

STD 10-FIRST BELL 2.0-CHEMISTRY-SCIENCE DIARY-CLASS-14 Chapter 2

GAS LAW AND MOLE CONCEPT

One Mole Atom

- 1 mole of atom means 6.022×10^{23} Atoms.
- Eg: 12g C=1GAM Carbon= 6.022×10^{23} Carbon atoms=1 mole carbon atom
- 14g N=1GAM N= 6.022×10^{23} Nitrogen atom=1 mole Nitrogen atom.

Questions and Answers

1. Calculate the mole and Number of Oxygen atoms present in 64g of Oxygen? (Atomic Mass of Oxygen=16)

Ans

No. of Moles in 64g oxygen= $\frac{\text{Given mass in grams}}{\text{G AM}}$

$$=\frac{64}{16}=4$$
Mole

No of atoms $=4 \times 6.022 \times 10^{23}$

- 2. Write the number of atoms present in each of the following.
 - (Atomic Mass S=32, C=12& O=16)
 - I. 32g Sulphur
 - II. 32g Oxygen
 - III. 32g Carbon.

Ans.

- Number of Sulphur atoms $=\frac{32}{32} \times 6.022 \times 10^{23} = 6.022 \times 10^{23}$ Number of oxygen atoms $=\frac{32}{16} \times 6.022 \times 10^{23} = 2 \times 6.022 \times 10^{23}$ Number of carbon atoms $=\frac{32}{12} \times 6.022 \times 10^{23}$ I.
- II.
- III.

MOLECULAR MASS & GRAM MOLECULAR MASS.

- The amount of an element in grams equal to its atomic mass is called GRAM ATOMIC MASS (G AM).
- The amount of a substance in grams equal to its molecular mass is called GRAM MOLECULAR MASS (G MM).

CALCULATE MOLECULAR MASS.

(Atomic Mass: H=1, O=16, N=14)

ELEMENTCOMPOUND	CHEMICAL FORMULA	MOLECULAR MASS
HYDROGEN	H ₂	1+1=2
OXYGEN	O ₂	16+16=32
NITROGEN	N2	14+14=28
WATER	H ₂ O	1+1+16=18
AMMONIA	NH ₃	14+1+1+1=17

Question and Answers

1. Calculate the molecular mass of glucose $(C_6H_{12}O_6)$ & Sulphuric acid (H_2SO_4) . (Atomic mass C=12, H=1, O=16, S=32)

Ans:

Glucose $(C_6H_{12}O_6) = 6 \times 12 + 12 \times 1 + 6 \times 16 = 180$ Molecular mass of $H_2SO_4 = 2 \times 1 + 1 \times 32 + 4 \times 16 = 98$

Relation between one GMM & Number of Molecules

Table Analysis

ELEMENT	MOLECULAR	MASS IN	GMM	NO OF
COMPOUND	MASS	GRAMS		MOLECULES
H ₂	2	2g	1G MM	$6.022 \times 10^{23} \text{ H}_2$
				molecules
O ₂	32	32g	1G MM	$6.022 \times 10^{23} O_2$
				molecules
N ₂	28	28g	1G MM	$6.022 \times 10^{23} N_2$

				molecules
H ₂ O	18	18g	1G MM	6.022×10 ²³ H ₂ O molecules
NH ₃	17	17g	1G MM	6.022×10 ²³ NH ₃ molecules

- 1. What is the molecular mass of Oxygen?
 - **3**2
- 2. How many G MM present in 32g Oxygen? • 1 G MM
- 3. How many molecules are present?
 - 6.022×10^{23}
- ✓ ONE gram molecular mass of any substance contains AVAGADRO Number of molecules.
- ✓ No of molecules= No of G MM× 6.022×10^{23}
- ✓ No of Gram Molecular Mass = $\frac{\text{Given mass in gram}}{\text{Gram Molecular mass (G MM)}}$

Question and Answers

- 1. How many G MM & number of molecules are present in 64g Oxygen?
 - Given mass in gram Gram Molecular mass (G MM) G MM= $\frac{64}{32} = 2 \text{ GMM}$

No of molecules = $2 \times 6.022 \times 10^{23}$

One mole of molecules.

- 6.022×10²³ molecules are called one mole molecule.
 1 G MM= 1 MOLE=6.022×10²³ MOLECULES.

HOME WORK

- 1. Calculate the number of G MM & Number of molecules present in each sample?
 - a) 360 g glucose (Molecular mass =180).
 - b) 90 g water (molecular mass =18)
- 2. The molecular mass of Ammonia is 17.
 - a) How much is the G MM of Ammonia.
 - b) Find out the number of moles of molecules present in 170 g of Ammonia.

c) Calculate the number of Ammonia molecules present in the above sample of Ammonia?

3. Calculate the Number of G MM and Number of Molecules in 44g CO₂ (Atomic mass C=12, O=16).

Prepared by:

Sakeena T HST PS Iringannur Hss Calicut