MATHEMATICS ONLINE CLASS X ON 26-08-2021

CIRCLES

Discussed in the previous class
If two chords $A B$ and $C D$ intersecting at a point P inside the circle, then $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$

If two chords of a circle intersect within the circle then the product of the parts of the two chords are equal

Question

In the picture, chords $A B$ and $C D$ of the circle are extended to meet at \mathbf{P}.

i) Prove that the angles of $\triangle A P C$ and $\triangle P B D$ formed by joining $A C$ and $B D$, are the same.
ii) Prove that $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$.
iii) Prove that if $\mathbf{P B}=\mathbf{P D}$ then ABDC is an isosceles trapezium. Answer
i)

In the figure, join AC and BD.
Consider \triangle PBD and $\triangle A P C$.
$\angle P$ is common for both triangles.

$\angle P B D=\angle C$ (Outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex)
$\angle \mathrm{PDB}=\angle \mathrm{A}$ (Outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex)
ie; Angles of $\triangle P B D$ and $\triangle A P C$ are same.
ii) Angles of $\triangle P B D$ and $\triangle A P C$ are same.
$\therefore \triangle A P C$ and $\triangle P B D$ are similar triangles.
In similar triangles sides opposite to equal angles are proportional
$\therefore \frac{P B}{P C}=\frac{P D}{P A}$
By cross multiplication, we get $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$
iii) We have to prove $A B D C$ is an isosceles trapezium.

That is to prove a pair of opposite sides are parallel and non parallel sides are equal.
$\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$
Given that $\mathbf{P B}=\mathbf{P D}$
$\therefore \mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P B}$
we get $\mathrm{PA}=\mathrm{PC}$
$\therefore \triangle$ PAC is an isosceles triangle.
In isosceles triangles, angles opposite to equal sides are equal.
$\therefore \angle \mathrm{A}=\angle \mathrm{C}$
Since $A B D C$ is a cyclic quadrilateral, $\angle C+\angle A B D=180^{\circ}$
Since $\angle A=\angle C$
$\angle A+\angle A B D=180^{\circ}$
Since co-interior angles are supplementary $A C$ and $B D$ are parallel.

$$
\begin{aligned}
\mathbf{A B} & =\mathbf{P A}-\mathbf{P B} \\
& =\mathbf{P C}-\mathbf{P D}(\text { Since } P A=P C \text { and } P B=P D) \\
& =\mathbf{C D}
\end{aligned}
$$

ie; $A B=C D$ and $A C \| B D$
\therefore ABDC is an isosceles trapezium.

Question

In the picture, a line through the centre of a circle cuts a chord in to two parts:
What is the radius of the circle?

Answer
In the picture, extend both ends of OP to meet the circle at C and D.
Let the radius of the circle be r
$\therefore P C=r+5$ and PD = $\mathbf{r - 5}$
From the figure,
$P A=4 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}$
Now we have $\mathbf{P A} \times \mathrm{PB}=\mathbf{P C} \times \mathbf{P D}$

$$
\begin{aligned}
(\mathbf{r}+5) \times(\mathbf{r}-5) & =4 \times 6 \\
\mathbf{r}^{2}-5^{2} & =24 \\
\mathbf{r}^{2}-25 & =24 \\
\mathbf{r}^{2} & =24+25=49 \\
\therefore \mathbf{r} & =\sqrt{49}=7 \mathrm{~cm}
\end{aligned}
$$

Radius of the circle $=\mathbf{7} \mathbf{~ c m}$

Assignment

In the picture, a line through the centre of a circle meets a chord of the circle:
What are the lengths of the two pieces of the chord?

