PHYSOL EXAMINATION SERIES CHAPTER 4- MOTION IN A PLANE SUNDAY 04-07-2021 @ 7.00pm PES03 TIME: 1 HOUR		
ANSWER KEY		
1	Vectors	1
2	90°	1
3	Zero Vector or Null vector	1
4	Acceleration	1
5	For a projectile launched with velocity v_o at an angle θ_o , the range is given by Range $R = \frac{u^2 \sin 2 \theta_0}{g}$ Now, for angles, $(45^\circ + \alpha)$ and $(45^\circ - \alpha)$, 2 θ_0 is $(90^\circ + 2\alpha)$ and $(90^\circ - 2\alpha)$, respectively. The values of sin $(90^\circ + 2\alpha)$ and sin $(90^\circ - 2\alpha)$ are the same, equal to that of cos 2α . Therefore, ranges are equal for elevations which exceed or fall short of 45° by equal amounts α .	2
6	(a) At highest point the acceleration remains same as acceleration due to gravity (b) At highest point, velocity becomes zero	1 1
7	Yes. When $u\cos\theta = \frac{u}{2}$ $\cos\theta = 1/2$ $\theta = 60^{\circ}$.	2
8	$ \begin{array}{l} -h = -1/2 \ gt^2 \\ h = 1/2 \ x \ 10 \ X \ 100 = 500m \end{array} $	2
9	(a) The unit vector of \vec{A} , $\hat{A} = \frac{\vec{A}}{ \vec{A} }$	1
	(b) $\vec{A} = 4\hat{i}-3\hat{j}+\hat{k}$ Here $ \vec{A} =\sqrt{A_x^2+A_y^2+A_z^2}$ $ \vec{A} =\sqrt{4^2+(-3)^2+1^2}$ $ \vec{A} =\sqrt{16+9+1}=\sqrt{26}$ There fore $\hat{A}=\frac{\vec{A}}{ \vec{A} } = \frac{4\hat{i}-3\hat{j}+\hat{k}}{\sqrt{26}}$	2
	$ A \sqrt{20}$ PHVSOL-The solution for learning	Physics

Prepared by Higher Secondary Physics Teachers Association Malappuram

Prepared by Higher Secondary Physics Teachers Association Malappuram

 $S_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$ Here $S_y=0$, $u_y=usin\theta$, $a_y=-g$ and t=T, time of flight. $0 = u\sin\theta T - \frac{1}{2}gT^2$ Therefore $\frac{1}{2}gT^2 = usin \theta T$ $\frac{1}{2}gT = usin \theta$ Time of flight $T = \frac{2u\sin\theta}{g}$ 1 b) For Maximum horizontal range , angle of projection $\theta = 45^{0}$. a) 14 1 b) Expression for the Range of a Projectile(R): The product of horizontal component of velocity and time of flight gives the range of a projectile. $R = u_x x T$ $R = u \cos \theta x \frac{2u \sin \theta}{g}$ $R = u \cos \theta x \frac{2u \sin \theta}{g}$ $R = \frac{u^2}{g} 2 \sin \theta \cos \theta$ Therefore Range, $R = \frac{u^2}{g} \sin 2\theta$ 3 When θ =45°, 2 θ =90°, then the range is maximum. $R_{\text{max}} = \frac{u^2}{a}$... An athlete throws javelin at an angle of 45° to get maximum range. For a projectile the range will be same at an angle θ and (90- θ).(for example at 30^o and 60^o, the range will be same for a projectile). 10 Vertical distance in met 8 60 6 45 4 30° 2 15 0 6 8 10 12 14 16 18 20 2 4 Range in meters (horizontal distance)

> PHYSOL-The solution for learning Physics Prepared by Higher Secondary Physics Teachers Association Malappuram

PHYSOL-The solution for learning Physics Prepared by Higher Secondary Physics Teachers Association Malappuram

