

STD 10- FIRST BELL 2.0- CHEMISTRY - CLASS-17

Chapter 2

GAS LAW AND MOLE CONCEPT

Important Equations

- Number of $GAM = \frac{Given Mass in grams}{GAM \text{ of the element.}}$
- Number of atoms = Number of $GAM \times NA$.
- Number of Mole atoms = Number of GAM.
- Mass= Number of mole × GAM
- Number of atoms = Number of Mole atoms \times NA.
- Number of atoms = Number of molecules × Atomicity.
- Number of GMM = $\frac{\text{Given Mass in gram}}{\text{GMM}}$
- Number of Molecules = Number of GMM ×NA.
- Number of Mole molecules = Number of GMM.
- Number of Molecules = Number of mole molecules ×NA.
- Mass = No of Mole \times GMM
- Number of Moles = $\frac{\text{Volume in Litre at STP}}{22.4 \text{ L}}$
- Volume = No of moles \times 22.4

PROBLEMS

1. Atomic mass of Nitrogen is 14 which of these samples contains 6.022×10²³ Nitrogen atoms? (7g Nitrogen, 14 g Nitrogen, 28g Nitrogen, 1g Nitrogen).

Ans:

Number of atoms = No of $GAM \times NA$

Number of GAM = $\frac{\text{Given gram}}{\text{GAM}}$

$$=\frac{14}{14}=1$$

Number of atoms= $1 \times 6.022 \times 10^{23}$

14g Nitrogen = 6.022×10^{23}

2. How many GAM & GMM present in 64 g oxygen? (Atomic mass O=16)

Ans:

No of GAM =
$$\frac{\text{Given Mass in grams}}{\text{GAM of the element}}$$

= $\frac{64}{16}$ = 4GAM.

Number of GMM =
$$\frac{\text{Given Mass in gram}}{\text{GMM}}$$

= $\frac{64}{32}$ = 2GMM

- 3. Calculate the following.
 - a) How many GAM is present in 115g sodium?
 - b) Mass of 5 mole of calcium atom (Atomic mass Na=23, Ca=40)

Ans:

a. No of
$$GAM = \frac{Given Mass in grams}{GAM \text{ of the element}}$$

$$=\frac{115}{23}=5GAM$$

b. Mass = No of Mole
$$\times$$
GAM
= $5 \times 40 = 200$ g.

- 4. Molecular mass of CH₄ is 16.
- a) Find the mass of 1GMM CH₄
- b) How many moles of molecules are present in 160g CH₄.
- c) Find the mass of $5 \times 6.022 \times 10^{23}$ in CH₄.

Ans:

- a. 16g
- b. Number of Mole molecules = Number of GMM. $= \frac{160}{16} = 10 \text{mole}$

c. Mass = No of Mole
$$\times$$
 GMM
=5 \times 16= 80g.

5. Arrange the following sample in the increasing order of the number of molecules in each.

- a) 180 g H₂O
- b) 44.8L NH₃
- c) 20g He
- d) 1 mol H₂SO₄. (Atomic mass H=1, I=16 He=4)

Ans:

Number of Molecules = Number of mole \times NA.

Number of Mole =
$$\frac{\text{Given Mass in gram}}{\text{GMM}}$$

a.
$$\frac{180}{18} = 10$$
 mole

No of molecules= 10×NA

b.
$$\frac{44.8}{22.4} = 2 \text{ mole}$$

= 2× NA

c.
$$\frac{20}{4} = 5$$
 mole $5 \times NA$

d. No of molecule =1×NA d < b < c < a

HOME WORK

- The molecular mass of Ammonia is 17.
- a) How much is the GMM of Ammonia?
 - b) Find out the number of moles of molecules present in 170g of Ammonia.
 - c) Calculate the number of ammonia molecules present in the above sample of ammonia?
 - d) What will be the total number of atoms?
 - e) What is the volume of 10 mole Ammonia at STP?
 - f) Calculate the mass of 112L Ammonia at STP?

Prepared by:

Sakeena T HST PS

Iringannur HSS Calicut