60020

STD 10- FIRST BELL 2.0- CHEMISTRY - CLASS-17

Chapter 2

GAS LAW AND MOLE CONCEPT

Important Equations

- Number of GAM $=\frac{\text { Given Mass in grams }}{\text { GAM of the element. }}$
- Number of atoms $=$ Number of GAM \times NA.
- Number of Mole atoms $=$ Number of GAM.
- Mass $=$ Number of mole \times GAM
- Number of atoms $=$ Number of Mole atoms \times NA.
- Number of atoms $=$ Number of molecules \times Atomicity.
- Number of GMM $=\frac{\text { Given Mass in gram }}{\text { GMM }}$
- Number of Molecules $=$ Number of GMM \times NA.
- Number of Mole molecules $=$ Number of GMM.
- Number of Molecules $=$ Number of mole molecules \times NA.
- Mass $=$ No of Mole $\times \mathrm{GMM}$
- Number of Moles $=\frac{\text { Volume in Litre at STP }}{22.4 \mathrm{~L}}$
- \quad Volume $=$ No of moles $\times 22.4$

PROBLEMS

1. Atomic mass of Nitrogen is 14 which of these samples contains 6.022×10^{23} Nitrogen atoms? (7 g Nitrogen, 14 g Nitrogen, 28 g Nitrogen, 1 g Nitrogen).

Ans:
Number of atoms $=$ No of GAM \times NA
Number of GAM $=\frac{\text { Given gram }}{\text { GAM }}$

$$
=\frac{14}{14}=1
$$

Number of atoms $=1 \times 6.022 \times 10^{23}$
14 g Nitrogen $=6.022 \times 10^{23}$
2. How many GAM \& GMM present in 64 g oxygen? (Atomic mass $\mathrm{O}=16$)

Ans:

No of GAM $=\frac{\text { Given Mass in grams }}{\text { GAM of the element }}$

$$
=\frac{64}{16}=4 \mathrm{GAM}
$$

Number of GMM $=\frac{\text { Given } \text { Mass in gram }}{\text { GMM }}$

$$
=\frac{64}{32}=2 \mathrm{GMM}
$$

3. Calculate the following.
a) How many GAM is present in 115 g sodium?
b) Mass of 5 mole of calcium atom
(Atomic mass $\mathrm{Na}=23, \mathrm{Ca}=40$)
Ans:
a. No of GAM $=\frac{\text { Given Mass in grams }}{\text { GAM of the element }}$

$$
=\frac{115}{23}=5 \mathrm{GAM}
$$

b. Mass $=$ No of Mole \times GAM

$$
=5 \times 40=200 \mathrm{~g} .
$$

4. Molecular mass of CH_{4} is 16 .
a) Find the mass of 1 GMM CH 4
b) How many moles of molecules are present in $160 \mathrm{~g} \mathrm{CH}_{4}$.
c) Find the mass of $5 \times 6.022 \times 10^{23} \mathrm{inCH}_{4}$.

Ans:
a. 16 g
b. Number of Mole molecules $=$ Number of GMM.

$$
=\frac{160}{16}=10 \mathrm{~mole}
$$

c. Mass $=$ No of Mole \times GMM

$$
=5 \times 16=80 \mathrm{~g} \text {. }
$$

5. Arrange the following sample in the increasing order of the number of molecules in each.
a) $180 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
b) $44.8 \mathrm{~L} \mathrm{NH}_{3}$
c) 20 g He
d) $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$. (Atomic mass $\mathrm{H}=1, \mathrm{I}=16 \mathrm{He}=4$)

Ans:
Number of Molecules $=$ Number of mole \times NA.
Number of Mole $=\frac{\text { Given Mass in gram }}{\text { GMM }}$
a. $\frac{180}{18}=10 \mathrm{~mole}$

No of molecules $=10 \times \mathrm{NA}$
b. $\frac{44.8}{22.4}=2 \mathrm{~mole}$

$$
=2 \times \mathrm{NA}
$$

c. $\frac{20}{4}=5 \mathrm{~mole}$
$5 \times \mathrm{NA}$
d. No of molecule $=1 \times$ NA

$$
d<b<c<a
$$

HOME WORK

- The molecular mass of Ammonia is 17.
a) How much is the GMM of Ammonia?
b) Find out the number of moles of molecules present in 170 g of Ammonia.
c) Calculate the number of ammonia molecules present in the above sample of ammonia?
d) What will be the total number of atoms?
e) What is the volume of 10 mole Ammonia at STP?
f) Calculate the mass of 112L Ammonia at STP?

Prepared by:
Sakeena T
HST PS
Iringannur HSS Calicut

