Reg. No. : \qquad
Name : \qquad

FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION - 2021

Part - III
CHEMISTRY

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 20 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

1. State Hund's rule of maximum multiplicity.
2. Calculate the de-Broglie wavelength associated with an electron with velocity $2.05 \times 10^{7} \mathrm{~ms}^{-1}$.
3. Based on VSEPR theory predict the shape of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}.
4. Real gases do not follow gas laws perfectly under all conditions. Why?
5. State the first law of thermodynamics.
6. Give the relation between k_{p} and k_{c}, for the reaction given below.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

7. Classify the following into Lewis acids and Lewis bases.
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) NH_{3}
(iii) BCl_{3}
(iv) H^{+}
8. Write any two anomalous behavior of Li.
9. Give the IUPAC name of the following
(A) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
(B)

 2 ఢmைைరి నiఁை.
$(6 \times 2=12)$

$2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
 றை๐ாிீிゥலுக.
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) NH_{3}
(iii) BCl_{3}
(iv) H^{+}

(A) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$
(B)

10. Write any two chain isomers of a molecule having molecular formula $\mathrm{C}_{5} \mathrm{H}_{12}$.
11. Name the following reaction

Benzene
Toluene
12.

Answer any 8 questions from 13 to 28. Each carries 3 scores.
13. (i) State the law of definite proportion.
(ii) Define limiting reagent of a reaction.
14. (i) What is atomic mass unit?
(ii) Calculate the number of atoms in each of the following :
(A) 52 mole of Ar
(B) 52 g of He
15. (i) Which of the following ion is not isoelectronic with Ne atom.
(a) O^{-}
(b) Na^{+}
(c) $\mathrm{Al}{ }^{3+}$
(d) Mg^{2+}
(ii) Explain why Na^{+}ion is smaller than Na atom.

$$
\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}
$$

12.

 （－）

 3 セேைoరి กiఁை．

（A） 52 セேலலี Ar
（B） $52(\circlearrowleft) \circ \mathrm{He}$
 ๕（SOMlめ＂๔r이ำைை＂？
（a） O^{-}
（b） Na^{+}
（c） Al^{3+}
（d） Mg^{2+}
 விசாகிக囚ிமாృக．
16. (i) Consider the process.
$\mathrm{Na}_{(\mathrm{g})} \xrightarrow{\mathrm{IE}_{1}} \mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{e}^{-}$
$\mathrm{Na}^{+}{ }_{(\mathrm{g})} \xrightarrow{\mathrm{IE}_{2}} \mathrm{Na}^{2+}{ }_{(\mathrm{g})}+\mathrm{e}^{-}$
Which is greater IE_{2} or IE_{1} ? Justify.
(ii) Electron gain enthalpy of F is less than that of $\mathrm{C} l$. Why?
17. (i) Explain the covalent character of LiCl using Fajan's rule.
(ii) Write any two differences between sigma (σ) bond and pi (π) bond.
18.

(i) Name the gas law shown by the above graph.
(ii) A vessel of 120 mL capacity contains a certain amount of gas at $35^{\circ} \mathrm{C}$ and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at $35^{\circ} \mathrm{C}$. What would be its pressure ?
19. (i) Write the van der Waal's equation for ' n ' mole of a gas.
(ii) State any four postulates of kinetic theory of gases.
20. (i) Which among the following is an intensive property :
(a) Mass
(b) Volume
(c) Enthalpy
(d) Temperature
(ii) State and explain Hess's law of constant heat summation.

16．（i）$\quad \mathrm{Na}_{(\mathrm{g})} \xrightarrow{\mathrm{IE}_{1}} \mathrm{Na}^{+}{ }_{(\mathrm{g})}+\mathrm{e}^{-}$
$\mathrm{Na}^{+}{ }_{(\mathrm{g})} \xrightarrow{\mathrm{IE}_{2}} \mathrm{Na}^{2+}{ }_{(\mathrm{g})}+\mathrm{e}^{-}$
 గிळிகலிெலூக．

18.

 வேロமழுூைக．

（a）๑๐๓ธ
（b）வృمัตை

（d）כைロMி巳

21. (i) Define the Lattice enthalpy.
(ii) Draw the Born-Haber cycle for the calculation of lattice enthalpy of NaCl .
22. (i) The oxidation state of Mn in KMnO_{4} is \qquad .
(ii) Identify the element undergoing disproportionation reaction in the following.

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2}(\mathrm{~g}) \tag{2}
\end{equation*}
$$

23. Balance the following equation by the half reaction method in acidic medium.

$$
\begin{equation*}
\mathrm{Fe}_{(\mathrm{aq})}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{aq})}^{2-} \longrightarrow \mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{Cr}_{(\mathrm{aq})}^{3+} \tag{3}
\end{equation*}
$$

24. (i) Write the name of one salt responsible for the permanent hardness of water.
(ii) Explain any one method used for the removal of permanent hardness of water.
25. (i) Write the name of any two electron rich hydrides.
(ii) Explain with suitable chemical equation, why hydrogen peroxide is stored in waxlined glass or plastic vessel in dark.
26. (i) Name the process used for the industrial preparation of sodium carbonate.
(ii) Match the following:

A	B
Washing Soda	NaHCO_{3}
Caustic Soda	$\mathrm{Ca}(\mathrm{OH})_{2}$
Baking Soda	CaO
Slaked Lime	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
	NaOH

 \qquad (ாறஸ.

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2}(\mathrm{~g}) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{Fe}_{(\mathrm{aq})}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{aq})}^{2-} \longrightarrow \mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{Cr}_{(\mathrm{aq})}^{3+} \tag{3}
\end{equation*}
$$

 ாேロேழூூ

A	B
	NaHCO_{3}
	$\mathrm{Ca}(\mathrm{OH})_{2}$
றேமிிஷ¢ ¢ேைow	CaO
	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
	NaOH

27. (i) What is plaster of Paris chemically?
(ii) When CO_{2} is passed through lime water, it turns milky. ON passing excess of CO_{2}, the milky colour disappears. Give the chemical reaction involved in these process.
28. Explain the principle involved in the following methods of purification
(a) Distillation
(b) Crystallisation

Answer any 6 questions from 29 to 40. Each carries 4 scores.
$(6 \times 4=24)$
29. Atomic orbitals are precisely distinguished by quantum numbers.
(i) Explain two types of quantum numbers used to designate atomic orbitals.
(ii) Write ' n ' and ' l ' values of $2 p$ and $4 s$ orbitals.
30. (i) Give any two postulates of Bohr model of hydrogen atom.
(ii) State Heisenberg's uncertainty principle. Write the mathematical expression.
31. (i) What is bond order?
(ii) Using molecular diagram explain the paramagnetic nature of oxygen molecule.
32. (i) The geometry of BeCl_{2} molecule is \qquad .
(a) Tetrahedral
(b) Linear
(c) Triagonal bipyramidal
(d) Octahedral
(ii) Explain sp^{2} hybridisation taking boron trifluoride $\left(\mathrm{BF}_{3}\right)$ as an example.
33. (i) The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?
(ii) What are conjugate acid base pairs ?
(iii) Write the conjugate base for the following Bronsted acids $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HF}$.

（b）வமைிிகா๐
 4 ⿷匚ை

 \qquad （अ）ஸ゙．
（a）๑s（5๑๐ก๙ைณை
（b）：பlmிゃฉ்

34. (i) Define buffer solutions? Write one example for an acidic buffer.
(ii) Classify the aqeous solution of the following salts into acidic, basic and neutral.
$\mathrm{NaCl}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{CH}_{3} \mathrm{COONa}$
35. (i) Thermodynamically the most stable form of carbon is \qquad .
(a) diamond
(b) graphite
(c) fullerences
(d) coal
(ii) Producer gas is a mixture of
(a) $\mathrm{CO}+\mathrm{H}_{2}$
(b) $\mathrm{CO}+\mathrm{N}_{2}$
(c) $\mathrm{CO}_{2}+\mathrm{H}_{2}$
(d) $\mathrm{CO}_{2}+\mathrm{N}_{2}$
(iii) What are silicones? Mention its one application.
36. (i) Explain the structure of diborane.
(ii) CCl_{4} cannot be hydrolysed, but SiCl_{4} can be. Why?
37. (i) Name any one method used for the estimation of nitrogen present in an organic compound.
(ii) How is sodium fusion extract prepared ? Using this how will you detect the presence of nitrogen?
38. (i) Draw the newmann projection for eclipsed and staggered conformation of ethane molecule.
(ii) Identify A and B
(a) $\underset{\substack{\mathrm{C}_{6} \\ \text { n-Hexane }}}{\mathrm{Cr}_{14} \mathrm{O}_{3}} \xrightarrow[\substack{773 \mathrm{~K} \\ 10-20 \mathrm{~atm}}]{ } \mathrm{A}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr} \longrightarrow \mathrm{B}$

 சூேி கைロாிைிமூృக．
$\mathrm{NaCl}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{CH}_{3} \mathrm{COONa}$

\qquad ．
（a）พœーตร゙

（d）கண்ம๑๐1
（1）

（a） $\mathrm{CO}+\mathrm{H}_{2}$
（b） $\mathrm{CO}+\mathrm{N}_{2}$
（c） $\mathrm{CO}_{2}+\mathrm{H}_{2}$
（d） $\mathrm{CO}_{2}+\mathrm{N}_{2}$

（a）$\quad \mathrm{C}_{6} \mathrm{H}_{14} \xrightarrow[773 \mathrm{~K}]{\mathrm{Cr}_{2} \mathrm{O}_{3}} \mathrm{~A}$

（b） $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr} \longrightarrow \mathrm{B}$
39. (i) Complete the following chemical reactions
(a) $3 \mathrm{CH} \equiv \mathrm{CH} \xrightarrow[873 \mathrm{~K}]{\text { Red hot iron tube }} \ldots \ldots$
(b) $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \ldots$
(ii) Predict the product formed in each reaction.
(a) Benzene is heated with a mixture of Conc. HNO_{3} and Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(b) Benzene react with C_{2} in presence of anhydrous $\mathrm{AlCl} l_{3}$.
40. (i) What is greenhouse effect?
(ii) Give any two applications of Green chemistry in day-to-day life.

(b) $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \ldots$

