FIRST YEAR HIGHER SECONDARY MODEL EXAMINATION, AUGUST 2021

> Part - III

PHYSICS
Maximum : 60 Scores
ANSWER KEY

Qn No	$\begin{gathered} \text { Qn } \\ \text { Sub } \\ \text { No } \end{gathered}$	Split Scores	Total Score
1		b) Thermodynamics	1
2		c) Degree celsius	1
3		a) Zero	1
4		b) Strain	1
5		d) Becomes one fourth	1
6		a) Work	1
7		c) Varies linearly as its mass	1
8		d) Zero	1
9		$\begin{aligned} & {[\mathrm{x}]=\mathrm{L}, \quad\left[\mathrm{x}_{0}\right]=\mathrm{L},} \\ & {\left[\mathrm{v}_{0} \mathrm{t}\right]=\mathrm{LT}^{-1} \mathrm{~T}=\mathrm{L}} \\ & {\left[\frac{1}{2} \quad \mathrm{at}^{2}\right]=\mathrm{LT}^{-2} \mathrm{~T}^{2}=\mathrm{L}} \end{aligned}$ Equation is dimensionally correct	2
10		MLT^{-1} $1 / 2$ score $\mathrm{kgm} / \mathrm{s}$ $1 / 2$ score Force or Weight or Tension 1 score	2
11	a	$\begin{gathered} \pi r \\ 2 r \end{gathered}$ 1 score	2
12		$\begin{array}{rlrl} \vec{S}= & \vec{X}_{2}-\vec{X}_{1} & & 1 \text { score } \\ & =(3-1) \hat{i}+(1-2) \hat{j}+(2-2) \hat{k}=2 \hat{i}-\hat{j}+4 \hat{k} \quad & 1 \text { score } \end{array}$	2
13		$\mathrm{F}=\frac{\Delta P}{\Delta t}$ If larger glove is used time of impact increases so force decreases	2
14		$\begin{aligned} \mathrm{I} & =\Delta \mathrm{P} & & 1 \text { score } \\ & =\mathrm{m}(\mathrm{v}-\mathrm{u})=0.15(12-12)=3.60 \mathrm{kgm} / \mathrm{s} & & 1 \text { score } \end{aligned}$	2
15		$\begin{aligned} \mathrm{KE}=\frac{P^{2}}{2 m} & 1 \text { score } \\ \frac{K E_{1}}{K E_{2}}=\frac{m_{2}}{m_{1}} & 1 \text { score } \end{aligned}$	2

16	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Angular momentum 1 score Work or Energy 1 score		2
17		$\mathrm{Nm}^{2} / \mathrm{kg}^{2}$ or $\mathrm{kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}$ 1 score $\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}$ 1 score		2
18	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Stress α Strain 1 Score Steel 1 Score		2
19		Collision Conservation of momentum Vector Addition Parallelogram law Moment of inertia Perpendicular axes theorem Velocity of sound Laplace correction	1/2 score $1 / 2$ score 1/2 score 1/2 score	2
20		$\begin{aligned} \Delta \mathrm{Q} & =\mathrm{mL}_{\mathrm{f}} \\ & =2 \times 3.35 \times 10^{5}=6.70 \times 10^{5} \mathrm{~J} \end{aligned}$	1 score 1 score	2
21	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$	Energy Zero	1 score 1 score	2
22		$\begin{aligned} \eta & =1-\frac{Q_{2}}{Q_{1}} \\ & =1-\frac{300}{500}=0.4 \text { or } 40 \% \end{aligned}$	1 score 1 score	2
23		Derivation of equation $\mathrm{v}=\sqrt{\frac{P}{\rho}}$ (final equation 1 score)		2
24	i ii	$\lambda=\frac{v}{f}=\frac{320}{400}=0.8 \mathrm{~m}$ Zero	1 score 1 score	2
25	i) ii) iii)		1 score 1 score 1 score	3
26	a b	Uniformly accelerated motion Mathematical or Graphical derivation of $\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}$	1 score 2 score	3
27	b	$\mathrm{R}=\frac{u^{2} \sin 2 \theta}{g}$ R is maximum when $\operatorname{Sin} 2 \theta=1,2 \theta=90^{\circ}, \theta=45^{\circ}$ $\mathrm{R}=4 \mathrm{H}, \quad \frac{u^{2} \sin 2 \theta}{g}=4 \quad \frac{u^{2} \sin ^{2} \theta}{2 g}$	ore core re	3

		$2 \sin \Theta \cos \Theta=2 \sin ^{2} \Theta, \quad \cos \Theta=\sin \Theta, ~ \Theta=45^{\circ} \quad 1 / 2$ score		
28		$\begin{array}{lc} \mathrm{F}_{\mathrm{AB}}=\frac{\Delta P_{A}}{\Delta t}=\frac{P_{A}^{I}-P_{A}}{\Delta t} & 1 / 2 \text { score } \\ \mathrm{F}_{\mathrm{BA}}=\frac{\Delta P_{B}}{\Delta t}=\frac{P_{B}^{I}-P_{B}}{\Delta t} & 1 / 2 \text { score } \\ \mathrm{F}_{\mathrm{AB}}=-\mathrm{F}_{\mathrm{BA}} \text { and substitution } & 1 \text { score } \\ P_{A}^{I}+P_{B}^{I}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} & 1 \text { score } \end{array}$		3
29	a b c	i) negative ii) positive $\mathrm{W}=\mathrm{Fs} \cos \Theta=\mathrm{mg} \mathrm{X} \mathrm{~h} \mathrm{X} \cos 0=\mathrm{mgh}$ Displacement is along tangent and force is towards centre. So $\theta=90^{\circ}$ $\mathrm{w}=\mathrm{FS} \operatorname{co} 90^{0}=0$	1 score 1 score 1 score	3
30		Proof for Total energy $=\mathrm{mgh}$ at top point, intermediate point and at ground		3
31		Statement of parallel axes theorem or equation $\mathrm{I}=\mathrm{I}_{0}+\mathrm{ma}^{2}$ $\mathrm{I}=\mathrm{I}_{0}+\mathrm{ma}^{2}=\frac{M R^{2}}{2}+\mathrm{MR}^{2}=\frac{3}{2} \mathrm{MR}^{2}$	1 score 2 score	3
32	a b	Doubled $\begin{aligned} \mathrm{mg}^{\prime} & =\frac{m g R^{2}}{(R+h)^{2}} \\ & =\frac{m g R^{2}}{\left(R+\frac{R}{2}\right)^{2}}=\frac{4 m g R^{2}}{9 R^{2}}=\frac{4}{9} \quad \mathrm{X} 63=28 \mathrm{~N} \end{aligned}$	1 score 1 score 1 score	3
33		(Graph only give 1 score)		3
34		Derivation of equation $\mathrm{W}=\mu \mathrm{R} \mathrm{T} \ln \frac{V_{2}}{V_{1}}$		3

\begin{tabular}{|c|c|c|c|}
\hline \& \& (Final expression only give 1 score) \& \\
\hline 35 \& \& \[
\begin{aligned}
\mathrm{P} \& =\frac{1}{3} \mathrm{~nm} \overline{v^{2}} \\
\& =\frac{1}{3} \frac{N}{V} \mathrm{~m} \overline{v^{2}} \\
\mathrm{PV} \& =\frac{1}{3} \mathrm{Nm} \overline{v^{2}} \\
\mathrm{Nk}_{\mathrm{B}} \mathrm{~T} \& =\frac{1}{3} \mathrm{Nm} \overline{v^{2}}, \quad \frac{1}{2} \mathrm{~m} \overline{v^{2}}=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{~T}, \quad \overline{K E}=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{~T} \quad 2 \text { score }
\end{aligned}
\] \& 3 \\
\hline 36 \& a
b \& \[
\begin{array}{ll}
\mathrm{T}_{\mathrm{m}}=2 \pi \sqrt{\frac{l}{g_{m}}}=2 \pi \sqrt{\frac{l}{\frac{g}{6}}}=\sqrt{ } 62 \pi \sqrt{\frac{l}{g}}=\sqrt{ } 6 \mathrm{~T} \& \text { 1 score } \\
\mathrm{T}=2 \pi \sqrt{\frac{l}{g_{m}}} \& \\
\frac{T_{1}}{T_{2}}=\sqrt{\frac{l_{1}}{l_{2}}}=\sqrt{\frac{1.44}{1}}=1.2 \& 1 \text { score }
\end{array}
\] \& 3 \\
\hline 37 \& a
b \& \begin{tabular}{l}
Statement of principle of homogeneity \\
Derivation of \(\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}\) through dimensional method \\
3 score
\end{tabular} \& 4 \\
\hline 38 \& a
b \& \begin{tabular}{l}
Derivation of \(\frac{u^{2} \sin ^{2} \theta}{2 g}\) \\
2 score
\[
\begin{aligned}
\mathrm{T} \& =\frac{2 u \sin \theta}{g} \\
\& =\frac{2 \times 28 \sin 30^{\circ}}{9.8}=2.86 \mathrm{~s}
\end{aligned}
\] \\
1 score \\
1 score
\end{tabular} \& 4 \\
\hline 39 \& a
b \& \begin{tabular}{ll}
Statement of Pascal's law \& 1 score \\
(Name of law only gives \(1 / 2\) scores) \& \\
Figure of hydraulic lift \& 1 score \\
Explanation \& 2 scores
\end{tabular} \& 4 \\
\hline 40 \& a
b
c \& \begin{tabular}{lr}
Thermal Expansion \& 1 score \\
\begin{tabular}{rl}
\(\Delta \mathrm{l}\) \& \(=\alpha \mathrm{l} \Delta \mathrm{T}\)
\end{tabular} \& 1 score \\
\& \(=2.5 \times 10^{-5} \times 30 \times 10=7.5 \times 10^{-3} \mathrm{~m}\)
\end{tabular} 1 score \& 4 \\
\hline 41 \& a

b \& | $\begin{aligned} x(t) & =\sin \omega t-\cos \omega t=\sin \omega t-\cos \left(\frac{\pi}{2}-\omega t\right) \\ & =2 \cos (\pi / 4) \sin \left(\omega t-\frac{\pi}{4}\right)=\sqrt{ } 2 \sin \left(\omega t-\frac{\pi}{4}\right) \end{aligned}$ |
| :--- |
| 2 scores | \& 4

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \(\mathrm{A}=\sqrt{ } 2\) and \(\quad \varphi=-\frac{\pi}{4}\) \& 2 scores \& \\
\hline 42 \& \begin{tabular}{l}
i \\
ii \\
iii \\
iv
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{y}=\mathrm{A} \sin (\mathrm{kx}-\omega \mathrm{t}) \\
\& \lambda=2 \pi / \mathrm{k}=2 \pi / 80 \mathrm{~m}=7.85 \mathrm{~cm} \\
\& v=\omega / 2 \pi=3 / 2 \pi=0.48 \mathrm{~Hz} \\
\& \mathrm{~T}=\frac{1}{v}=1 / 0.48=2.09 \mathrm{~s} \\
\& \mathrm{v}=\mathrm{v} \lambda=3.768 \mathrm{~m} / \mathrm{s}
\end{aligned}
\] \& \begin{tabular}{l}
1 score \\
1 score \\
1 score \\
1 score
\end{tabular} \& 4 \\
\hline 43 \& a

b \& \begin{tabular}{l}
A = Normal reaction

B = Friction

C = weight or gravitational force

Derivation of $\mathrm{v}=\sqrt{r g \frac{\mu+\tan \theta}{1-\mu \tan \theta}}$

(If final Expression only give 1 score

 \&

1 score

2 scores

e)
\end{tabular} \& 5

\hline 44 \& a
b

c \& \begin{tabular}{l}
$$
\begin{aligned}
& 90^{\circ} \\
& \\
& \tau=r F \operatorname{Sin} \Theta \\
& 20 \sqrt{3}=0.50 \times F \times \sin 60^{\circ} \\
& F=80 \mathrm{~N} \\
& \tau=r F S i n \Theta
\end{aligned}
$$

r becomes high so torque becomes high

 \&

1 scores

1 score 1/2 score 1/2 score 1 score 1 score
\end{tabular} \& 5

\hline 45 \& | a |
| :--- |
| b |
| c | \& | $\mathrm{g}=\frac{G M}{R^{2}}$ |
| :--- |
| Derivation of equation $\mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{d}{R}\right)$ | \& | 1 score |
| :--- |
| 3 score |
| 1 score | \& 5

\hline 46 \& a

b \& \begin{tabular}{l}
Statement of Bernaulli's principle

Proof

No, because rapid flow of river is not streamline flow

 \&

1 score 3 score

1 score
\end{tabular} \& 5

\hline
\end{tabular}

