two point charges $Q_{1}=10 \mu \mathrm{C}$ and $Q_{2}=20 \mathrm{mC}$ are placed at coordinates $(1,1,0)$ and $(-1,-1,0)$ respectively. The total electric flux passing through a plane $z=20$ will be
(A) $7.5 \mu C$
(B) $13.5 \mu C$
(C) $15.0 \mu \mathrm{C}$
(D) $22.5 \mu \mathrm{C}$

MCQ 2.41 A capacitor consists of two metal plates each $500 \times 500 \mathrm{~mm}^{2}$ and spaced 6 mm apart. The space between the metal plates is filled with a glass plate of 4 mm thickness and a layer of paper of 2 mm thickness. The relative primitivities of the glass and paper are 8 and 2 respectively. Neglecting the fringing effect, the capacitance will be (Given that $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$)
(A) 983.3 pF
(B) 1475 pF
(C) 637.7 pF
(D) 9956.25 pF

MCQ 2.42 A coil of 300 turns is wound on a non-magnetic core having a mean circumference of 300 mm and a cross-sectional area of $300 \mathrm{~mm}^{2}$. The inductance of the coil corresponding to a magnetizing current of 3 A will be (Given that $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$)
(A) $37.68 \mu \mathrm{H}$
(B) $113.04 \mu \mathrm{H}$
(C) $3.768 \mu \mathrm{H}$
(D) $1.1304 \mu \mathrm{H}$

YEAR 2007

ONE MARK
MCQ 2.43 Divergence of the vector field
$V(x, y, z)=-(x \cos x y+y) \hat{i}+(y \cos x y) \hat{j}+\left(\sin z^{2}+x^{2}+y^{2}\right) \hat{k}$ is
(A) $2 z \cos z^{2}$
(B) $\sin x y+2 z \cos z^{2}$
(C) $x \sin x y-\cos z$
(D) None of these

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

MCQ 2.44 The state equation for the current I_{1} in the network shown below in terms of the voltage V_{X} and the independent source V, is given by

(A) $\frac{d I_{1}}{d t}=-1.4 V_{X}-3.75 I_{1}+\frac{5}{4} V$
(B) $\frac{d I_{1}}{d t}=1.4 \mathrm{~V}_{X}-3.75 I_{1}-\frac{5}{4} V$
(C) $\frac{d I_{1}}{d t}=-1.4 V_{X}+3.75 I_{1}+\frac{5}{4} V$
(D) $\frac{d I_{1}}{d t}=-1.4 \mathrm{~V}_{X}+3.75 I_{1}-\frac{5}{4} V$

MCQ 2.45 The R-L-C series circuit shown in figure is supplied from a variable frequency voltage source. The admittance - locus of the R-L-C network at terminals AB for increasing frequency ω is

(A)

(B)

(C)

(D)

MCQ 2.46 In the circuit shown in figure. Switch SW_{1} is initially closed and SW_{2} is open. The inductor L carries a current of 10 A and the capacitor charged to 10 V with polarities as indicated. SW_{2} is closed at $t=0$ and SW_{1} is opened at $t=0$. The current through C and the voltage across L at $\left(t=0^{+}\right)$is

(A) $55 \mathrm{~A}, 4.5 \mathrm{~V}$
(B) $5.5 \mathrm{~A}, 45 \mathrm{~V}$
(C) $45 \mathrm{~A}, 5.5 \mathrm{~A}$
(D) $4.5 \mathrm{~A}, 55 \mathrm{~V}$

MCQ 2.47 In the figure given below all phasors are with reference to the potential at point " O ". The locus of voltage phasor $V_{Y X}$ as R is varied from zero to infinity is shown by

(A)

(B)

(C)

(D)

MCQ 2.48 A 3 V DC supply with an internal resistance of 2Ω supplies a passive non-linear resistance characterized by the relation $V_{N L}=I_{N L}^{2}$. The power dissipated in the non linear resistance is
(A) 1.0 W
(B) 1.5 W
(C) 2.5 W
(D) 3.0 W

MCQ 2.49 The matrix A given below in the node incidence matrix of a network. The columns correspond to branches of the network while the rows correspond to nodes. Let $V=\left[V_{1} V_{2} \ldots . . V_{6}\right]^{T}$ denote the vector of branch voltages while $I=\left[i_{1} i_{2} \ldots . . i_{6}\right]^{T}$ that of branch currents. The vector $E=\left[e_{1} e_{2} e_{3} e_{4}\right]^{T}$ denotes the vector of node voltages relative to a common ground.

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & -1 & 1 & 0 & 1
\end{array}\right]
$$

Which of the following statement is true ?
(A) The equations $V_{1}-V_{2}+V_{3}=0, V_{3}+V_{4}-V_{5}=0$ are KVL equations for the network for some loops
(B) The equations $V_{1}-V_{3}-V_{6}=0, V_{4}+V_{5}-V_{6}=0$ are KVL equations for the network for some loops
(C) $E=A V$
(D) $A V=0$ are KVI equations for the network

MCQ 2.50 A solid sphere made of insulating material has a radius R and has a total charge Q distributed uniformly in its volume. What is the magnitude of the electric field intensity, E, at a distance $r(0<r<R)$ inside the sphere?
(A) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q r}{R^{3}}$
(B) $\frac{3}{4 \pi \varepsilon_{0}} \frac{Q r}{R^{3}}$
(C) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
(D) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q R}{r^{3}}$

Statement for Linked Answer Question 51 and 52.

An inductor designed with 400 turns coil wound on an iron core of $16 \mathrm{~cm}^{2}$ cross sectional area and with a cut of an air gap length of 1 mm . The coil is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Neglect coil resistance, core loss, iron reluctance and leakage inductance, $\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{M}\right)$

MCQ 2.51 The current in the inductor is
(A) 18.08 A
(B) 9.04 A
(C) 4.56 A
(D) 2.28 A

MCQ 2.52 The average force on the core to reduce the air gap will be
(A) 832.29 N
(B) 1666.22 N
(C) 3332.47 N
(D) 6664.84 N

MCQ 2.53 In the figure the current source is $1 \angle 0 \mathrm{~A}, R=1 \Omega$, the impedances are $Z_{C}=-j \Omega$ and $Z_{L}=2 j \Omega$. The Thevenin equivalent looking into the circuit across $\mathrm{X}-\mathrm{Y}$ is

(A) $\sqrt{2} \angle 0 \mathrm{~V},(1+2 j) \Omega$
(B) $2 \angle 45^{\circ} \mathrm{V},(1-2 j) \Omega$
(C) $2 \angle 45^{\circ} \mathrm{V},(1+j) \Omega$
(D) $\sqrt{2} \angle 45^{\circ} \mathrm{V},(1+j) \Omega$

YEAR 2006

MCQ 2.54 The parameters of the circuit shown in the figure are $R_{i}=1 \mathrm{M} \Omega$ $R_{0}=10 \Omega, \mathrm{~A}=10^{6} \mathrm{~V} / \mathrm{V}$ If $v_{i}=1 \mu \mathrm{~V}$, the output voltage, input impedance and output impedance respectively are

(A) $1 \mathrm{~V}, \infty, 10 \Omega$
(B) $1 \mathrm{~V}, 0,10 \Omega$
(C) $1 \mathrm{~V}, 0, \infty$
(D) $10 \mathrm{~V}, \infty, 10 \Omega$

MCQ 2.55 In the circuit shown in the figure, the current source $I=1 \mathrm{~A}$, the voltage source $V=5 \mathrm{~V}, R_{1}=R_{2}=R_{3}=1 \Omega, L_{1}=L_{2}=L_{3}=1 \mathrm{H}, C_{1}=C_{2}=1 \mathrm{~F}$

The currents (in A) through R_{3} and through the voltage source V respectively will be
(A) 1,4
(B) 5,1
(C) 5,2
(D) 5,4

MCQ 2.56 The parameter type and the matrix representation of the relevant two port parameters that describe the circuit shown are

(A) z parameters, $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(B) h parameters, $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(C) h parameters, $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(D) z parameters, $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

MCQ 2.57 The circuit shown in the figure is energized by a sinusoidal voltage source V_{1} at a frequency which causes resonance with a current of I.

The phasor diagram which is applicable to this circuit is
(A)

(B)

(C)

(D)

MCQ 2.58 An ideal capacitor is charged to a voltage V_{0} and connected at $t=0$ across an ideal inductor L. (The circuit now consists of a capacitor and inductor alone). If we let $\omega_{0}=\frac{1}{\sqrt{L C}}$, the voltage across the capacitor at time $t>0$
is given by
(A) V_{0}
(B) $V_{0} \cos \left(\omega_{0} t\right)$
(C) $\mathrm{V}_{0} \sin \left(\omega_{0} t\right)$
(D) $V_{0} e^{-\omega_{0} t} \cos \left(\omega_{0} t\right)$

MCQ 2.59 An energy meter connected to an immersion heater (resistive) operating on an AC $230 \mathrm{~V}, 50 \mathrm{~Hz}$, AC single phase source reads 2.3 units (kWh) in 1 hour. The heater is removed from the supply and now connected to a 400 V peak square wave source of 150 Hz . The power in kW dissipated by the heater will be
(A) 3.478
(B) 1.739
(C) 1.540
(D) 0.870

MCQ 2.60 Which of the following statement holds for the divergence of electric and magnetic flux densities ?
(A) Both are zero
(B) These are zero for static densities but non zero for time varying densities.
(C) It is zero for the electric flux density
(D) It is zero for the magnetic flux density

YEAR 2005
ONE MARK
MCQ 2.61 In the figure given below the value of R is

(A) 2.5Ω
(B) 5.0Ω
(C) 7.5Ω
(D) 10.0Ω

MCQ 2.62 The RMS value of the voltage $u(t)=3+4 \cos (3 t)$ is
(A) $\sqrt{17} \mathrm{~V}$
(B) 5 V
(C) 7 V
(D) $(3+2 \sqrt{2}) \mathrm{V}$

MCQ 2.63 For the two port network shown in the figure the Z-matrix is given by

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia
(A) $\left[\begin{array}{cc}Z_{1} & Z_{1}+Z_{2} \\ Z_{1}+Z_{2} & Z_{2}\end{array}\right]$
(B) $\left[\begin{array}{cc}Z_{1} & Z_{1} \\ Z_{1}+Z_{2} & Z_{2}\end{array}\right]$
(C) $\left[\begin{array}{cc}Z_{1} & Z_{2} \\ Z_{2} & Z_{1}+Z_{2}\end{array}\right]$
(D) $\left[\begin{array}{cc}Z_{1} & Z_{1} \\ Z_{1} & Z_{1}+Z_{2}\end{array}\right]$

MCQ 2.64 In the figure given, for the initial capacitor voltage is zero. The switch is closed at $t=0$. The final steady-state voltage across the capacitor is

(A) 20 V
(B) 10 V
(C) 5 V
(D) 0 V

MCQ 2.65 If \vec{E} is the electric intensity, $\nabla(\nabla \times \vec{E})$ is equal to
(A) \vec{E}
(B) $|\vec{E}|$
(C) null vector
(D) Zero

YEAR 2005 TWO MARKS

Statement for Linked Answer Question 66 and 67.

A coil of inductance 10 H and resistance 40Ω is connected as shown in the figure. After the switch S has been in contact with point 1 for a very long time, it is moved to point 2 at, $t=0$.

MCQ 2.66 If, at $\mathrm{t}=0^{+}$, the voltage across the coil is 120 V , the value of resistance R is

(A) 0Ω
(B) 20Ω
(C) 40Ω
(D) 60Ω

MCQ 2.67 For the value as obtained in (a), the time taken for 95% of the stored energy to be dissipated is close to
(A) 0.10 sec
(B) 0.15 sec
(C) 0.50 sec
(D) 1.0 sec

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia
Published by: NODIA and COMPANY

MCQ 2.68 The RL circuit of the figure is fed from a constant magnitude, variable frequency sinusoidal voltage source $V_{i n}$. At 100 Hz , the R and L elements each have a voltage drop $\mu_{R M S}$. If the frequency of the source is changed to 50 Hz , then new voltage drop across R is

(A) $\sqrt{\frac{5}{8}} u_{\text {RMS }}$
(B) $\sqrt{\frac{2}{3}} \mathrm{u}_{\mathrm{RMS}}$
(C) $\sqrt{\frac{8}{5}} \mathrm{u}_{\text {RMS }}$
(D) $\sqrt{\frac{3}{2}} u_{\text {RMS }}$

MCQ 2.69 For the three-phase circuit shown in the figure the ratio of the currents $I_{R}: I_{Y}: I_{B}$ is given by

(A) $1: 1: \sqrt{3}$
(B) $1: 1: 2$
(C) $1: 1: 0$
(D) $1: 1: \sqrt{3 / 2}$

MCQ 2.70 The circuit shown in the figure is in steady state, when the switch is closed at $t=0$.Assuming that the inductance is ideal, the current through the inductor at $t=0^{+}$equals

(A) 0 A
(B) 0.5 A
(C) 1 A
(D) 2 A

MCQ 2.71 In the given figure, the Thevenin's equivalent pair (voltage, impedance), as seen at the terminals $\mathrm{P}-\mathrm{Q}$, is given by

(A) $(2 \mathrm{~V}, 5 \Omega)$
(B) $(2 \mathrm{~V}, 7.5 \Omega)$
(C) $(4 \mathrm{~V}, 5 \Omega)$
(D) $(4 \mathrm{~V}, 7.5 \Omega)$

MCQ 2.72 The charge distribution in a metal-dielectric-semiconductor specimen is shown in the figure. The negative charge density decreases linearly in the semiconductor as shown. The electric field distribution is as shown in

(A)

MCQ 2.73 The value of Z in figure which is most appropriate to cause parallel resonance at 500 Hz is

(A) 125.00 mH
(B) $304.20 \mu \mathrm{~F}$
(C) $2.0 \mu \mathrm{~F}$
(D) $0.05 \mu \mathrm{~F}$

MCQ 2.74 A parallel plate capacitor is shown in figure. It is made two square metal plates of 400 mm side. The 14 mm space between the plates is filled with two layers of dielectrics of $\varepsilon_{r}=4,6 \mathrm{~mm}$ thick and $\varepsilon_{r}=2,8 \mathrm{~mm}$ thick. Neglecting fringing of fields at the edge the capacitance is

(A) 1298 pF
(B) 944 pF
(C) 354 pF
(D) 257 pF

MCQ 2.75 The inductance of a long solenoid of length 1000 mm wound uniformly with 3000 turns on a cylindrical paper tube of 60 mm diameter is
(A) $3.2 \mu \mathrm{H}$
(B) 3.2 mH
(C) 32.0 mH
(D) 3.2 H

YEAR 2004

TWO MARKS
MCQ 2.76 In figure, the value of the source voltage is

(A) 12 V
(B) 24 V
(C) 30 V
(D) 44 V

MCQ 2.77 In figure, R_{a}, R_{b} and R_{c} are $20 \Omega, 20 \Omega$ and 10Ω respectively. The resistances R_{1}, R_{2} and R_{3} in Ω of an equivalent star-connection are

(A) $2.5,5,5$
(B) $5,2.5,5$
(C) $5,5,2.5$
(D) $2.5,5,2.5$

MCQ 2.78 In figure, the admittance values of the elements in Siemens are $Y_{R}=0.5+j 0, Y_{L}=0-j 1.5, Y_{C}=0+j 0.3$ respectively. The value of I as a phasor when the voltage E across the elements is $10 \angle 0^{\circ} \mathrm{V}$

(A) $1.5+j 0.5$
(B) $5-j 18$
(C) $0.5+j 1.8$
(D) $5-j 12$

MCQ 2.79 In figure, the value of resistance R in Ω is

(A) 10
(B) 20
(C) 30
(D) 40

MCQ 2.80 In figure, the capacitor initially has a charge of 10 Coulomb. The current in the circuit one second after the switch S is closed will be

(A) 14.7 A
(B) 18.5 A
(C) 40.0 A
(D) 50.0 A

MCQ 2.81 The rms value of the current in a wire which carries a d.c. current of 10 A and a sinusoidal alternating current of peak value 20 A is
(A) 10 A
(B) 14.14 A
(C) 15 A
(D) 17.32 A

MCQ 2.82 The Z-matrix of a 2-port network as given by $\left[\begin{array}{cc}0.9 & 0.2 \\ 0.2 & 0.6\end{array}\right]$ The element Y_{22} of the corresponding Y-matrix of the same network is given by
(A) 1.2
(B) 0.4
(C) -0.4
(D) 1.8

YEAR 2003 ONE MARK

MCQ 2.83 Figure Shows the waveform of the current passing through an inductor of resistance 1Ω and inductance 2 H . The energy absorbed by the inductor in the first four seconds is

(A) 144 J
(B) 98 J
(C) 132 J
(D) 168 J

MCQ 2.84 A segment of a circuit is shown in figure $v_{R}=5 \mathrm{~V}, v_{c}=4 \sin 2 t$. The voltage v_{L} is given by

(A) $3-8 \cos 2 t$
(B) $32 \sin 2 t$
(C) $16 \sin 2 t$
(D) $16 \cos 2 t$

MCQ 2.85 In the figure, $Z_{1}=10 \angle-60^{\circ}, Z_{2}=10 \angle 60^{\circ}, Z_{3}=50 \angle 53.13^{\circ}$. Thevenin impedance seen form $\mathrm{X}-\mathrm{Y}$ is

(A) $56.66 \angle 45^{\circ}$
(B) $60 \angle 30^{\circ}$
(C) $70 \angle 30^{\circ}$
(D) $34.4 \angle 65^{\circ}$

MCQ 2.86 Two conductors are carrying forward and return current of +I and $-I$ as shown in figure. The magnetic field intensity $\overrightarrow{\mathbf{H}}$ at point P is

(A) $\frac{I}{\pi d} \overrightarrow{\mathbf{Y}}$
(B) $\frac{I}{\pi d} \overrightarrow{\mathbf{X}}$
(C) $\frac{I}{2 \pi d} \overrightarrow{\mathbf{Y}}$
(D) $\frac{I}{2 \pi d} \overrightarrow{\mathbf{X}}$

MCQ 2.87 Two infinite strips of width w m in x-direction as shown in figure, are carrying forward and return currents of +I and $-I$ in the z-direction. The strips are separated by distance of xm . The inductance per unit length of the configuration is measured to be $L \mathrm{H} / \mathrm{m}$. If the distance of separation between the strips in snow reduced to $\mathrm{x} / 2 \mathrm{~m}$, the inductance per unit length of the configuration is

(A) $2 L \mathrm{H} / \mathrm{m}$
(B) $L / 4 \mathrm{H} / \mathrm{m}$
(C) $L / 2 \mathrm{H} / \mathrm{m}$
(D) $4 L \mathrm{H} / \mathrm{m}$

YEAR 2003
TWO MARKS
MCQ 2.88 In the circuit of figure, the magnitudes of V_{L} and V_{C} are twice that of V_{R}. Given that $f=50 \mathrm{~Hz}$, the inductance of the coil is

(A) 2.14 mH
(B) 5.30 H
(C) 31.8 mH
(D) 1.32 H

MCQ 2.89 In figure, the potential difference between points P and Q is

(A) 12 V
(B) 10 V
(C) -6 V
(D) 8 V

MCQ 2.90 Two ac sources feed a common variable resistive load as shown in figure. Under the maximum power transfer condition, the power absorbed by the load resistance R_{L} is

(A) 2200 W
(B) 1250 W
(C) 1000 W
(D) 625 W

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

MCQ 2.91 In figure, the value of R is

(A) 10Ω
(B) 18Ω
(C) 24Ω
(D) 12Ω

MCQ 2.92 In the circuit shown in figure, the switch S is closed at time $(\mathrm{t}=0)$. The voltage across the inductance at $t=0^{+}$, is

(A) 2 V
(B) 4 V
(C) -6 V
(D) 8 V

MCQ 2.93 The h-parameters for a two-port network are defined by

$$
\left[\begin{array}{c}
E_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
E_{2}
\end{array}\right]
$$

For the two-port network shown in figure, the value of h_{12} is given by

(A) 0.125
(B) 0.167
(C) 0.625
(D) 0.25

MCQ 2.94 A point charge of +InC is placed in a space with permittivity of 8.85×10^{-12} F / m as shown in figure. The potential difference $V_{P Q}$ between two points P and Q at distance of 40 mm and 20 mm respectively fr0m the point charge is

(A) 0.22 kV
(B) -225 V
(C) -2.24 kV
(D) 15 V

MCQ 2.95 A parallel plate capacitor has an electrode area of $100 \mathrm{~mm}^{2}$, with spacing of 0.1 mm between the electrodes. The dielectric between the plates is air with a permittivity of $8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$. The charge on the capacitor is 100 V . The stored energy in the capacitor is
(A) 8.85 pJ
(B) 440 pJ
(C) 22.1 nJ
(D) 44.3 nJ

MCQ 2.96 A composite parallel plate capacitor is made up of two different dielectric material with different thickness (t_{1} and t_{2}) as shown in figure. The two different dielectric materials are separated by a conducting foil F. The voltage of the conducting foil is

(A) 52 V
(B) 60 V
(C) 67 V
(D) 33 V

YEAR 2002

MCQ 2.97 A current impulse, $5 \delta(t)$, is forced through a capacitor C. The voltage, $v_{c}(t)$, across the capacitor is given by
(A) $5 t$
(B) $5 u(t)-C$
(C) $\frac{5}{C} t$
(D) $\frac{5 u(t)}{C}$

MCQ 2.98 The graph of an electrical network has N nodes and B branches. The number of links L, with respect to the choice of a tree, is given by
(A) $B-N+1$
(B) $B+N$
(C) $N-B+1$
(D) $N-2 B-1$

MCQ 2.99 Given a vector field $\overrightarrow{\mathbf{F}}$, the divergence theorem states that

$$
\text { (A) } \int_{\mathrm{S}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}=\int_{\mathrm{V}} \vec{\nabla} \cdot \overrightarrow{\mathbf{F}} d V
$$

(B) $\int_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}=\int_{V} \vec{\nabla} \times \overrightarrow{\mathbf{F}} d V$
(C) $\int_{\mathrm{S}} \overrightarrow{\mathbf{F}} \times d \overrightarrow{\mathbf{S}}=\int_{V} \vec{\nabla} \cdot \overrightarrow{\mathbf{F}} d V$
(D) $\int_{S} \overrightarrow{\mathbf{F}} \times d \overrightarrow{\mathbf{S}}=\int_{V} \vec{\nabla} \cdot \overrightarrow{\mathbf{F}} d V$

MCQ 2.100 Consider a long, two-wire line composed of solid round conductors. The radius of both conductors. The radius of both conductors is 0.25 cm and the distance between their centres is 1 m . If this distance is doubled, then the inductance per unit length
(A) doubles
(B) halves
(C) increases but does not double
(D) decreases but does not halve

MCQ 2.101 A long wire composed of a smooth round conductor runs above and parallel to the ground (assumed to be a large conducting plane). A high voltage exists between the conductor and the ground. The maximum electric stress occurs at
(A) The upper surface of the conductor
(B) The lower surface of the conductor.
(C) The ground surface.
(D) midway between the conductor and ground.

YEAR 2002 TWO MARKS

MCQ 2.102 A two port network shown in Figure, is described by the following equations

$$
\begin{aligned}
& I_{1}=Y_{11} E_{1}+Y_{12} E_{2} \\
& I_{1}=Y_{21} E_{1}+Y_{22} E_{2}
\end{aligned}
$$

The admittance parameters, Y_{11}, Y_{12}, Y_{21} and Y_{22} for the network shown are (A) $0.5 \mathrm{mho}, 1 \mathrm{mho}, 2 \mathrm{mho}$ and 1 mho respectively
(B) $\frac{1}{3} \mathrm{mho},-\frac{1}{6} \mathrm{mho},=\frac{1}{6} \mathrm{mho}$ and $\frac{1}{3}$ mho respectively
(C) $0.5 \mathrm{mho}, 0.5 \mathrm{mho}, 1.5 \mathrm{mho}$ and 2 mho respectively
(D) $-\frac{2}{5}$ mho, $-\frac{3}{7}$ mho, $\frac{3}{7}$ mho and $\frac{2}{5}$ mho respectively

MCQ 2.103 In the circuit shown in Figure, what value of C will cause a unity power factor at the ac source?

(A) $68.1 \mu \mathrm{~F}$
(B) $165 \mu \mathrm{~F}$
(C) $0.681 \mu \mathrm{~F}$
(D) $6.81 \mu \mathrm{~F}$

MCQ 2.104 A series R-L-C circuit has $R=50 \Omega ; L=100 \mu \mathrm{H}$ and $C=1 \mu \mathrm{~F}$. The lower half power frequency of the circuit is
(A) 30.55 kHz
(B) 3.055 kHz
(C) 51.92 kHz
(D) 1.92 kHz

MCQ 2.105 A 10 V pulse of $10 \mu s$ duration is applied to the circuit shown in Figure, assuming that the capacitor is completely discharged prior to applying the pulse, the peak value of the capacitor voltage is

(A) 11 V
(B) 5.5 V
(C) 6.32 V
(D) 0.96 V

MCQ 2.106 In the circuit shown in Figure, it is found that the input voltage $\left(v_{i}\right)$ and current i are in phase. The coupling coefficient is $K=\frac{M}{\sqrt{L_{1} L_{2}}}$, where M is the mutual inductance between the two coils.
The value of K and the dot polarity of the coil $\mathrm{P}-\mathrm{Q}$ are

(A) $K=0.25$ and dot at P
(B) $K=0.5$ and dot at P
(C) $K=0.25$ and dot at Q
(C) $K=0.5$ and dot at Q

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

MCQ 2.107 Consider the circuit shown in Figure If the frequency of the source is 50 Hz , then a value of t_{0} which results in a transient free response is

(A) 0 ms
(B) 1.78 ms
(C) 2.71 ms
(D) 2.91 ms

MCQ 2.108 In the circuit shown in figure, the switch is closed at time $t=0$. The steady state value of the voltage v_{c} is

(A) 0 V
(B) 10 V
(C) 5 V
(D) 2.5 V

Common data Question for Q. 109-110*:
A constant current source is supplying 10 A current to a circuit shown in figure. The switch is initially closed for a sufficiently long time, is suddenly opened at $t=0$

MCQ 2.109 The inductor current $i_{L}(t)$ will be
(A) 10 A
(B) 0 A
(C) $10 e^{-2 t} \mathrm{~A}$
(D) $10\left(1-e^{-2 t}\right) \mathrm{A}$

MCQ 2.110 What is the energy stored in L, a long time after the switch is opened
(A) Zero
(B) 250 J
(C) 225 J
(D) 2.5 J

Common Data Question for Q. 111-112* :
An electrical network is fed by two ac sources, as shown in figure, Given that $Z_{1}=(1-j) \Omega, Z_{2}=(1+j) \Omega$ and $Z_{L}=(1+j 0) \Omega$.

MCQ 2.111 *Thevenin voltage and impedance across terminals X and Y respectively are
(A) $0 \mathrm{~V},(2+2 j) \Omega$
(B) $60 \mathrm{~V}, 1 \Omega$
(C) $0 \mathrm{~V}, 1 \Omega$
(D) $30 \mathrm{~V},(1+j) \Omega$

MCQ 2.112 * Current i_{L} through load is
(A) 0 A
(B) 1 A
(C) 0.5 A
(D) 2 A

MCQ 2.113 *In the resistor network shown in figure, all resistor values are 1Ω. A current of 1 A passes from terminal a to terminal b as shown in figure, Voltage between terminal a and b is

(A) 1.4 Volt
(B) 1.5 Volt
(C) 0 Volt
(D) 3 Volt

MCQ 2.114 In a series RLC circuit at resonance, the magnitude of the voltage developed across the capacitor
(A) is always zero
(B) can never be greater than the input voltage
(C) can be greater than the input voltage, however it is 90° out of phase with the input voltage
(D) can be greater than the input voltage, and is in phase with the input voltage.

MCQ 2.115 Two incandescent light bulbs of 40 W and 60 W rating are connected in series across the mains. Then
(A) the bulbs together consume 100 W
(B) the bulbs together consume 50 W
(C) the 60 W bulb glows brighter
(D) the 40 bulb glows brighter

MCQ 2.116 A unit step voltage is applied at $t=0$ to a series RL circuit with zero initial conditions.
(A) It is possible for the current to be oscillatory.
(B) The voltage across the resistor at $t=0^{+}$is zero.
(C) The energy stored in the inductor in the steady state is zero.
(D) The resistor current eventually falls to zero.

MCQ 2.117 Given two coupled inductors L_{1} and L_{2}, their mutual inductance M satisfies
(A) $M=\sqrt{L_{1}^{2}+L_{2}^{2}}$
(B) $M>\frac{\left(L_{1}+L_{2}\right)}{2}$
(C) $M>\sqrt{L_{1} L_{2}}$
(D) $M \leq \sqrt{L_{1} L_{2}}$

MCQ 2.118 A passive 2-port network is in a steady-state. Compared to its input, the steady state output can never offer
(A) higher voltage
(B) lower impedance
(C) greater power
(D) better regulation

YEAR 2001

TWO MARKS
MCQ 2.119 Consider the star network shown in Figure The resistance between terminals A and B with C open is 6Ω, between terminals B and C with A open is 11 Ω, and between terminals C and A with B open is 9Ω. Then

(A) $R_{A}=4 \Omega, R_{B}=2 \Omega, R_{C}=5 \Omega$
(B) $R_{A}=2 \Omega, R_{B}=4 \Omega, R_{C}=7 \Omega$
(C) $R_{A}=3 \Omega, R_{B}=3 \Omega, R_{C}=4 \Omega$
(D) $R_{A}=5 \Omega, R_{B}=1 \Omega, R_{C}=10 \Omega$

MCQ 2.120 A connected network of $N>2$ nodes has at most one branch directly connecting any pair of nodes. The graph of the network
(A) Must have at least N branches for one or more closed paths to exist
(B) Can have an unlimited number of branches
(C) can only have at most N branches
(D) Can have a minimum number of branches not decided by N

MCQ 2.121 A 240 V single-phase ac source is connected to a load with an impedance of $10 \angle 60^{\circ} \Omega$. A capacitor is connected in parallel with the load. If the capacitor suplies 1250 VAR, the real power supplied by the source is
(A) 3600 W
(B) 2880 W
(C) 240 W
(D) 1200 W

Common Data Questions Q.122-123*:

For the circuit shown in figure given values are $R=10 \Omega, C=3 \mu \mathrm{~F}, L_{1}=40 \mathrm{mH}, L_{2}=10 \mathrm{mH}$ and $M=10 \mathrm{mH}$

MCQ 2.122 The resonant frequency of the circuit is
A) $\frac{1}{3} \times 10^{5} \mathrm{rad} / \mathrm{sec}$
(B) $\frac{1}{2} \times 10^{5} \mathrm{rad} / \mathrm{sec}$
(C) $\frac{1}{\sqrt{21}} \times 10^{5} \mathrm{rad} / \mathrm{sec}$
(D) $\frac{1}{9} \times 10^{5} \mathrm{rad} / \mathrm{sec}$

MCQ 2.123 The Q-factor of the circuit in Q. 82 is
(A) 10
(B) 350
(C) 101
(D) 15

MCQ 2.124 Given the potential function in free space to be $V(x)=\left(50 x^{2}+50 y^{2}+50 z^{2}\right)$ volts, the magnitude (in volts/metre) and the direction of the electric field at a point $(1,-1,1)$, where the dimensions are in metres, are
(A) $100 ;(\hat{i}+\hat{j}+\hat{k})$
(B) $100 / \sqrt{3} ;(\hat{i}-\hat{j}+\hat{k})$
(C) $100 \sqrt{3} ;[(-\hat{i}+\hat{j}-\hat{k}) / \sqrt{3}]$
(D) $100 \sqrt{3} ;[(-\hat{i}-\hat{j}-\hat{k}) / \sqrt{3}]$

MCQ 2.125 The hysteresis loop of a magnetic material has an area of $5 \mathrm{~cm}^{2}$ with the scales given as $1 \mathrm{~cm}=2 \mathrm{AT}$ and $1 \mathrm{~cm}=50 \mathrm{mWb}$. At 50 Hz , the total hysteresis loss is.
(A) 15 W
(B) 20 W
(C) 25 W
(D) 50 W

MCQ 2.126 The conductors of a 10 km long, single phase, two wire line are separated by a distance of 1.5 m . The diameter of each conductor is 1 cm . If the conductors are of copper, the inductance of the circuit is
(A) 50.0 mH
(B) 45.3 mH
(C) 23.8 mH
(D) 19.6 mH

SOLUTION

SOL 2.1 Option (C) is correct.

Applying nodal analysis at top node.

$$
\begin{gathered}
\frac{\boldsymbol{V}_{1}+1 \angle 0^{\circ}}{1}+\frac{\boldsymbol{V}_{1}+1 \angle 0^{\circ}}{j 1}=1 \angle 0^{\circ} \\
\boldsymbol{V}_{1}(j 1+1)+j 1+1 \angle 0^{\circ}=j 1 \\
\boldsymbol{V}_{1}=\frac{-1}{1+j 1}
\end{gathered}
$$

Current

$$
\boldsymbol{I}_{1}=\frac{\boldsymbol{V}_{1}+1 / 0^{\circ}}{j 1}=\frac{-\frac{1}{1+j}+1}{j 1}=\frac{j}{(1+j) j}=\frac{1}{1+j} \mathrm{~A}
$$

SOL 2.2 Option (A) is correct.
We put a test source between terminal 1, 2 to obtain equivalent impedance

$$
Z_{T h}=\frac{V_{\text {test }}}{I_{\text {test }}}
$$

By applying KCL at top right node

$$
\frac{V_{\text {test }}}{9 \mathrm{k}+1 \mathrm{k}}+\frac{V_{\text {test }}}{100}-99 I_{b}=I_{\text {test }}
$$

$$
\begin{align*}
\frac{V_{\text {test }}}{10 \mathrm{k}}+\frac{V_{\text {test }}}{100}-99 I_{b} & =I_{\text {test }} \tag{i}\\
I_{b} & =-\frac{V_{\text {test }}}{9 k+1 k}=-\frac{V_{\text {test }}}{10 \mathrm{k}}
\end{align*}
$$

But
Substituting I_{b} into equation (i), we have

$$
\begin{aligned}
\frac{V_{\text {test }}}{10 \mathrm{k}}+\frac{V_{\text {test }}}{100}+\frac{99 V_{\text {test }}}{10 \mathrm{k}} & =I_{\text {test }} \\
\frac{100 V_{\text {test }}}{10 \times 10^{3}}+\frac{V_{\text {test }}}{100} & =I_{\text {test }} \\
\frac{2 V_{\text {test }}}{100} & =I_{\text {test }} \\
Z_{\text {Th }} & =\frac{V_{\text {test }}}{I_{\text {test }}}=50 \Omega
\end{aligned}
$$

SOL 2.3 Option (C) is correct.

$$
\begin{aligned}
G(s) & =\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)} \\
G(j \omega) & =\frac{\left(-\omega^{2}+9\right)(j \omega+2)}{(j \omega+1)(j \omega+3)(j \omega+4)}
\end{aligned}
$$

The steady state output will be zero if

$$
\begin{aligned}
|G(j \omega)| & =0 \\
-\omega^{2}+9 & =0 \\
\omega & =3 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

SOL 2.4 Option (B) is correct.
In phasor form

$$
\begin{aligned}
Z & =4-j 3 \\
Z & =5 \angle-36.86^{\circ} \Omega \\
\boldsymbol{I} & =5 \angle 100^{\circ} \mathrm{A}
\end{aligned}
$$

Average power delivered.

$$
P_{\text {avg. }}=\frac{1}{2}|\boldsymbol{I}|^{2} Z \cos \theta=\frac{1}{2} \times 25 \times 5 \cos 36.86^{\circ}=50 \mathrm{~W}
$$

Alternate method:

$$
\begin{aligned}
Z & =(4-j 3) \Omega \\
I & =5 \cos (100 \pi t+100) \mathrm{A} \\
P_{\text {avg }} & =\frac{1}{2} \operatorname{Re}\left\{|I|^{2} Z\right\}=\frac{1}{2} \times \operatorname{Re}\left\{(5)^{2} \times(4-j 3)\right\}=\frac{1}{2} \times 100=50 \mathrm{~W}
\end{aligned}
$$

SOL 2.5 Option (D) is correct.
The s-domain equivalent circuit is shown as below.

$$
I(s)=\frac{v_{c}(0) / s}{\frac{1}{C_{1} s}+\frac{1}{C_{2} s}}=\frac{v_{c}(0)}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}
$$

$$
I(s)=\left(\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)(12 \mathrm{~V})
$$

$$
I(s)=12 C_{e q}
$$

$$
v_{C}(0)=12 \mathrm{~V}
$$

Taking inverse Laplace transform for the current in time domain,

$$
\begin{equation*}
i(t)=12 C_{e q} \delta(t) \tag{Impulse}
\end{equation*}
$$

SOL 2.6 Option (A) is correct.
In the given circuit,
So current in the branch,

$$
\begin{aligned}
V_{A}-V_{B} & =6 \mathrm{~V} \\
I_{A B} & =\frac{6}{2}=3 \mathrm{~A}
\end{aligned}
$$

We can see, that the circuit is a one port circuit looking from terminal $B D$ as shown below

For a one port network current entering one terminal, equals the current leaving the second terminal. Thus the outgoing current from A to B will be equal to the incoming current from D to C as shown

$$
I_{D C}=I_{A B}=3 \mathrm{~A}
$$

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

The total current in the resistor 1Ω will be

$$
\begin{aligned}
I_{1} & =2+I_{D C} \\
& =2+3=5 \mathrm{~A} \\
\text { So, } \quad V_{C D} & =1 \times\left(-I_{1}\right)=-5 \mathrm{~V}
\end{aligned}
$$

SOL 2.7 Option (A) is correct.
We obtain Thevenin equivalent of circuit B.

Thevenin Impedance :

$$
Z_{T h}=R
$$

Thevenin Voltage :

$$
\boldsymbol{V}_{T h}=3 \angle 0^{\circ} \mathrm{V}
$$

Now, circuit becomes as

Current in the circuit, $\quad I_{1}=\frac{10-3}{2+R}$
Power transfer from circuit A to B

$$
\begin{aligned}
P & =\left(I_{1}^{2}\right)^{2} R+3 I_{1} \\
& =\left[\frac{10-3}{2+R}\right]^{2} R+3\left[\frac{10-3}{2+R}\right]=\frac{49 R}{(2+R)^{2}}+\frac{21}{(2+R)} \\
& =\frac{49 R+21(2+R)}{(2+R)^{2}}=\frac{42+70 R}{(2+R)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d P}{d R}=\frac{(2+R)^{2} 70-(42+70 R) 2}{}(2+R) \\
&(2+R)^{4}=0 \\
&(2+R)[(2+R) 70-(42+70 R) 2]=0 \\
& 140+70 R-84-140 R=0 \\
& 56=70 R \\
& R=0.8 \Omega
\end{aligned}
$$

SOL 2.8 Option (C) is correct.
When 10 V is connected at port A the network is

Now, we obtain Thevenin equivalent for the circuit seen at load terminal, let Thevenin voltage is $V_{T h, 10 \mathrm{v}}$ with 10 V applied at port A and Thevenin resistance is $R_{T h}$.

$$
I_{L}=\frac{V_{T h, 10} \mathrm{v}}{R_{T h}+R_{L}}
$$

For $R_{L}=1 \Omega, I_{L}=3 \mathrm{~A}$

$$
\begin{equation*}
3=\frac{V_{T h, 10 \mathrm{v}}}{R_{T h}+1} \tag{i}
\end{equation*}
$$

For $R_{L}=2.5 \Omega, I_{L}=2 \mathrm{~A}$

$$
\begin{equation*}
2=\frac{V_{T h, 10 \mathrm{~V}}}{R_{T h}+2.5} \tag{ii}
\end{equation*}
$$

Dividing above two

$$
\begin{aligned}
\frac{3}{2} & =\frac{R_{T h}+2.5}{R_{T h}+1} \\
3 R_{T h}+3 & =2 R_{T h}+5 \\
R_{T h} & =2 \Omega
\end{aligned}
$$

Substituting $R_{T h}$ into equation (i)

$$
V_{T h, 10 \mathrm{v}}=3(2+1)=9 \mathrm{~V}
$$

Note that it is a non reciprocal two port network. Thevenin voltage seen at port B depends on the voltage connected at port A. Therefore we took subscript $V_{T h, 10 \mathrm{v}}$. This is Thevenin voltage only when 10 V source is connected at input port A. If the voltage connected to port A is different, then Thevenin voltage will be different. However, Thevenin's resistance remains same.
Now, the circuit is

For $R_{L}=7 \Omega, \quad I_{L}=\frac{V_{T h, 10 \mathrm{~V}}}{2+R_{L}}=\frac{9}{2+7}=1 \mathrm{~A}$
SOL 2.9 Option (B) is correct.
Now, when 6 V connected at port A let Thevenin voltage seen at port B is $V_{T h, 6 \mathrm{~V}}$. Here $R_{L}=1 \Omega$ and $I_{L}=\frac{7}{3} \mathrm{~A}$

$$
V_{T h, 6 \mathrm{~V}}=R_{T h} \times \frac{7}{3}+1 \times \frac{7}{3}=2 \times \frac{7}{3}+\frac{7}{3}=7 \mathrm{~V}
$$

This is a linear network, so $V_{T h}$ at port B can be written as

$$
V_{T h}=V_{1} \alpha+\beta
$$

where V_{1} is the input applied at port A.
We have $V_{1}=10 \mathrm{~V}, V_{T h, 10 \mathrm{v}}=9 \mathrm{~V}$

$$
\begin{equation*}
9=10 \alpha+\beta \tag{i}
\end{equation*}
$$

When $V_{1}=6 \mathrm{~V}, V_{T h, 6 \mathrm{~V}}=9 \mathrm{~V}$

$$
\begin{equation*}
7=6 \alpha+\beta \tag{ii}
\end{equation*}
$$

Solving (i) and (ii)

$$
\alpha=0.5, \beta=4
$$

Thus, with any voltage V_{1} applied at port A, Thevenin voltage or open circuit voltage at port B will be

$$
V_{T h, V_{1}}=0.5 V_{1}+4
$$

For $\quad \begin{aligned} V_{1} & =8 \mathrm{~V} \\ V_{T h, 8 \mathrm{~V}} & =0.5 \times 8+4=8=V_{o c} \quad \text { (open circuit voltage) }\end{aligned}$

SOL 2.10 Option (A) is correct.
By taking $\boldsymbol{V}_{1}, \boldsymbol{V}_{2}$ and \boldsymbol{V}_{3} all are phasor voltages.

$$
\boldsymbol{V}_{1}=\boldsymbol{V}_{2}+\boldsymbol{V}_{3}
$$

Magnitude of $\boldsymbol{V}_{1}, \boldsymbol{V}_{2}$ and \boldsymbol{V}_{3} are given as

$$
V_{1}=220 \mathrm{~V}, V_{2}=122 \mathrm{~V}, V_{3}=136 \mathrm{~V}
$$

Since voltage across R is in same phase with \boldsymbol{V}_{1} and the voltage V_{3} has a phase difference of θ with voltage \boldsymbol{V}_{1}, we write in polar form

$$
\begin{aligned}
\boldsymbol{V}_{1} & =V_{2} / 0^{\circ}+V_{3} \angle \theta \\
\boldsymbol{V}_{1} & =V_{2}+V_{3} \cos \theta+j V_{3} \sin \theta \\
\boldsymbol{V}_{1} & =\left(V_{2}+V_{3} \cos \theta\right)+j V_{3} \sin \theta \\
\left|\boldsymbol{V}_{1}\right| & =\sqrt{\left(V_{2}+V_{3} \cos \theta\right)^{2}+\left(V_{2} \sin \theta\right)^{2}} \\
220 & =\sqrt{(122+136 \cos \theta)^{2}+(136 \sin \theta)^{2}}
\end{aligned}
$$

By solving, power factor

$$
\cos \theta=0.45
$$

SOL 2.11 Option (B) is correct.
Voltage across load resistance

$$
V_{R L}=V_{3} \cos \theta=136 \times 0.45=61.2 \mathrm{~V}
$$

Power absorbed in R_{L}

$$
P_{L}=\frac{V_{R L}^{2}}{R_{L}}=\frac{(61.2)^{2}}{5} \simeq 750 \mathrm{~W}
$$

SOL 2.12 Option (B) is correct.
The frequency domains equivalent circuit at $\omega=1 \mathrm{rad} / \mathrm{sec}$.

Since the capacitor and inductive reactances are equal in magnitude, the net impedance of that branch will become zero.
Equivalent circuit

Current

$$
i(t)=\frac{\sin t}{1 \Omega}=(1 \sin t) \mathrm{A}
$$

rms value of current

$$
i_{\mathrm{rms}}=\frac{1}{\sqrt{2}} \mathrm{~A}
$$

SOL 2.13 Option (D) is correct.
Voltage in time domain

$$
v(t)=100 \sqrt{2} \cos (100 \pi t)
$$

Current in time domain

$$
i(t)=10 \sqrt{2} \sin (100 \pi t+\pi / 4)
$$

Applying the following trigonometric identity

So,

$$
\begin{aligned}
\sin (\phi) & =\cos \left(\phi-90^{\circ}\right) \\
i(t) & =10 \sqrt{2} \cos (100 \pi t+\pi / 4-\pi / 2) \\
& =10 \sqrt{2} \cos (100 \pi t-\pi / 4)
\end{aligned}
$$

In phasor form, $\quad \boldsymbol{I}=\frac{10 \sqrt{2}}{\sqrt{2}} \angle-\pi / 4$

SOL 2.14 Option (A) is correct.

Power transferred to the load

$$
P=I^{2} R_{L}=\left(\frac{10}{R_{t h}+R_{L}}\right)^{2} R_{L}
$$

For maximum power transfer $R_{t h}$, should be minimum.

$$
\begin{aligned}
R_{t h} & =\frac{6 R}{6+R}=0 \\
R & =0
\end{aligned}
$$

Note: Since load resistance is constant so we choose a minimum value of $R_{t h}$

SOL 2.15 Option (C) is correct.

$$
\text { Power loss }=\frac{V_{\text {rated }}^{2}}{R_{p}}=\frac{\left(5 \times 10^{3}\right)^{2}}{1.25 \times 10^{6}}=20 \mathrm{~W}
$$

For an parallel combination of resistance and capacitor

$$
\tan \delta=\frac{1}{\omega C_{p} R_{p}}=\frac{1}{2 \pi \times 50 \times 1.25 \times 0.102}=\frac{1}{40}=0.025
$$

SOL 2.16 Option (C) is correct.
Charge

$$
\begin{array}{ll}
Q=C V=\frac{\varepsilon_{0} \varepsilon_{r} A}{d} V=\left(\varepsilon_{0} \varepsilon_{r} A\right) \frac{V}{d} & C=\frac{\varepsilon_{0} \varepsilon_{r} A}{d} \\
Q=Q_{\max }
\end{array}
$$

We have $\varepsilon_{0}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}, \varepsilon_{r}=2.26, A=20 \times 40 \mathrm{~cm}^{2}$

$$
\frac{V}{d}=50 \times 10^{3} \mathrm{kV} / \mathrm{cm}
$$

Maximum electrical charge on the capacitor
when

$$
\begin{aligned}
& \frac{V}{d}=\left(\frac{V}{d}\right)_{\max }=50 \mathrm{kV} / \mathrm{cm} \\
& Q=8.85 \times 10^{-14} \times 2.26 \times 20 \times 40 \times 50 \times 10^{3}=8 \mu \mathrm{C}
\end{aligned}
$$

Thus,

SOL 2.17 Option (C) is correct.

$$
v_{i}=100 \sqrt{2} \sin (100 \pi t) \mathrm{V}
$$

Fundamental component of current

$$
i_{i_{1}}=10 \sqrt{2} \sin (100 \pi t-\pi / 3) \mathrm{A}
$$

Input power factor

$$
p f=\frac{I_{1(r m s)}}{I_{r m s}} \cos \phi_{1}
$$

$I_{1(r m s)}$ is rms values of fundamental component of current and $I_{r m s}$ is the rms value of converter current.

$$
p f=\frac{10}{\sqrt{10^{2}+5^{2}+2^{2}}} \cos \pi / 3=0.44
$$

SOL 2.18 Option (B) is correct.
Only the fundamental component of current contributes to the mean ac
input power. The power due to the harmonic components of current is zero.

$$
\text { So, } \quad P_{\text {in }}=V_{r m s} I_{1 r m s} \cos \phi_{1}=100 \times 10 \cos \pi / 3=500 \mathrm{~W}
$$

SOL 2.19 Option (B) is correct.
Power delivered by the source will be equal to power dissipated by the resistor.

$$
P=V_{s} I_{s} \cos \pi / 4=1 \times \sqrt{2} \cos \pi / 4=1 \mathrm{~W}
$$

SOL 2.20 Option (D) is correct.

$$
\begin{aligned}
\overline{I_{C}} & =\bar{I}_{s}-\bar{I}_{R L}=\sqrt{2} / \pi / 4-\sqrt{2} /-\pi / 4 \\
& =\sqrt{2}\{(\cos \pi / 4+j \sin \pi / 4)-(\cos \pi / 4-j \sin \pi / 4)\} \\
& =2 \sqrt{2} j \sin \pi / 4=2 j
\end{aligned}
$$

SOL 2.21 Option (B) is correct.
For $t<0$, the switch was closed for a long time so equivalent circuit is

Voltage across capacitor at $t=0$

$$
v_{c}(0)=\frac{5}{4 \times 1}=4 \mathrm{~V}
$$

Now switch is opened, so equivalent circuit is

For capacitor at $t=0^{+}$

$$
v_{c}\left(0^{+}\right)=v_{c}(0)=4 \mathrm{~V}
$$

current in 4Ω resistor at $t=0^{+}, i_{1}=\frac{v_{c}\left(0^{+}\right)}{4}=1 \mathrm{~A}$
so current in capacitor at $t=0^{+}, i_{c}\left(0^{+}\right)=i_{1}=1 \mathrm{~A}$

SOL 2.22 Option (B) is correct.
Thevenin equivalent across 1Ω resistor can be obtain as following
Open circuit voltage $\quad v_{t h}=100 \mathrm{~V} \quad(i=0)$
GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia
Published by: NODIA and COMPANY

Short circuit current $\quad i_{s c}=100 \mathrm{~A} \quad\left(v_{t h}=0\right)$
So,

$$
R_{t h}=\frac{v_{t h}}{i_{s c}}=\frac{100}{100}=1 \Omega
$$

Equivalent circuit is

SOL 2.23 Option (B) is correct.
The circuit is

Current in $R \Omega$ resistor is

$$
i=2-1=1 \mathrm{~A}
$$

Voltage across 12Ω resistor is

$$
\begin{aligned}
V_{A} & =1 \times 12=12 \mathrm{~V} \\
i & =\frac{V_{A}-6}{R}=\frac{12-6}{1}=6 \Omega
\end{aligned}
$$

SOL 2.24 Option (C) is correct.

$$
\begin{array}{ll}
V_{1}=Z_{11} I_{1}+Z_{12} I_{2} & V_{1}^{\prime}=Z^{\prime}{ }_{11} I_{1}^{\prime}+Z^{\prime}{ }_{12} I_{2}^{\prime} \\
V_{2}=Z_{21} I_{1}+Z_{22} I_{2} & V_{2}^{\prime}=Z^{\prime}{ }_{21} I_{1}^{\prime}+Z^{\prime}{ }_{22} I_{2}^{\prime}
\end{array}
$$

Here, $I_{1}=I_{1}^{\prime}, I_{2}=I^{\prime}{ }_{2}$
When $R=1 \Omega$ is connected

$$
\begin{aligned}
V_{1}^{\prime} & =V_{1}+I_{1}^{\prime} \times 1=V_{1}+I_{1} \\
V_{1}^{\prime} & =Z_{11} I_{1}+Z_{12} I_{2}+I_{1} \\
V_{1}^{\prime} & =\left(Z_{11}+1\right) I_{1}+Z_{12} I_{2} \\
Z_{11}^{\prime} & =Z_{11}+1
\end{aligned}
$$

$$
Z_{12}^{\prime}=Z_{12}
$$

Similarly for output port

$$
\begin{aligned}
V_{2}^{\prime} & =Z^{\prime}{ }_{21} I_{1}^{\prime}+Z^{\prime}{ }_{22} I^{\prime}{ }_{2} \\
& =Z^{\prime}{ }_{21} I_{1}+Z^{\prime}{ }_{22} I_{2}
\end{aligned}
$$

So, $Z^{\prime}{ }_{21}=Z_{21}, Z^{\prime}{ }_{22}=Z_{22}$
Z-matrix is $\quad Z=\left[\begin{array}{cc}Z_{11}+1 & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]$

SOL 2.25 Option (A) is correct.

In the bridge

$$
R_{1} R_{4}=R_{2} R_{3}=1
$$

So it is a balanced bridge

$$
I=0 \mathrm{~mA}
$$

SOL 2.26 Option (D) is correct.
Resistance of the bulb rated $200 \mathrm{~W} / 220 \mathrm{~V}$ is

$$
R_{1}=\frac{V^{2}}{P_{1}}=\frac{(220)^{2}}{200}=242 \Omega
$$

Resistance of $100 \mathrm{~W} / 220 \mathrm{~V}$ lamp is

$$
R_{T}=\frac{V^{2}}{P_{2}}=\frac{(220)^{2}}{100}=484 \Omega
$$

To connect in series

$$
\begin{aligned}
R_{T} & =n \times R_{1} \\
484 & =n \times 242 \\
n & =2
\end{aligned}
$$

SOL 2.27 Option (D) is correct.
For $t<0, S_{1}$ is closed and S_{2} is opened so the capacitor C_{1} will charged upto 3 volt.

$$
V_{C 1}(0)=3 \text { Volt }
$$

Now when switch positions are changed, by applying charge conservation

$$
\begin{aligned}
C_{e q} V_{C_{1}}\left(0^{+}\right) & =C_{1} V_{C_{1}}\left(0^{+}\right)+C_{2} V_{C_{2}}\left(0^{+}\right) \\
(2+1) \times 3 & =1 \times 3+2 \times V_{C_{2}}\left(0^{+}\right) \\
9 & =3+2 V_{C_{2}}\left(0^{+}\right) \\
V_{C_{2}}\left(0^{+}\right) & =3 \text { Volt }
\end{aligned}
$$

SOL 2.28 Option (A) is correct.

Applying KVL in the input loop
$v_{1}-i_{1}(1+1) \times 10^{3}-\frac{1}{j \omega C}\left(i_{1}+49 i_{1}\right)=0$

$$
v_{1}=2 \times 10^{3} i_{1}+\frac{1}{j \omega C} 50 i_{1}
$$

Input impedance, $\quad Z_{1}=\frac{v_{1}}{i_{1}}=2 \times 10^{3}+\frac{1}{j \omega(C / 50)}$
Equivalent capacitance, $C_{e q}=\frac{C}{50}=\frac{100 \mu \mathrm{~F}}{50}=2 \mu \mathrm{~F}$

SOL 2.29 Option (B) is correct.
Voltage across 2Ω resistor, $V_{S}=2 \mathrm{~V}$
Current, $\quad I_{2 \Omega}=\frac{V_{S}}{2}=\frac{4}{2}=2 \mathrm{~A}$
To make the current double we have to take

$$
V_{S}=8 \mathrm{~V}
$$

SOL 2.30 Option (B) is correct.
To obtain equivalent Thevenin circuit, put a test source between terminals AB

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

Applying KCL at super node

$$
\begin{align*}
& \frac{V_{P}-5}{2}+\frac{V_{P}}{2}+\frac{V_{S}}{1}=I_{S} \\
& V_{P}-5+V_{P}+2 V_{S}=2 I_{S} \\
& 2 V_{P}+2 V_{S}=2 I_{s}+5 \\
& V_{P}+V_{S}=I_{S}+2.5 \tag{1}\\
& V_{P}-V_{S}=3 V_{S} \\
& \Rightarrow \quad V_{P}=4 V_{S} \\
& \text { So, } \\
& 4 V_{S}+V_{S}=I_{S}+2.5 \\
& 5 V_{S}=I_{S}+2.5 \\
& V_{S}=0.2 I_{S}+0.5 \tag{2}
\end{align*}
$$

For Thevenin equivalent circuit

$$
\begin{equation*}
V_{S}=I_{S} R_{t h}+V_{t h} \tag{3}
\end{equation*}
$$

By comparing (2) and (3),
Thevenin resistance $R_{t h}=0.2 \mathrm{k} \Omega$

SOL 2.31 Option (D) is correct.
From above $\quad V_{t h}=0.5 \mathrm{~V}$

SOL 2.32 Option (A) is correct.
No. of chords is given as

$$
l=b-n+1
$$

$b \rightarrow$ no. of branches
$n \rightarrow$ no. of nodes
$l \rightarrow$ no. of chords
$b=6, \quad n=4$

$$
l=6-4+1=3
$$

SOL 2.33 Option (A) is correct.
Impedance $Z_{o}=2.38-j 0.667 \Omega$
Constant term in impedance indicates that there is a resistance in the circuit.
Assume that only a resistance and capacitor are in the circuit, phase
difference in Thevenin voltage is given as

$$
\begin{aligned}
\theta & =-\tan ^{-1}(\omega C R) \quad \text { (Due to capacitor) } \\
Z_{o} & =R-\frac{j}{\omega C}
\end{aligned}
$$

So, $\quad \frac{1}{\omega C}=0.667$
and $\quad R=2.38 \Omega$

$$
\theta=-\tan ^{-1}\left(\frac{1 \times 2.38}{0.667}\right)=-74.34^{\circ} \neq-15.9^{\circ}
$$

given $\quad V_{o c}=3.71 \angle-15.9^{\circ}$
So, there is an inductor also connected in the circuit

SOL 2.34 Option (C) is correct.
Time constant of the circuit can be calculated by simplifying the circuit as follows

$$
C_{e q}=\frac{2}{3} \mathrm{~F}
$$

Equivalent Resistance

$$
\begin{aligned}
R_{e q} & =3+3=6 \Omega \\
\text { Time constant } \quad \tau & =R_{e q} C_{e q}=6 \times \frac{2}{3}=4 \mathrm{sec}
\end{aligned}
$$

SOL 2.35 Option (C) is correct.
Impedance of the circuit is

$$
\begin{aligned}
Z & =j \omega L+\frac{\frac{1}{j \omega C} R}{\frac{1}{j \omega C}+R}=j \omega L+\frac{R}{1+j \omega C R} \times \frac{1-j \omega C R}{1-j \omega C R} \\
& =j \omega L+\frac{R(1-j \omega C R)}{1+\omega^{2} C^{2} R^{2}}=\frac{j \omega L\left(1+\omega^{2} C^{2} R^{2}\right)+R-j \omega C R^{2}}{1+\omega^{2} C^{2} R^{2}} \\
& =\frac{R}{1+\omega^{2} C^{2} R^{2}}+\frac{j\left[\omega L\left(1+\omega^{2} C^{2} R^{2}\right)-\omega C R^{2}\right]}{1+\omega^{2} C^{2} R^{2}}
\end{aligned}
$$

For resonance $\operatorname{Im}(Z)=0$
So, $\omega L\left(1+\omega^{2} C^{2} R^{2}\right)=\omega C R^{2}$
$L=0.1 \mathrm{H}, C=1 \mathrm{~F}, R=1 \Omega$
So, $\quad \omega \times 0.1\left[1+\omega^{2}(1)(1)\right]=\omega(1)(1)^{2}$
$1+\omega^{2}=10$
$\Rightarrow \quad \omega=\sqrt{9}=3 \mathrm{rad} / \mathrm{sec}$
SOL 2.36 Option (A) is correct.
By applying KVL in the circuit

$$
V_{a b}-2 i+5=0
$$

$i=1 \mathrm{~A}, \quad V_{a b}=2 \times 1-5=-3$ Volt

SOL 2.37 Option (C) is correct.
Charge stored at $t=5 \mu \mathrm{sec}$

$$
Q=\int_{0}^{5} i(t) d t=\text { area under the curve }
$$

SOL 2.38 Option (D) is correct.
Initial voltage across capacitor

$$
V_{0}=\frac{Q_{o}}{C}=\frac{13 \mathrm{nC}}{0.3 \mathrm{nF}}=43.33 \text { Volt }
$$

When capacitor is connected across an inductor it will give sinusoidal esponse as

$$
\begin{aligned}
v_{c}(t) & =V_{o} \cos \omega_{o} t \\
\text { where } \quad \omega_{o} & =\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.3 \times 10^{-9} \times 0.6 \times 10^{-3}}} \\
& =2.35 \times 10^{6} \mathrm{rad} / \mathrm{sec} \\
\text { At } t=1 \mu \mathrm{sec}, \quad v_{c}(t) & =43.33 \cos \left(2.35 \times 10^{6} \times 1 \times 10^{-6}\right) \\
& =43.33 \times(-0.70)=-30.44 \mathrm{~V}
\end{aligned}
$$

SOL 2.39 Option (B) is correct.
By writing node equations at node A and B

$$
\begin{aligned}
\frac{V_{a}-5}{1}+\frac{V_{a}-0}{1} & =0 \\
2 V_{a}-5 & =0 \\
V_{a} & =2.5 \mathrm{~V}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \frac{V_{b}-4 V_{a b}}{3}++\frac{V_{b}-0}{1}=0 \\
& \frac{V_{b}-4\left(V_{a}-V_{b}\right)}{3}+V_{b}=0
\end{aligned}
$$

$$
V_{b}-4\left(2.5-V_{b}\right)+3 V_{b}=0
$$

$$
8 V_{b}-10=0
$$

$$
V_{b}=1.25 \mathrm{~V}
$$

Current

$$
i=\frac{V_{b}}{1}=1.25 \mathrm{~A}
$$

SOL 2.40 Option () is correct.

SOL 2.41 Option (B) is correct.
Here two capacitance C_{1} and C_{2} are connected in series, so equivalent capacitance is

$$
C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$

$C_{1} \quad$ Glass $\quad \varepsilon_{r 1}=8 ; \quad d_{1}=4 \mathrm{~mm}$
C_{2} Paper $\varepsilon_{r 2}=2 ; d_{2}=2 \mathrm{~mm}$

$$
\begin{aligned}
C_{1} & =\frac{\varepsilon_{0} \varepsilon_{r 1} A}{d_{1}}=\frac{8.85 \times 10^{-12} \times 8 \times 500 \times 500 \times 10^{-6}}{4 \times 10^{-3}} \\
& =442.5 \times 10^{-11} \mathrm{~F} \\
C_{2} & =\frac{\varepsilon_{0} \varepsilon_{r 2} A}{d_{2}}=\frac{8.85 \times 10^{-12} \times 2 \times 500 \times 500 \times 10^{-6}}{2 \times 10^{-3}}
\end{aligned}
$$

$$
\begin{aligned}
& =221.25 \times 10^{-11} \mathrm{~F} \\
C_{e q} & =\frac{442.5 \times 10^{-11} \times 221.25 \times 10^{-11}}{442.5 \times 10^{-11}+221.25 \times 10^{-11}}=147.6 \times 10^{-11} \\
& \simeq 1476 \mathrm{pF}
\end{aligned}
$$

SOL 2.42 Option (B) is correct.
Circumference $\quad l=300 \mathrm{~mm}$
no. of turns $\quad n=300$
Cross sectional area $\quad A=300 \mathrm{~mm}^{2}$
Inductance of coil

$$
\begin{aligned}
L & =\frac{\mu_{0} n^{2} A}{l}=\frac{4 \pi \times 10^{-7} \times(300)^{2} \times 300 \times 10^{-6}}{\left(300 \times 10^{-3}\right)} \\
& =113.04 \mu \mathrm{H}
\end{aligned}
$$

Option (A) is correct.
Divergence of a vector field is given as
Divergence $=\nabla \cdot V$
In cartesian coordinates

$$
\begin{aligned}
\nabla & =\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k} \\
\text { So } \quad \nabla \cdot V & =\frac{\partial}{\partial x}[-(x \cos x y+y)]+\frac{\partial}{\partial y}[(y \cos x y)]+\frac{\partial}{\partial z}\left[\left(\sin z^{2}+x^{2}+y^{2}\right)\right] \\
& =-x(-\sin x y) y+y(-\sin x y) x+2 z \cos z^{2}=2 z \cos z^{2}
\end{aligned}
$$

SOL 2.44 Option (A) is correct.
Writing KVL for both the loops

$$
\begin{align*}
V-3\left(I_{1}+I_{2}\right)-V_{x}-0.5 \frac{d I_{1}}{d t} & =0 \\
V-3 I_{1}-3 I_{2}-V_{x}-0.5 \frac{d I_{1}}{d t} & =0 \tag{1}
\end{align*}
$$

In second loop

$$
\begin{align*}
&-5 I_{2}+0.2 V_{x}+0.5 \frac{d I_{1}}{d t}=0 \\
& I_{2}=0.04 V_{x}+0.1 \frac{d I_{1}}{d t} \tag{2}
\end{align*}
$$

Put I_{2} from eq(2) into eq(2)

$$
\begin{aligned}
& V-3 I_{1}-3\left[0.04 V_{x}+0.1 \frac{d I_{1}}{d t}\right]-V_{x}-0.5 \frac{d I_{1}}{d t}=0 \\
& 0.8 \frac{d I_{1}}{d t}=-1.12 V_{x}-3 I_{1}+V \\
& \frac{d I_{1}}{d t}=-1.4 V_{x}-3.75 I_{1}+\frac{5}{4} V
\end{aligned}
$$

SOL 2.45 Option (A) is correct.
Impedance of the given network is

$$
\begin{aligned}
& Z=R+j\left(\omega L-\frac{1}{\omega C}\right) \\
& \text { Admittance } Y=\frac{1}{Z}=\frac{1}{R+j\left(\omega L-\frac{1}{\omega C}\right)} \\
&=\frac{1}{R+j\left(\omega L-\frac{1}{\omega C}\right)} \times \frac{R-j\left(\omega L-\frac{1}{\omega C}\right)}{R-j\left(\omega L-\frac{1}{\omega C}\right)}=\frac{R-j\left(\omega L-\frac{1}{\omega C}\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \\
&=\frac{R}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}-\frac{j\left(\omega L-\frac{1}{\omega C}\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \\
&=\operatorname{Re}(Y)+\operatorname{Im}(Y)
\end{aligned}
$$

Varying frequency for $\operatorname{Re}(Y)$ and $\operatorname{Im}(Y)$ we can obtain the admittancelocus.

SOL 2.46 Option (D) is correct.
At $t=0^{+}$, when switch positions are changed inductor current and capacitor voltage does not change simultaneously
So at $t=0^{+}$

$$
\begin{aligned}
& v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=10 \mathrm{~V} \\
& i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=10 \mathrm{~A}
\end{aligned}
$$

The equivalent circuit is

Applying KCL

$$
\begin{aligned}
\frac{v_{L}\left(0^{+}\right)}{10}+\frac{v_{L}\left(0^{+}\right)-v_{c}\left(0^{+}\right)}{10} & =i_{L}\left(0^{+}\right)=10 \\
2 v_{L}\left(0^{+}\right)-10 & =100
\end{aligned}
$$

Voltage across inductor at $t=0^{+}$

$$
v_{L}\left(0^{+}\right)=\frac{100+10}{2}=55 \mathrm{~V}
$$

So, current in capacitor at $t=0^{+}$

$$
i_{C}\left(0^{+}\right)=\frac{v_{L}\left(0^{+}\right)-v_{c}\left(0^{+}\right)}{10}=\frac{55-10}{10}=4.5 \mathrm{~A}
$$

SOL 2.47 Option (B) is correct. In the circuit

$$
\begin{aligned}
V_{X} & =V \angle 0^{\circ} \\
\frac{V_{y}-2 V \angle 0^{\circ}}{R}+\left(V_{y}\right) j \omega C & =0 \\
V_{y}(1+j \omega C R) & =2 V \angle 0^{\circ} \\
V_{y} & =\frac{2 V \angle 0^{\circ}}{1+j \omega C R} \\
V_{Y X} & =V_{X}-V_{Y}=V-\frac{2 V}{1+j \omega C R} \\
R \rightarrow 0, \quad V_{Y X} & =V-2 V=-V \\
R \rightarrow \infty, \quad V_{Y X} & =V-0=V
\end{aligned}
$$

SOL 2.48 Option (A) is correct.
The circuit is

Applying KVL

$$
\begin{aligned}
3-2 \times I_{N L}^{2} & =V_{N L} \\
3-2 I_{N L}^{2} & =I_{N L}^{2} \\
3 I_{N L}^{2} & =3 \Rightarrow I_{N L}=1 \mathrm{~A} \\
V_{N L} & =(1)^{2}=1 \mathrm{~V}
\end{aligned}
$$

So power dissipated in the non-linear resistance

$$
P=V_{N L} I_{N L}=1 \times 1=1 \mathrm{~W}
$$

SOL 2.49 Option (C) is correct.
In node incidence matrix
b_{1}
n_{1}
n_{2}
n_{3}
$n_{4}$$\left[\begin{array}{ccccc}1 & b_{3} & b_{4} & b_{5} & b_{6} \\ 0 & -1 & 0 & 0 & 0 \\ 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 1\end{array}\right]$

In option (C)

$$
\begin{aligned}
& E=A V \\
& {\left[\begin{array}{llll}
e_{1} & e_{2} & e_{3} & e_{4}
\end{array}\right]^{T}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & -1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
V_{1} & V_{2} & -- & V_{6}
\end{array}\right]^{T}} \\
& {\left[\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array}\right]=\left[\begin{array}{c}
V_{1}+V_{2}+V_{3} \\
-V_{2}-V_{4}+V_{5} \\
-V_{1}-V_{5}-V_{6} \\
-V_{3}+V_{4}+V_{6}
\end{array}\right] \text { which is true. }}
\end{aligned}
$$

SOL 2.50 Option (A) is correct.
Assume a Gaussian surface inside the sphere $(x<R)$

From gauss law

$$
\begin{aligned}
\psi & =Q_{\text {enclosed }} \\
& =\oint D \cdot d s=Q_{\text {enclosed }}
\end{aligned}
$$

$$
Q_{\text {enclosed }}=\frac{Q}{\frac{4}{3} \pi R^{3}} \times \frac{4}{3} \pi r^{3}=\frac{Q r^{3}}{R^{3}}
$$

So, $\quad \oint D \cdot d s=\frac{Q r^{3}}{R^{3}}$
or

$$
D \times 4 \pi r^{2}=\frac{Q r^{3}}{R^{3}}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{R^{3}} \quad \because D=\varepsilon_{0} E
$$

SOL 2.51 Option (D) is correct.
Inductance is given as

$$
\begin{aligned}
L & =\frac{\mu_{0} N^{2} A}{l}=\frac{4 \pi \times 10^{-7} \times(400)^{2} \times\left(16 \times 10^{-4}\right)}{\left(1 \times 10^{-3}\right)} & =321.6 \mathrm{mH} \\
V & =I X_{L}=\frac{230}{2 \pi f L} & \therefore X_{L}=2 \pi f L \\
& =\frac{230}{2 \times 3.14 \times 50 \times 321.6 \times 10^{-3}}=2.28 \mathrm{~A} &
\end{aligned}
$$

SOL 2.52 Option (A) is correct.
Energy stored is inductor

$$
E=\frac{1}{2} L I^{2}=\frac{1}{2} \times 321.6 \times 10^{-3} \times(2.28)^{2}
$$

Force required to reduce the air gap of length 1 mm is

$$
F=\frac{E}{l}=\frac{0.835}{1 \times 10^{-3}}=835 \mathrm{~N}
$$

SOL 2.53 Option (D) is correct.
Thevenin voltage:

$$
\begin{aligned}
V_{t h} & =I\left(R+Z_{L}+Z_{C}\right)=1 \angle 0^{\circ}[1+2 j-j] \\
& =1(1+j)=\sqrt{2} \angle 45^{\circ} \mathrm{V}
\end{aligned}
$$

Thevenin impedance:

$$
Z_{t h}=R+Z_{L}+Z_{C}=1+2 j-j=(1+j) \Omega
$$

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

SOL 2.54 Option (A) is correct.
In the given circuit

Output voltage

$$
v_{o}=A v_{i}=10^{6} \times 1 \mu \mathrm{~V}=1 \mathrm{~V}
$$

Input impedance

$$
Z_{i}=\frac{v_{i}}{i_{i}}=\frac{v_{i}}{0}=\infty
$$

Output impedance

$$
Z_{o}=\frac{v_{o}}{i_{o}}=\frac{A v_{i}}{i_{o}}=R_{o}=10 \Omega
$$

SOL 2.55 Option (D) is correct.
All sources present in the circuit are DC sources, so all inductors behaves as short circuit and all capacitors as open circuit
Equivalent circuit is

Voltage across R_{3} is

$$
\begin{aligned}
5 & =I_{1} R_{3} \\
5 & =I_{1}(1) \\
I_{1} & =5 \mathrm{~A}
\end{aligned}
$$

By applying KCL, current through voltage source

$$
\begin{aligned}
1+I_{2} & =I_{1} \\
I_{2} & =5-1=4 \mathrm{~A}
\end{aligned}
$$

SOL 2.56 Option () is correct.
Given Two port network can be described in terms of h-parametrs only.

SOL 2.57 Option (A) is correct.

At resonance reactance of the circuit would be zero and voltage across inductor and capacitor would be equal

$$
V_{L}=V_{C}
$$

At resonance impedance of the circuit

$$
\begin{array}{ll}
& Z_{R}=R_{1}+R_{2} \\
\text { Current } & I_{R}=\frac{V_{1} \angle 0^{\circ}}{R_{1}+R_{2}} \\
\text { Voltage } & V_{2}=I_{R} R_{2}+j\left(V_{L}-V_{C}\right) \\
& V_{2}=\frac{V_{1} \angle 0^{\circ}}{R_{1}+R_{2}} R_{2}
\end{array}
$$

Voltage across capacitor

$$
V_{C}=\frac{1}{j \omega C} \times I_{R}=\frac{1}{j \omega C} \times \frac{V_{R} \angle 0^{\circ}}{R_{1}+R_{2}}=\frac{V_{R} \angle-90^{\circ}}{\omega C\left(R_{1}+R_{2}\right)}
$$

So phasor diagram is

SOL 2.58 Option (B) is correct.
This is a second order LC circuit shown below

Capacitor current is given as

$$
i_{C}(t)=C \frac{d v_{c}(t)}{d t}
$$

Taking Laplace transform

$$
I_{C}(s)=C s V(s)-V(0), V(0) \rightarrow \text { initial voltage }
$$

Current in inductor

$$
\begin{aligned}
i_{L}(t) & =\frac{1}{L} \int v_{c}(t) d t \\
I_{L}(s) & =\frac{1}{L} \frac{V(s)}{s}
\end{aligned}
$$

for $t>0$, applying KCL(in s-domain)

$$
I_{C}(s)+I_{L}(s)=0
$$

$$
\begin{array}{rlr}
C s V(s)-V(0)+\frac{1}{L} \frac{V(s)}{s}=0 & \\
{\left[s^{2}+\frac{1}{L C s}\right] V(s)} & =V_{o} \\
V(s) & =V_{o} \frac{s}{s^{2}+\omega_{0}^{2}}, & \because \omega_{0}^{2}=\frac{1}{L C}
\end{array}
$$

Taking inverse Laplace transformation

$$
v(t)=V_{o} \cos \omega_{o} t, \quad t>0
$$

SOL 2.59 Option (B) is correct.
Power dissipated in heater when AC source is connected

$$
\begin{aligned}
P & =2.3 \mathrm{~kW}=\frac{V_{r m s}^{2}}{R} \\
2.3 \times 10^{3} & =\frac{(230)^{2}}{R} \\
R & =23 \Omega \text { (Resistance of heater) }
\end{aligned}
$$

Now it is connected with a square wave source of 400 V peak to peak
Power dissipated is

$$
\begin{array}{rlr}
P & =\frac{V_{r m s}^{2}}{R}, & V_{p-p}=400 \mathrm{~V} \Rightarrow V_{p}=200 \mathrm{~V} \\
& =\frac{(200)^{2}}{23}=1.739 \mathrm{~kW} & V_{r m s}=V_{p}=200 \text { (for square wave) }
\end{array}
$$

SOL 2.60 Option (D) is correct.
From maxwell's first equation

$$
\begin{aligned}
\nabla \cdot D & =\rho_{v} \\
\nabla \cdot E & =\frac{\rho_{v}}{\varepsilon}
\end{aligned}
$$

(Divergence of electric field intensity is non-Zero)
Maxwell's fourth equation

$$
\nabla \cdot B=0
$$

(Divergence of magnetic field intensity is zero)

SOL 2.61 Option (C) is correct.
Current in the circuit

$$
\begin{align*}
I & =\frac{100}{R+(10 \| 10)}=8 \mathrm{~A} \tag{given}\\
\frac{100}{R+5} & =8 \\
R & =\frac{60}{8}=7.5 \Omega
\end{align*}
$$

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

SOL 2.62 Option (A) is correct.
Rms value is given as

$$
\mu_{r m s}=\sqrt{3^{2}+\frac{(4)^{2}}{2}}=\sqrt{9+8}=\sqrt{17} \mathrm{~V}
$$

SOL 2.63 Option (D) is correct.
Writing KVL in input and output loops

$$
\begin{align*}
V_{1}-\left(i_{1}+i_{2}\right) Z_{1} & =0 \\
V_{1} & =Z_{1} i_{1}+Z_{1} i_{2} \tag{1}
\end{align*}
$$

Similarly

$$
\begin{align*}
& V_{2}-i_{2} Z_{2}-\left(i_{1}+i_{2}\right) Z_{1}=0 \\
& \quad V_{2}=Z_{1} i_{1}+\left(Z_{1}+Z_{2}\right) i_{2} \tag{2}
\end{align*}
$$

From equation (1) and (2) Z-matrix is given as

$$
Z=\left[\begin{array}{cc}
Z_{1} & Z_{1} \\
Z_{1} & Z_{1}+Z_{2}
\end{array}\right]
$$

SOL 2.64 Option (B) is correct.
In final steady state the capacitor will be completely charged and behaves as an open circuit

Steady state voltage across capacitor

$$
v_{c}(\infty)=\frac{20}{10+10}(10)=10 \mathrm{~V}
$$

SOL 2.65 Option (D) is correct.
We know that divergence of the curl of any vector field is zero

$$
\nabla(\nabla \times \overrightarrow{\mathbf{E}})=0
$$

SOL 2.66 Option (A) is correct.
When the switch is at position 1, current in inductor is given as

$$
i_{L}\left(0^{-}\right)=\frac{120}{20+40}=2 \mathrm{~A}
$$

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia
Published by: NODIA and COMPANY

At $t=0$, when switch is moved to position 1 ,inductor current does not change simultaneously so

$$
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=2 \mathrm{~A}
$$

Voltage across inductor at $t=0^{+}$

$$
v_{L}\left(0^{+}\right)=120 \mathrm{~V}
$$

By applying KVL in loop

$$
\begin{aligned}
120 & =2(40+R+20) \\
120 & =120+R \\
R & =0 \Omega
\end{aligned}
$$

SOL 2.67 Option (C) is correct.
Let stored energy and dissipated energy are E_{1} and E_{2} respectively. Then Current

$$
\begin{aligned}
\frac{i_{2}^{2}}{i_{1}^{2}} & =\frac{E_{2}}{E_{1}}=0.95 \\
i_{2} & =\sqrt{0.95} i_{1}=0.97 i_{1}
\end{aligned}
$$

Current at any time t, when the switch is in position (2) is given by

$$
i(t)=i_{1} e^{-\frac{R}{L} t}=2 e^{-\frac{60}{10} t}=2 e^{-6 t}
$$

After 95% of energy dissipated current remaining in the circuit is

$$
i=2-2 \times 0.97=0.05 \mathrm{~A}
$$

So,

$$
\begin{aligned}
0.05 & =2 e^{-6 t} \\
t & \approx 0.50 \mathrm{sec}
\end{aligned}
$$

SOL 2.68 Option (C) is correct.
At $f_{1}=100 \mathrm{~Hz}$, voltage drop across R and L is $\mu_{\text {RMS }}$

$$
\mu_{\mathrm{RMS}}=\left|\frac{V_{i n} \cdot R}{R+j \omega_{1} L}\right|=\left|\frac{V_{i n}\left(j \omega_{1} L\right)}{R+j \omega_{1} L}\right|
$$

So,

$$
R=\omega_{1} L
$$

At $f_{2}=50 \mathrm{~Hz}$, voltage drop across R

$$
\mu_{\mathrm{RMS}}^{\prime}=\left|\frac{V_{i n} \cdot R}{R+j \omega_{2} L}\right|
$$

$$
\begin{aligned}
\frac{\mu_{\mathrm{RMS}}}{\mu_{\mathrm{RMS}}^{\prime}} & =\left|\frac{R+j \omega_{2} L}{R+j \omega_{1} L}\right|=\sqrt{\frac{R^{2}+\omega_{2}^{2} L^{2}}{R^{2}+\omega_{1}^{2} L^{2}}} \\
& =\sqrt{\frac{\omega_{1}^{2} L^{2}+\omega_{2}^{2} L^{2}}{\omega_{1}^{2} L^{2}+\omega_{1}^{2} L^{2}}}, \quad R=\omega_{1} L \\
& =\sqrt{\frac{\omega_{1}^{2}+\omega_{2}^{2}}{2 \omega_{1}^{2}}}=\sqrt{\frac{f_{1}^{2}+f_{2}^{2}}{2 f_{1}^{2}}}=\sqrt{\frac{(100)^{2}+(50)^{2}}{2(100)^{2}}}=\sqrt{\frac{5}{8}} \\
\mu_{\mathrm{RMS}}^{\prime} & =\sqrt{\frac{8}{5}} \mu_{\mathrm{RMS}}
\end{aligned}
$$

SOL 2.69 Option (A) is correct.
In the circuit

Since

$$
\begin{aligned}
\bar{I}_{B} & =I_{R} \angle 0^{\circ}+I_{y} \angle 120^{\circ} \\
I_{B}^{2} & =I_{R}^{2}+I_{y}^{2}+2 I_{R} I_{y} \cos \left(\frac{120^{\circ}}{2}\right)=I_{R}^{2}+I_{y}^{2}+I_{R} I_{y}
\end{aligned}
$$

so,

$$
\begin{aligned}
I_{R} & =I_{y} \\
I_{B}^{2} & =I_{R}^{2}+I_{R}^{2}+I_{R}^{2}=3 I_{R}^{2} \\
I_{B} & =\sqrt{3} I_{R}=\sqrt{3} I_{y} \\
I_{R}: I_{y}: I_{B} & =1: 1: \sqrt{3}
\end{aligned}
$$

SOL 2.70 Option (C) is correct.
Switch was opened before $t=0$, so current in inductor for $t<0$

$$
i_{L}\left(0^{-}\right)=\frac{10}{10}=1 \mathrm{~A}
$$

Inductor current does not change simultaneously so at $t=0$ when switch is closed current remains same

$$
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=1 \mathrm{~A}
$$

SOL 2.71 Option (A) is correct.
Thevenin voltage:

Nodal analysis at P

$$
\begin{aligned}
\frac{V_{t h}-4}{10}+\frac{V_{t h}}{10} & =0 \\
2 V_{t h}-4 & =0 \\
V_{t h} & =2 \mathrm{~V}
\end{aligned}
$$

Thevenin resistance:

SOL 2.72 Option (A) is correct.
Electric field inside a conductor (metal) is zero. In dielectric charge distribution os constant so electric field remains constant from x_{1} to x_{2}. In semiconductor electric field varies linearly with charge density.

SOL 2.73 Option (D) is correct.
Resonance will occur only when Z is capacitive, in parallel resonance condition, suseptance of circuit should be zero.

$$
\begin{aligned}
\frac{1}{j \omega L}+j \omega C & =0 \\
1-\omega^{2} L C & =0 \\
\omega & =\frac{1}{\sqrt{L C}} \text { (resonant frequency) } \\
C & =\frac{1}{\omega^{2} L}=\frac{1}{4 \times \pi^{2} \times(500)^{2} \times 2}=0.05 \mu \mathrm{~F}
\end{aligned}
$$

SOL 2.74 Option (D) is correct.
Here two capacitor C_{1} and C_{2} are connected in series so equivalent Capacitance is

$$
\begin{aligned}
C_{e q} & =\frac{C_{1} C_{2}}{C_{1}+C_{2}} \\
C_{1} & =\frac{\varepsilon_{0} \varepsilon_{r 1} A}{d_{1}}=\frac{8.85 \times 10^{-12} \times 4\left(400 \times 10^{-3}\right)^{2}}{6 \times 10^{-3}} \\
& =\frac{8.85 \times 10^{-12} \times 4 \times 16 \times 10^{-2}}{6 \times 10^{-3}}=94.4 \times 10^{-11} \mathrm{~F}
\end{aligned}
$$

Similarly

$$
C_{2}=\frac{\varepsilon_{0} \varepsilon_{r 2} A}{d_{2}}=\frac{8.85 \times 10^{-12} \times 2 \times\left(400 \times 10^{-3}\right)^{2}}{8 \times 10^{-3}}
$$

$$
\begin{aligned}
& =\frac{8.85 \times 10^{-12} \times 2 \times 16 \times 10^{-12}}{8 \times 10^{-3}}=35.4 \times 10^{-11} \mathrm{~F} \\
C_{e q} & =\frac{94.4 \times 10^{-11} \times 35.4 \times 10^{-11}}{(94.4+35.4) \times 10^{-11}}=25.74 \times 10^{-11} \simeq 257 \mathrm{pF}
\end{aligned}
$$

SOL 2.75 Option (C) is correct.
Inductance of the Solenoid is given as

$$
L=\frac{\mu_{0} N^{2} A}{l}
$$

Where $A \rightarrow$ are of Solenoid

$$
\begin{aligned}
& l \rightarrow \text { length } \\
& \begin{aligned}
L & =\frac{4 \pi \times 10^{-7} \times(3000)^{2} \times \pi\left(30 \times 10^{-3}\right)^{2}}{\left(1000 \times 10^{-3}\right)}=31.94 \times 10^{-3} \mathrm{H} \\
& \simeq 32 \mathrm{mH}
\end{aligned}
\end{aligned}
$$

SOL 2.76 Option (C) is correct. In the circuit

Voltage

$$
\begin{aligned}
V_{A} & =(2+1) \times 6=18 \mathrm{Volt} \\
2 & =\frac{E-V_{A}}{6} \\
2 & =\frac{E-18}{6} \\
E & =12+18=30 \mathrm{~V}
\end{aligned}
$$

So,

SOL 2.77 Option (A) is correct.
Delta to star $(\Delta-Y)$ conversions is given as

$$
\begin{aligned}
& R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}=\frac{10 \times 10}{20+10+10}=2.5 \Omega \\
& R_{2}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}}=\frac{20 \times 10}{20+10+10}=5 \Omega \\
& R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}=\frac{20 \times 10}{20+10+10}=5 \Omega
\end{aligned}
$$

SOL 2.78 Option (D) is correct.
For parallel circuit

$$
I=\frac{E}{Z_{e q}}=E Y_{e q}
$$

$Y_{e q} \rightarrow$ Equivalent admittance of the circuit

$$
\begin{aligned}
Y_{e q}= & Y_{R}+Y_{L}+Y_{C}=(0.5+j 0)+(0-j 1.5)+(0+j 0.3) \\
= & 0.5-j 1.2 \\
\quad & \quad I=10(0.5-j 1.2)=(5-j 12) \mathrm{A}
\end{aligned}
$$

So, current

SOL 2.79 Option (B) is correct.
In the circuit

Voltage $\quad V_{A}=\frac{100}{10+(10 \| R)} \times(10 \| R)=\left(\frac{100}{10+\frac{10 R}{10+R}}\right)\left(\frac{10 R}{10+R}\right)$

$$
=\frac{1000 R}{100+20 R}=\frac{50 R}{5+R}
$$

Current in $R \Omega$ resistor

$$
\begin{aligned}
2 & =\frac{V_{A}}{R} \\
2 & =\frac{50 R}{R(5+R)} \\
\text { or } \quad R & =20 \Omega
\end{aligned}
$$

SOL 2.80 Option (A) is correct.
Since capacitor initially has a charge of 10 coulomb, therefore

$$
\begin{aligned}
Q_{0} & =C v_{c}(0) \quad v_{c}(0) \rightarrow \text { initial voltage across capacitor } \\
10 & =0.5 v_{c}(0) \\
v_{c}(0) & =\frac{10}{0.5}=20 \mathrm{~V}
\end{aligned}
$$

When switch S is closed, in steady state capacitor will be charged completely and capacitor voltage is

$$
v_{c}(\infty)=100 \mathrm{~V}
$$

At any time t transient response is

$$
\begin{aligned}
& v_{c}(t)=v_{c}(\infty)+\left[v_{c}(0)-v_{c}(\infty)\right] e^{-\frac{t}{R C}} \\
& v_{c}(t)=100+(20-100) e^{-\frac{t}{2 \times 0.5}}=100-80 e^{-t}
\end{aligned}
$$

Current in the circuit

$$
\begin{aligned}
i(t) & =C \frac{d v_{c}}{d t}=C \frac{d}{d t}\left[100-80 e^{-t}\right] \\
& =C \times 80 e^{-t}=0.5 \times 80 e^{-t}=40 e^{-t}
\end{aligned}
$$

At $t=1 \mathrm{sec}$,

$$
i(t)=40 e^{-1}=14.71 \mathrm{~A}
$$

SOL 2.81 Option (D) is correct.
Total current in the wire

$$
\begin{aligned}
I & =10+20 \sin \omega t \\
I_{r m s} & =\sqrt{10^{2}+\frac{(20)^{2}}{2}}=\sqrt{100+200}=\sqrt{300}=17.32 \mathrm{~A}
\end{aligned}
$$

SOL 2.82 Option (D) is correct.
From Z to Y parameter conversion

So,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]=\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]^{-1}} \\
& {\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{12} & Y_{22}
\end{array}\right]=\frac{1}{0.50}\left[\begin{array}{cc}
0.6 & -0.2 \\
-0.2 & 0.9
\end{array}\right]} \\
& Y_{22}=\frac{0.9}{0.50}=1.8
\end{aligned}
$$

SOL 2.83 Option (C) is correct.
Energy absorbed by the inductor coil is given as

$$
E_{L}=\int_{0}^{t} P d t
$$

Where power $\quad P=V I=I\left(L \frac{d I}{d t}\right)$
So, $\quad E_{L}=\int_{0}^{t} L I\left(\frac{d I}{d t}\right) d t$
For $0 \leq t \leq 4 \sec$

$$
\begin{aligned}
E_{L} & =2 \int_{0}^{4} I\left(\frac{d I}{d t}\right) d t \\
& =2 \int_{0}^{2} I(3) d t+2 \int_{2}^{4} I(0) d t \quad\left\{\begin{array}{r}
\because \frac{d I}{d t}=3,0 \leq t \leq 2 \\
\\
\\
\\
\end{array}=0,2<t<4\right. \\
& =6 \times \frac{1}{2} \times 2 \times 6=36 \mathrm{~J}
\end{aligned}
$$

Energy absorbed by 1Ω resistor is

$$
\begin{aligned}
E_{R} & =\int_{0}^{t} I^{2} R d t \\
& =\int_{0}^{2}(3 t)^{2} \times 1 d t+\int_{2}^{4}(6)^{2} d t \\
& =9 \times\left[\frac{t^{3}}{3}\right]_{0}^{2}+36[t]_{2}^{4}=24+72=96 \mathrm{~J}
\end{aligned} \quad\left\{\begin{array}{rr}
I=3 t, & 0 \leq t \leq 2 \\
=6 \mathrm{~A} & 2 \leq t \leq 4
\end{array}\right.
$$

Total energy absorbed in 4 sec

$$
E=E_{L}+E_{R}=36+96=132 \mathrm{~J}
$$

SOL 2.84 Option (B) is correct.
Applying KCL at center node

$$
\begin{aligned}
i_{L} & =i_{C}+1+2 \\
i_{L} & =i_{C}+3 \\
i_{C} & =-C \frac{d v_{c}}{d t}=-1 \frac{d}{d t}[4 \sin 2 t] \\
& =-8 \cos 2 t
\end{aligned}
$$

so

$$
i_{L}=-8 \cos 2 t+3 \quad(\text { current through inductor })
$$

Voltage across inductor

$$
v_{L}=L \frac{d i_{L}}{d t}=2 \times \frac{d}{d t}[3-8 \cos 2 t]=32 \sin 2 t
$$

SOL 2.85 Option (A) is correct.
Thevenin impedance can be obtain as following

$$
Z_{t h}=Z_{3}+\left(Z_{1} \| Z_{2}\right)
$$

Given that $\quad Z_{1}=10 \angle-60^{\circ}=10\left(\frac{1-\sqrt{3} j}{2}\right)=5(1-\sqrt{3} j)$

$$
Z_{2}=10 \angle 60^{\circ}=10\left(\frac{1+\sqrt{3} j}{2}\right)=5(1+\sqrt{3} j)
$$

$$
Z_{3}=50 \angle 53.13^{\circ}=50\left(\frac{3+4 j}{5}\right)=10(3+4 j)
$$

So,

$$
\begin{aligned}
Z_{t h} & =10(3+4 j)+\frac{5(1-3 j) 5(1+\sqrt{3} j)}{5(1-\sqrt{3} j)+5(1+\sqrt{3} j)} \\
& =10(3+4 j)+\frac{25(1+3)}{10}=30+40 j+10=40+40 j \\
Z_{t h} & =40 \sqrt{2} \angle 45^{\circ} \Omega
\end{aligned}
$$

SOL 2.86 Option (A) is correct.
Due to the first conductor carrying $+I$ current, magnetic field intensity at point P is

$$
\overrightarrow{\mathbf{H}}_{1}=\frac{I}{2 \pi d} \overrightarrow{\mathbf{Y}} \text { (Direction is determined using right hand rule) }
$$

Similarly due to second conductor carrying $-I$ current, magnetic field intensity is

$$
\overrightarrow{\mathbf{H}_{2}}=\frac{-I}{2 \pi d}(-\overrightarrow{\mathbf{Y}})=\frac{I}{2 \pi d} \overrightarrow{\mathbf{Y}}
$$

Total magnetic field intensity at point P .

$$
\overrightarrow{\mathbf{H}}=\overrightarrow{\mathbf{H}}_{1}+\overrightarrow{\mathbf{H}}_{2}=\frac{I}{2 \pi d} \overrightarrow{\mathbf{Y}}+\frac{I}{2 \pi d} \overrightarrow{\mathbf{Y}}=\frac{I}{\pi d} \overrightarrow{\mathbf{Y}}
$$

SOL 2.87 Option () is correct.

SOL 2.88 Option (C) is correct.
Given that magnitudes of V_{L} and V_{C} are twice of V_{R}

$$
\left|V_{L}\right|=\left|V_{C}\right|=2 V_{R} \quad(\text { Circuit is at resonance })
$$

Voltage across inductor

$$
V_{L}=i_{R} \times j \omega L
$$

Current i_{R} at resonance

$$
i_{R}=\frac{5 \angle 0^{\circ}}{R}=\frac{5}{5}=1 \mathrm{~A}
$$

so, $\quad\left|V_{L}\right|=\omega L=2 V_{R}$

$$
\omega L=2 \times 5 \quad V_{R}=5 \mathrm{~V}, \text { at resonance }
$$

$2 \times \pi \times 50 \times L=10$

$$
L=\frac{10}{314}=31.8 \mathrm{mH}
$$

SOL 2.89 Option (C) is correct.
Applying nodal analysis in the circuit
At node P

$$
\begin{aligned}
2+\frac{V_{P}-10}{2}+\frac{V_{P}}{8} & =0 \\
16+4 V_{P}-40+V_{P} & =0 \\
5 V_{P}-24 & =0 \\
V_{P} & =\frac{24}{5} \text { Volt }
\end{aligned}
$$

At node Q

$$
\begin{aligned}
2 & =\frac{V_{Q}-10}{4}+\frac{V_{Q}-0}{6} \\
24 & =3 V_{Q}-30+2 V_{Q} \\
5 V_{Q}-54 & =0 \\
V_{Q} & =\frac{54}{5} \mathrm{~V}
\end{aligned}
$$

Potential difference between P-Q

$$
V_{P Q}=V_{P}-V_{Q}=\frac{24}{5}-\frac{54}{5}=-6 \mathrm{~V}
$$

SOL 2.90 Option (D) is correct.
First obtain equivalent Thevenin circuit across load R_{L}

Thevenin voltage

$$
\begin{gathered}
\frac{V_{t h}-110 \angle 0^{\circ}}{6+8 j}+\frac{V_{t h}-90 \angle 0^{\circ}}{6+8 j}=0 \\
2 V_{\text {th }}-200 \angle 0^{\circ}=0 \\
V_{t h}=100 \angle 0^{\circ} \mathrm{V}
\end{gathered}
$$

Thevenin impedance

$$
Z_{t h}=(6+8 j) \Omega \|(6+8 j) \Omega
$$

$$
=(3+4 j) \Omega
$$

For maximum power transfer

$$
R_{L}=\left|Z_{t h}\right|=\sqrt{3^{2}+4^{2}}=5 \Omega
$$

Power in load

$$
\begin{aligned}
& P=i_{e f f}^{2} R_{L} \\
& P=\left|\frac{100}{3+4 j+5}\right|^{2} \times 5=\frac{(100)^{2}}{80} \times 5=625 \mathrm{Watt}
\end{aligned}
$$

SOL 2.91 Option (D) is correct.
By applying mesh analysis in the circuit

$I_{1}=10 \mathrm{~A}, \quad I_{2}=-5 \mathrm{~A}$
Current in 2Ω resistor

$$
I_{2 \Omega}=I_{1}-\left(-I_{2}\right)=10-(-5)=15 \mathrm{~A}
$$

So, voltage

$$
V_{A}=15 \times 2=30 \text { Volt }
$$

Now we can easily find out current in all branches as following

Current in resistor R is 5 A

$$
5=\frac{100-40}{R}
$$

$$
R=\frac{60}{5}=12 \Omega
$$

SOL 2.92 Option (B) is correct.
Before $t=0$, the switch was opened so current in inductor and voltage across capacitor for $t<0$ is zero
$v_{c}\left(0^{-}\right)=0, \quad i_{L}\left(0^{-}\right)=0$
at $t=0$, when the switch is closed, inductor current and capacitor voltage does not change simultaneously so
$v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=0, \quad i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=0$
At $t=0^{+}$the circuit is

Simplified circuit

Voltage across inductor (at $t=0^{+}$)

$$
v_{L}\left(0^{+}\right)=\frac{10}{3+2} \times 2=4 \text { Volt }
$$

SOL 2.93 Option (D) is correct.
Given that $\quad E_{1}=h_{11} I_{1}+h_{12} E_{2}$
and

$$
I_{2}=h_{21} I_{1}+h_{22} E_{2}
$$

Parameter h_{12} is given as

$$
h_{12}=\left.\frac{E_{1}}{E_{2}}\right|_{I_{1}=0(\text { open circuit })}
$$

At node A

$$
\begin{align*}
\frac{E_{A}-E_{1}}{2}+\frac{E_{A}-E_{2}}{2}+\frac{E_{A}}{4} & =0 \\
5 E_{A} & =2 E_{1}+2 E_{2} \tag{1}
\end{align*}
$$

Similarly

$$
\begin{align*}
\frac{E_{1}-E_{A}}{2}+\frac{E_{1}}{2} & =0 \\
2 E_{1} & =E_{A} \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\begin{aligned}
5\left(2 E_{1}\right) & =2 E_{1}+2 E_{2} 4 \\
8 E_{1} & =2 E_{2} \\
h_{12} & =\frac{E_{1}}{E_{2}}=\frac{1}{4}
\end{aligned}
$$

SOL 2.94 Option (B) is correct.

$$
\begin{aligned}
V_{P Q} & =V_{P}-V_{Q}=\frac{K Q}{\mathrm{OP}}-\frac{K Q}{\mathrm{OQ}} \\
& =\frac{9 \times 10^{9} \times 1 \times 10^{-9}}{40 \times 10^{-3}}-\frac{9 \times 10^{9} \times 1 \times 10^{-9}}{20 \times 10^{-3}} \\
& =9 \times 10^{3}\left[\frac{1}{40}-\frac{1}{20}\right]=-225 \text { Volt }
\end{aligned}
$$

SOL 2.95 Option (D) is correct.
Energy stored in Capacitor is

$$
\begin{aligned}
& E=\frac{1}{2} C V^{2} \\
& C=\frac{\varepsilon_{0} A}{d}=\frac{8.85 \times 10^{-12} \times 100 \times 10^{-6}}{0.1 \times 10^{-3}}=8.85 \times 10^{-12} \mathrm{~F} \\
& E=\frac{1}{2} \times 8.85 \times 10^{-12} \times(100)^{2}=44.3 \mathrm{~nJ}
\end{aligned}
$$

SOL 2.96 Option (B) is correct.
The figure is as shown below

The Capacitor shown in Figure is made up of two capacitor C_{1} and C_{2}
connected in series.

$$
C_{1}=\frac{\varepsilon_{0} \varepsilon_{r 1} A}{t_{1}}, C_{2}=\frac{\varepsilon_{0} \varepsilon_{r 2} A}{t_{2}}
$$

Since C_{1} and C_{2} are in series charge on both capacitor is same.

$$
\begin{aligned}
Q_{1} & =Q_{2} \\
C_{1}(100-V)=C_{2} V & \text { (Let V is the voltage of foil) } \\
\frac{\varepsilon_{0} \varepsilon_{r 1} A}{t_{1}}(100-V) & =\frac{\varepsilon_{0} \varepsilon_{r 2} A}{t_{2}} V \\
\frac{3}{0.5}(100-V) & =\frac{4}{1} V \\
300-3 V & =2 V \\
300 & =5 V \Rightarrow V=60 \text { Volt }
\end{aligned}
$$

SOL 2.97 Option (D) is correct.
Voltage across capacitor is given by

$$
v_{c}(t)=\frac{1}{C} \int_{-\infty}^{\infty} i(t) d t=\frac{1}{C} \int_{-\infty}^{\infty} 5 \delta(t) d t=\frac{5}{C} \times u(t)
$$

SOL 2.98 Option (C) is correct.
No. of links is given by

$$
L=N-B+1
$$

SOL 2.99 Option (A) is correct.
Divergence theorem states that the total outward flux of a vector field F through a closed surface is same as volume integral of the divergence of F

$$
\oint_{s} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{d s}=\int_{\mathrm{V}}(\vec{\nabla} \cdot \overrightarrow{\mathbf{F}}) d v
$$

SOL 2.100 Option (C) is correct.
The figure as shown below

Inductance of parallel wire combination is given as

$$
L=\frac{\mu_{0} l}{\pi} \ln \left(\frac{d}{r}\right)
$$

Where $\quad l \rightarrow$ Length of wires
$d \rightarrow$ Distance between wires
GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

$$
\begin{array}{r}
r \rightarrow \text { Radius } \\
L \propto \ln d
\end{array}
$$

So when d is double, inductance increase but does not double.

SOL 2.101 Option (B) is correct.
Since distance from ground to lower surface is less than from ground to upper surface so electric stress is maximum at lower surface.

SOL 2.102 Option (B) is correct.
Writing node equation for the circuit

$$
I_{1}=\frac{E_{1}-E_{A}}{2}
$$

and $\quad I_{2}=\frac{E_{2}-E_{A}}{2}$
At node A

$$
\begin{align*}
\frac{E_{A}-E_{1}}{2}+\frac{E_{A}}{2}+\frac{E_{A}-E_{2}}{2} & =0 \\
3 E_{A} & =E_{1}+E_{2} \tag{1}
\end{align*}
$$

From eqn(1)

$$
\begin{array}{r}
I_{1}=\frac{1}{2} E_{1}-\frac{1}{2} \frac{\left(E_{1}+E_{2}\right)}{3} \\
I_{1}=\frac{1}{3} E_{1}-\frac{1}{6} E_{2} \tag{2}
\end{array}
$$

Similarly

$$
\begin{align*}
& I_{2}=\frac{1}{2} E_{2}-\frac{1}{2} \frac{\left(E_{1}+E_{2}\right)}{3} \\
& I_{2}=-\frac{1}{6} E_{1}+\frac{1}{3} E_{2} \tag{3}
\end{align*}
$$

From (2) and (3) admittance parameters are

$$
\left[\begin{array}{llll}
Y_{11} & Y_{12} & Y_{21} & Y_{22}
\end{array}\right]=\left[\begin{array}{llll}
1 / 3 & -1 / 6 & -1 / 6 & 1 / 3
\end{array}\right]
$$

SOL 2.103 Option (A) is correct.
Admittance of the given circuit

$$
\begin{aligned}
Y(\omega) & =j \omega C+\frac{1}{Z_{L}} \\
Z_{L} & =30 \angle 40^{\circ}=23.1+j 19.2 \Omega
\end{aligned}
$$

So,

$$
\begin{aligned}
Y(\omega) & =j 2 \pi \times 50 \times C+\frac{1}{23.1+j 19.2} \times \frac{23.1-j 19.2}{23.1-j 19.2} \\
& =j(100 \pi) C+\frac{23.1-j 19.2}{902.25} \\
& =\frac{23.1}{902.25}+j\left[(100 \pi) C-\frac{19.2}{902.25}\right]
\end{aligned}
$$

For unity power factor

$$
\begin{aligned}
I_{m}[Y(\omega)] & =0 \\
100 \times 3.14 \times C & =\frac{19.2}{902.25} \\
C & \simeq 68.1 \mu \mathrm{~F}
\end{aligned}
$$

SOL 2.104 Option (B) is correct.
In series RLC circuit lower half power frequency is given by following relations

$$
\begin{gathered}
\omega_{1} L-\frac{1}{\omega_{1} C}=-R \\
\left(2 \pi \times f_{1} \times 100 \times 10^{-6}\right)-\frac{1}{2 \pi \times f_{1}\left(1 \times 10^{-6}\right)}=-50 \\
f_{1}=3.055 \mathrm{kHz}
\end{gathered}
$$

SOL 2.105 Option (C) is correct.
Since initial charge across capacitor is zero, voltage across capacitor at any time t is given as

$$
v_{c}(t)=10\left(1-e^{-\frac{t}{\tau}}\right)
$$

Time constant $\quad \tau=R_{e q} C$

$$
=(10 \mathrm{k} \Omega \| 1 \mathrm{k} \Omega) \times C
$$

$$
=\left(\frac{10}{11}\right) \mathrm{k} \Omega \times 11 \mathrm{nF}=10 \times 10^{-6} \mathrm{sec}=10 \mu \mathrm{sec}
$$

So,

$$
v_{c}(t)=10\left(1-e^{-\frac{t}{10 \mu \mathrm{sec}}}\right)
$$

Pulse duration is $10 \mu \mathrm{sec}$, so voltage across capacitor will be maximum at $t=10 \mu \mathrm{sec}$

$$
v_{c}(t=10 \mu \mathrm{sec})=10\left(1-e^{-\frac{10 \mu \mathrm{sec}}{10 \mu \mathrm{sec}}}\right)=10\left(1-e^{-1}\right)=6.32 \mathrm{Volt}
$$

SOL 2.106 Option (C) is correct.
Since voltage and current are in phase so equivalent inductance is

$$
\begin{aligned}
L_{e q} & =12 \mathrm{H} \\
L_{1}+L_{2} \pm 2 M & =12 \quad M \rightarrow \text { Mutual Inductance } \\
8+8 \pm 2 M & =12 \\
16-2 M & =12(\text { Dot is at position } Q)
\end{aligned}
$$

$$
M=2 \mathrm{H}
$$

Coupling Coefficient

$$
K=\frac{2}{\sqrt{8 \times 8}}=0.25
$$

SOL 2.107 Option () is correct.

SOL 2.108 Option (C) is correct.
In steady state there is no voltage drop across inductor (i.e. it is short circuit) and no current flows through capacitors (i.e. it is open circuit) The equivalent circuit is

So,

$$
v_{c}(\infty)=\frac{10}{1+1} \times 1=5 \text { Volt }
$$

SOL 2.109 Option (C) is correct.
When the switch was closed before $t=0$, the circuit is

Current in the inductor

$$
i_{L}\left(0^{-}\right)=0 \mathrm{~A}
$$

When the switch was opened at $t=0$, equivalent circuit is

In steady state, inductor behaves as short circuit and 10 A current flows through it

$$
i_{L}(\infty)=10 \mathrm{~A}
$$

Inductor current at any time t is given by

$$
\begin{aligned}
i_{L}(t) & =i_{L}(\infty)+\left[i_{L}(0)-i_{L}(\infty)\right] e^{-\frac{R}{L} t} \\
& =10+(0-10) e^{-\frac{5}{10} t}=10\left(1-e^{-2 t}\right) \mathrm{A}
\end{aligned}
$$

SOL 2.110 Option (B) is correct.
Energy stored in inductor is

$$
E=\frac{1}{2} L i^{2}=\frac{1}{2} \times 5 \times(10)^{2}=250 \mathrm{~J}
$$

SOL 2.111 Option (C) is correct.
To obtain Thevenin's equivalent, open the terminals X and Y as shown below,

By writing node equation at X

$$
\begin{aligned}
\frac{V_{t h}-V_{1}}{Z_{1}}+\frac{V_{t h}-V_{2}}{Z_{2}} & =0 \\
V_{1} & =30 \angle 45^{\circ}=\frac{30}{\sqrt{2}}(1+j) \\
V_{2} & =30 \angle-45^{\circ}=\frac{30}{\sqrt{2}}(1-j)
\end{aligned}
$$

So,

$$
\begin{aligned}
\frac{V_{t h}-\frac{30}{\sqrt{2}}(1+j)}{1-j}+\frac{V_{t h}-\frac{30}{\sqrt{2}}(1-j)}{1+j} & =0 \\
2 V_{t h}-\frac{30}{\sqrt{2}}(1+j)^{2}-\frac{30}{\sqrt{2}}(1-j)^{2} & =0 \\
V_{t h} & =0 \mathrm{Volt}
\end{aligned}
$$

Thevenin's impedance

$$
Z_{t h}=Z_{1}\left\|Z_{2}=(1-j)\right\|(1+j)=\frac{(1-j)(1+j)}{(1-j)+(1+j)}=1 \Omega
$$

SOL 2.112 Option (A) is correct.
Drawing Thevenin equivalent circuit across load :

So, current $\quad i_{L}=0 \mathrm{~A}$

SOL 2.113 Option (A) is correct.
In the circuit we can observe that there are two wheatstone bridge connected in parallel. Since all resistor values are same, therefore both the bridge are balanced and no current flows through diagonal arm. So the equivalent circuit is

We can draw the circuit as

From $\Delta-Y$ conversion

Now the circuit is

$$
\begin{aligned}
& \frac{1}{2} \Omega+\frac{9}{10} \Omega=\frac{14}{10} \Omega
\end{aligned}
$$

$$
V_{A B}=1 \times \frac{14}{10}=1.4 \mathrm{Volt}
$$

SOL 2.114 Option (C) is correct.
In a series RLC circuit, at resonance, current is given as

$$
i=\frac{V_{s} \angle 0^{\circ}}{R}, \quad V_{S} \rightarrow \text { source voltage }
$$

So, voltage across capacitor at resonance

$$
\begin{aligned}
& V_{c}=\frac{1}{j \omega C} \times \frac{V_{s} \angle 0^{\circ}}{R} \\
& V_{c}=\frac{V_{s}}{\omega C R} \angle-90^{\circ}
\end{aligned}
$$

Voltage across capacitor can be greater than input voltage depending upon values of ω, C and R but it is 90° out of phase with the input

SOL 2.115 Option (D) is correct.
Let resistance of 40 W and 60 W lamps are R_{1} and R_{2} respectively

$$
\begin{aligned}
\because \quad P & \propto \frac{1}{R^{2}} \\
\frac{P_{1}}{P_{2}} & =\frac{R_{2}}{R_{1}} \\
\frac{R_{2}}{R_{1}} & =\frac{40}{60} \\
R_{2} & <R_{1}
\end{aligned}
$$

40 W bulb has high resistance than 60 W bulb, when connected in series power is

$$
\begin{aligned}
& P_{1}=I^{2} R_{1} \\
& P_{2}=I^{2} R_{2}
\end{aligned}
$$

$\because R_{1}>R_{2}$, So $P_{1}>P_{2}$
Therefore, 40 W bulb glows brighter

SOL 2.116 Option (B) is correct.
Series RL circuit with unit step input is shown in following figure

$$
u(t)= \begin{cases}1, & t>0 \\ 0, & \text { otherwise }\end{cases}
$$

Initially inductor current is zero

$$
i\left(0^{+}\right)=0
$$

When unit step is applied, inductor current does not change simultaneously and the source voltage would appear across inductor only so voltage across resistor at $t=0^{+}$

$$
v_{R}\left(0^{+}\right)=0
$$

SOL 2.117 Option (D) is correct.
For two coupled inductors

$$
M=K \sqrt{L_{1} L_{2}}
$$

Where $K \rightarrow$ coupling coefficient
$0<K \leq 1$
So,

$$
\begin{aligned}
& K=\frac{M}{\sqrt{L_{1} L_{2}}} \leq 1 \\
& M \leq \sqrt{L_{1} L_{2}}
\end{aligned}
$$

SOL 2.118 Option (C) is correct.
Since the network contains passive elements only, output can never offer greater power compared to input

SOL 2.119 Option (B) is correct.
Given that
When terminal C is open

$$
\begin{equation*}
R_{A B}=R_{A}+R_{B}=6 \Omega \tag{1}
\end{equation*}
$$

When terminal A is open

$$
\begin{equation*}
R_{B C}=R_{B}+R_{C}=11 \Omega \tag{2}
\end{equation*}
$$

When terminal B is open

$$
\begin{equation*}
R_{A C}=R_{A}+R_{C}=9 \Omega \tag{3}
\end{equation*}
$$

From (1), (2) and (3)
$R_{A}=2 \Omega, R_{B}=4 \Omega, R_{C}=7 \Omega$

SOL 2.120 Option () is correct.
A graph is connected if there exist at least one path between any two vertices (nodes) of the network. So it should have at least N or more branches for one or more closed paths to exist.

SOL 2.121 Option (B) is correct.

Current

$$
\begin{aligned}
I_{L} & =\frac{240 \angle 0^{\circ}}{10 \angle 60^{\circ}}=24 \angle-60^{\circ}=\frac{24(1-\sqrt{3} j)}{2} \mathrm{~A} \\
& =12-j 20.784 \mathrm{~A} \\
I_{c} & =\frac{P}{V}=\frac{j 1250}{240 \angle 0^{\circ}}=j 5.20 \angle 0^{\circ} \mathrm{A} \\
I & =I_{C}+I_{L}=12-j 20.784+j 5.20=12-j 15.58
\end{aligned}
$$

Current
Power supplied by load

$$
P=V I=240(12-j 15.58)=2880-3739 j
$$

Real power $\quad P_{R}=2880 \mathrm{~W}$

SOL 2.122 Option (A) is correct.
Let current in primary and secondary loop is I_{1} and I_{2} respectively, then by writing KVL equation (considering mutual inductance),

In primary loop

$$
\begin{align*}
& V_{S}-I_{1} R-I_{1}\left(\frac{1}{j \omega C}\right)-I_{1} j \omega L_{1}-I_{2} j \omega M=0 \\
& V_{S}=I_{1}\left[R+\frac{1}{j \omega C}+j \omega L_{1}\right]+j \omega M I_{2} \tag{1}
\end{align*}
$$

In secondary loop

$$
\begin{aligned}
0-I_{2} j \omega L_{2}-I_{1} j \omega M & =0 \\
I_{2} L_{2}+I_{1} M & =0 \\
I_{2} & =-\frac{M}{L_{2}} I_{1}
\end{aligned}
$$

Put I_{2} into equation (1)

$$
\begin{aligned}
& V_{s}=I_{1}\left[R+\frac{1}{j \omega C}+j \omega L_{1}\right]+j \omega M\left(-\frac{M}{L_{2}}\right) I_{1}=0 \\
& V_{s}=I_{1}\left[R+\frac{1}{j \omega C}+j \omega L_{1}-\frac{j \omega M^{2}}{L_{2}}\right] \\
& V_{s}=I_{1}\left[R+j\left(\omega L_{1}-\frac{\omega M^{2}}{L_{2}}-\frac{1}{\omega C}\right)\right]
\end{aligned}
$$

GATE Previous Year Solved Paper By RK Kanodia \& Ashish Murolia

For resonance imaginary part must be zero, so

$$
\begin{aligned}
\omega L_{1}-\frac{\omega M^{2}}{L_{2}}-\frac{1}{\omega C} & =0 \\
\omega^{2}\left(L_{1}-\frac{M^{2}}{L_{2}}\right)-\frac{1}{C} & =0 \\
\omega^{2}\left(\frac{L_{1} L_{2}-M^{2}}{L_{2}}\right) & =\frac{1}{C} \\
\omega^{2} & =\frac{L_{2}}{C\left(L_{1} L_{2}-M^{2}\right)}
\end{aligned}
$$

Resonant frequency

$$
\begin{aligned}
\omega & =\sqrt{\frac{L_{2}}{C\left(L_{1} L_{2}-M^{2}\right)}} \\
& =\sqrt{\frac{10 \times 10^{-3}}{3 \times 10^{-6}\left[40 \times 10^{-3} \times 10 \times 10^{-3}-\left(10 \times 10^{-3}\right)^{2}\right]}} \\
& =\frac{1}{3} \times 10^{5} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

SOL 2.123 Option (C) is correct.
Quality factor is given as

$$
Q=\frac{\omega L_{e q}}{R}+\frac{1}{\omega C R}
$$

Where,

$$
\omega=\frac{1}{3} \times 10^{5} \mathrm{rad} / \mathrm{sec}
$$

$$
\begin{aligned}
L_{e q} & =L_{1}-\frac{M^{2}}{L_{2}}=40 \times 10^{-3}-\frac{\left(10 \times 10^{-3}\right)^{2}}{10 \times 10^{-3}} \\
& =3 \times 10^{-2} \mathrm{H} \\
Q & =\frac{10^{5}}{3} \times \frac{3 \times 10^{-2}}{10}+\frac{3}{10^{5} \times 3 \times 10^{-6} \times 10} \\
& =100+1=101
\end{aligned}
$$

So,

SOL 2.124 Option (C) is correct.
Voltage and electric field are related as

$$
\begin{aligned}
E & =-\nabla V \\
& =-\left[\frac{\partial V_{x}}{\partial x} \hat{i}+\frac{\partial V_{y}}{\partial y} \hat{j}+\frac{\partial V_{z}}{\partial z} \hat{k}\right] \\
& =-\left[\frac{\partial\left(50 x^{2}\right)}{\partial x} \hat{i}+\frac{\partial\left(50 y^{2}\right)}{\partial y} \hat{j}+\frac{\partial\left(50 z^{2}\right)}{\partial z} \hat{k}\right] \\
& =-[100 x \hat{i}+100 y \hat{j}+100 z \hat{k}] \\
E(1,-1,1) & =-[100 \hat{i}-100 \hat{j}+100 \hat{k}]=-100 \hat{i}+100 \hat{j}-100 \hat{k} \\
E(1,-1,1) & =100 \sqrt{3}\left[\frac{-\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}\right]
\end{aligned}
$$

SOL 2.125 Option (C) is correct.
Power loss in watt is given as

$$
P_{h}=W_{h} V f
$$

Where
$W_{h} \rightarrow$ Energy Density Loss
$V \rightarrow$ Volume of Material
Here

$$
W_{h} V=\text { Area of hysteresis loop }
$$

$$
=5 \mathrm{~cm}^{2}
$$

So,

$$
\begin{aligned}
P_{h} & =5 \mathrm{~cm}^{2} \times 50 \\
& =5 \times 2 \times 50 \times 10^{-3} \times 50=25 \mathrm{Watt}
\end{aligned}
$$

SOL 2.126 Option (C) is correct.
For two parallel wires inductance is

$$
L=\frac{\mu_{0} l}{\pi} \ln \left(\frac{d}{r}\right)
$$

$l \rightarrow$ Length of the wires
$d \rightarrow$ Distance between the wires
$r \rightarrow$ RadiusThus

$$
\begin{aligned}
L & =\frac{4 \pi \times 10^{-7} \times 10 \times 10^{3}}{\pi} \ln \left(\frac{1.5}{0.5 \times 10^{-2}}\right) \\
& =4 \times 10^{-3} \ln (300)=22.81 \mathrm{mH}
\end{aligned}
$$

