60020

STD 10- FIRST BELL - CHEMISTRY - CLASS-15

Chapter 2
GAS LAW AND MOLE CONCEPT

Relation between volume of a gas and moles.

- In gases molecules are very distant apart. Compared to the size of the molecules the distance between them is much greater.
- In gases at a given pressure and temperature, the volume of a gas depends upon the number of molecules, and not on the type and size of the molecules.
- One mole of any gas under the same conditions of temperature and pressure will contain the same number of molecules and hence their volume will also be the same. This is called molar volume of the gas.
- In gas law, if there are changes in pressure and temperature, the volume is also changed.
- Scientists experimentally proved that the volume of 6.022×10^{23} molecules (1 mol) of any gas at 273 K and 1 atm pressure occupies 22.4 litres.
- 273 K temperature and 1 atm pressure are known as standard temperature and pressure or STP.
- At STP one mole of any gas will occupy a volume of 22.4 L . This is called molar volume at STP.

Gas	Volume
One mole of Hydrogen at STP	22.4 L
One mole of Nitrogen at STP	22.4 L
One mole CO_{2} at STP	22.4 L
One mole $\mathrm{H}_{2} \mathrm{O}$ at STP	22.4 L
One mole NH_{3} at STP	22.4 L

- Number of moles of gas at $\mathrm{STP}=\frac{\text { Volume in litres at STP }}{22.4 \mathrm{~L}}$

Questions and Answers

1. Calculate the no of molecules in 44.8 L of oxygen at STP.

- Number of moles $=\frac{\text { volume in liters }}{22.4}$

$$
\begin{aligned}
& =\frac{44.8}{22.4} \\
& =2 \mathrm{~mole}
\end{aligned}
$$

Number of molecules in 1 mole oxygen $=6.022 \times 10^{23}$
Number of molecules in 2 mole oxygen $=2 \times 6.022 \times 10^{23}$
2. a) Calculate the mass of $112 \mathrm{LCO}_{2}$ gas kept at STP (molecular mass=44).
b) How many molecules of CO_{2} are present in it?

- a) No of moles in $112 \mathrm{~L} \mathrm{CO}_{2}=\frac{112}{22.4}$

$$
=5 \mathrm{~mole}
$$

$$
\begin{aligned}
\text { Mass of the gas } & =\text { No of moles } \times \mathrm{GMM} \\
& =5 \times 44=220 \mathrm{~g}
\end{aligned}
$$

- b) No of molecules $=5 \times 6.022 \times 10^{23}$

3. $112 \mathrm{~L} \mathrm{CO}_{2}$ and $85 \mathrm{~g} \mathrm{NH}_{3}$ at STP Is given. (Atomic mass $\mathrm{C}=12, \mathrm{O}=16, \mathrm{~N}=14 \& \mathrm{H}=1$)
a) Calculate number of molecules in sample
b) Calculate the volume of NH_{3}

- a) No of moles in 112 $\mathrm{CO}_{2}=\frac{\text { volume at STP }}{22.4}$

$$
=\frac{112}{22.4}=5 \text { mole. }
$$

No of moles in $\mathrm{NH}_{3}=\frac{85}{17}=5$ mole.

- b) Volume at STP $=$ No of moles $\times 22.4$

$$
=5 \times 22.4=112 \mathrm{~L}
$$

HOME WORK

1. Complete the word diagram

2. Arrange the following in the decreasing order of number of molecules.
a) 160 g Oxygen gas.
b) $67.2 \mathrm{~L} \mathrm{NH}_{3}$ at STP.
c) 4 G MM Nitrogen.

Prepared by:
Sakeena T
HST PS
Iringannur HSS Calicut

