PHYSOL EXAMINATION SERIES
 CHAPTER 4- MOTION IN A PLANE
 SUNDAY 04-07-2021 @ 7.00pm

PES03

MAXIMUM SCORE:30

ANSWER KEY

| 1 Vectors | $\mathbf{1}$ |
| :--- | :--- | :---: |
| 290° | |
| 3 Zero Vector or Null vector | $\mathbf{1}$ |
| 4 Acceleration | $\mathbf{1}$ |

5 For a projectile launched with velocity v_{o} at an angle θ_{o}, the range is given by
Range $R=\frac{u^{2} \sin 2 \theta_{0}}{g}$
Now, for angles, $\left(45^{\circ}+\alpha\right)$ and $\left(45^{\circ}-\alpha\right), 2 \theta$ o is $\left(90^{\circ}+2 \alpha\right)$ and ($\left.90^{\circ}-2 \alpha\right)$, respectively.
The values of $\sin \left(90^{\circ}+2 \alpha\right)$ and $\sin \left(90^{\circ}-2 \alpha\right)$ are the same, equal to that of $\cos 2 \alpha$. Therefore, ranges are equal for elevations which exceed or fall short of 45° by equal amounts α.
6 (a) At highest point the acceleration remains same as acceleration due to gravity
(b) At highest point, velocity becomes zero

7 Yes. When $u \cos \theta=\frac{u}{2}$

$$
\begin{aligned}
\operatorname{Cos} \theta & =1 / 2 \\
\theta & =60^{\circ} .
\end{aligned}
$$

$8-h=-1 / 2 \mathrm{gt}^{2}$
$\mathrm{h}=1 / 2 \times 10 \mathrm{X} 100=500 \mathrm{~m}$

9 (a) The unit vector of \vec{A}

$$
\hat{A}=\frac{\vec{A}}{|\vec{A}|}
$$

(b) $\vec{A}=4 \hat{i}-3 \hat{j}+\hat{k}$

Here $\quad|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$

$$
\begin{aligned}
& |\vec{A}|=\sqrt{4^{2}+(-3)^{2}+1^{2}} \\
& |\vec{A}|=\sqrt{16+9+1}=\sqrt{26}
\end{aligned}
$$

There fore $\quad \hat{A}=\frac{\vec{A}}{|\vec{A}|}=\frac{4 \hat{i}-3 \hat{j}+\hat{k}}{\sqrt{26}}$

10	a) b) $\vec{r}=x \hat{i}+y \hat{j}$ c) $R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}$	1
11	We have $H=\frac{u^{2} \sin ^{2} \theta}{2 g} \quad \& \quad R=\frac{u^{2} \sin 2 \theta}{g}$ When $\mathrm{H}=\frac{R}{4}$ $\begin{aligned} & \frac{u^{2} \sin ^{2} \theta}{2 g}=\frac{1}{4} \frac{u^{2} \sin 2 \theta}{g} \\ & \sin ^{2} \theta=\frac{\sin 2 \theta}{2} \\ & \sin ^{2} \theta=\frac{2 \sin \theta \cos \theta}{2} \\ & \frac{\sin \theta}{\cos \theta}=1 \\ & \tan \theta=1 \\ & \theta=45^{\circ} \end{aligned}$	3
12	Given 2usin $\theta / \mathrm{g}=5$ $u \sin \theta=25$ Now. $\begin{aligned} \mathrm{H} & =\mathrm{u}^{2} \operatorname{Sin}^{2} \theta / 2 \mathrm{~g} \\ & =25^{2} / 2 \times 10=31.25 \mathrm{~m} \end{aligned}$	3
1	a)Expression for Maximum height(H): We have $V^{2}=u^{2}+2$ as Taking the vertical components; $V_{y}^{2}=u_{y}^{2}+2 a_{y} s_{y}$ Here $\mathrm{Vy}=0, \mathrm{u}_{\mathrm{y}}=\mathrm{usin} \theta, \mathrm{a}_{\mathrm{y}}=-\mathrm{g}$ and $\mathrm{S}_{\mathrm{y}}=\mathrm{H}$ Therefore $\begin{aligned} & 0=(u \sin \theta)^{2}-2 g H \\ & 2 g H=u^{2} \sin ^{2} \theta \end{aligned}$ Maximum Height, $\quad H=\frac{u^{2} \sin ^{2} \theta}{2 g}$ Expression for Time of flight (T): We have $S=u t+\frac{1}{2} a t^{2}$ Taking vertical components;	3
	Prepared by Higher Secondary	Physics puram

15 Given $\mathrm{H}=25 \mathrm{~m}, \mathrm{u}=40 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& H=\frac{u^{2} \sin ^{2} \theta}{2 g}=\frac{40^{2} \sin ^{2} \theta}{2 \times 9.8}=25 \mathrm{~m} \\
& \sin ^{2} \theta=\frac{25 \times 9.8 \times 2}{40^{2}}=.30625
\end{aligned}
$$

Therefore $\theta=33.6^{0}$
Range $\quad R=\frac{u^{2} \sin 2 \theta}{g}=\frac{40^{2} \sin 2(33.6)}{9.8}=150.5 \mathrm{~m}$
16 (a) Horizontal displacement $S_{x}=u_{x} t$ because $\mathrm{a}_{x}=0$
Vertical displacement $\quad S_{y}=\frac{1}{2} g t^{2} \quad$ because $\mathrm{u}_{y}=0 \quad \mathrm{a}_{\mathrm{y}}=\mathrm{g}$

\mathbf{t}	1	2	3	4	5
$\mathbf{S}_{\mathbf{x}}$	40	80	120	160	200
$\mathbf{S}_{\mathbf{y}}$	5	20	45	80	125

(b) Hight of the tower, $\quad H=\frac{1}{2} g t^{2}=\frac{1}{2} \times 10 \times 4^{2}$

$\mathrm{H}=80 \mathrm{~m}$.

17 a) Two Dimensional Motion
b) Given $y=x-\frac{x^{2}}{80}$ and We have $y=(\tan \theta) x-\left(\frac{g}{2 u^{2} \cos ^{2} \theta}\right) x^{2}$

Comparing, we get
$\tan \theta=1$ Therefore $\theta=45^{\circ}$.
And $\frac{g}{2 u^{2} \cos ^{2} \theta}=\frac{1}{80}$
That is $\quad \frac{u^{2}}{g}=80$
We have Maximum height $\quad H=\frac{u^{2} \sin ^{2} \theta}{2 g}$

$$
H=\frac{80}{2 \times 2}=20 \mathrm{~m} .
$$

c) Here $u=37 \mathrm{~m} / \mathrm{s} \quad \theta=53.1^{\circ} \quad \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
u_{x}=u \cos \theta=37 \cos (53.1)=37 x 0.6=22.2 \mathrm{~m} / \mathrm{s}
$$

$$
u_{y}=u \sin \theta=37 \sin (53.1)=37 \times 0.79=29.59 \mathrm{~m} / \mathrm{s} .
$$

The x -coordinate is given by

$$
S_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}=u_{x} t \quad\left(\mathrm{a}_{x}=0\right)
$$

Therefore at $\mathrm{t}=2 \mathrm{~s}, \quad \mathrm{x}=22.2 \times 2=44.4 \mathrm{~m}$
The y-coordinate is given by

$$
\begin{aligned}
& \quad S_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2} \\
& y=29.59 \times 2-\frac{1}{2} 9.8 \times 2^{2} \quad\left(\mathrm{a}_{\mathrm{y}}=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{y}=39.6 \mathrm{~m}
\end{aligned}
$$

Therefore the position of the ball when $t=2 s$ is given by $(44.4,39.6)$
18 a)Parabola
b)at its highest point

c) On projection , the entire energy is kinetic energy (so P.E $=0$) $=\frac{1}{2} m v^{2}=E$

At the highest point $\mathrm{KE}=\frac{1}{2} m v^{2} \cos ^{2}(\theta)$

$$
=E \cos ^{2}(\theta)
$$

PE at highest point $=$ Total energy -KE

$$
\begin{aligned}
& =E-E \cos ^{2} \theta \\
& =E\left(1-\cos ^{2} \theta\right) \\
& =E \sin ^{2} \theta
\end{aligned}
$$

