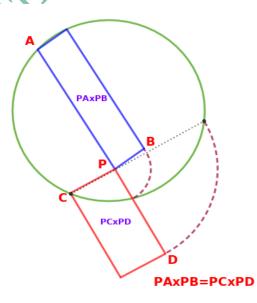
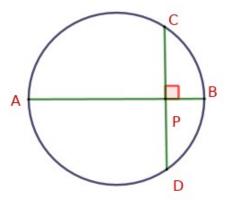

MATHEMATICS ONLINE CLASS X ON 17-08-2021

CIRCLES


Discussed in previous class

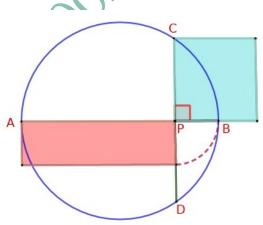
If two non diametrical chords AB and CD intersecting at a point P inside the circle. We get $PA \times PB = PC \times PD$


IF TWO CHORDS OF A CIRCLE INTERSECT WITHIN THE CIRCLE THEN THE PRODUCT OF THE PARTS OF THE TWO CHORDS ARE EQUAL

IF TWO CHORDS OF A CIRCLE INTERSECT WITHIN THE CIRCLE, THEN THE RECTANGLE FORMED BY THE PARTS OF THE SAME CHORD HAVE EQUAL AREA.

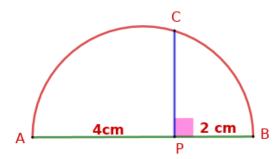
Note:

In the figure, AB is a diameter and CD is a chord perpendicular to AB. We know that $PA \times PB = PC \times PD$ Also, $AB \perp CD$.


We know that the perpendicular from the centre of a circle to a chord bisects the chord. \therefore we get PC = PD

Now we have $PA \times PB = PC \times PC$ $PA \times PB = PC^2$

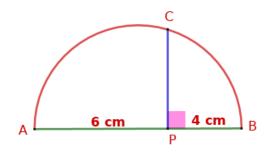
If two chords AB and CD intersect at a point P within the circle in which AB is a diameter and CD is perpendicular to AB, then $PA \times PB = PC^2$


The product of the parts, into which a diameter of a circle is cut by a perpendicular chord is equal to the square of half of the chord

 $PA \times PB = PC^2$ means "Area of a rectangle with sides PA and PB is equal to the area of square with side PC.

Question

In the figure, PA = 4 cm, PB = 2 cm. Find PC.


Answer

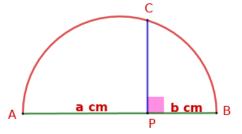
PA = 4 cm, PB = 2 cm
PA × PB = PC²

$$4 \times 2 = PC^2$$

PC² = $4 \times 2 = 8$
 $\therefore PC = \sqrt{8}$ cm

Question

In the figure, PA = 6 cm, PB = 4 cm. Find PC.


Answer

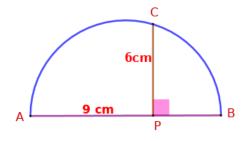
PA = 6 cm, PB = 4 cm
PA × PB = PC²

$$6 \times 4 = PC^2$$

PC² = $6 \times 4 = 24$
 \therefore PC = $\sqrt{24}$ cm

Question

In the figure, PA = a cm, PB = b cm. Find PC.


Answer

PA = a cm, PB = b cm
PA × PB = PC²
a × b = PC²
PC² = a × b = ab

$$\therefore PC = \sqrt{ab} \text{ cm}$$

Question

In the figure, PA = 9 cm, PC = 6 cm. Find PB.

Answer

PA = 9 cm, PC = 6 cm
PA × PB = PC²

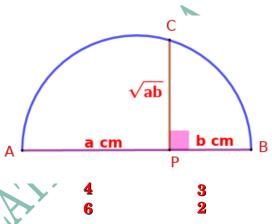
$$9 \times PB = 6^2$$

 $9 \times PB = 36$
 $\therefore PB = \frac{36}{9} = 4 \text{ cm}$

Costructions

1) Draw a line of length $\sqrt{12}$ cm We can apply the idea,

$$PA \times PB = PC^2$$

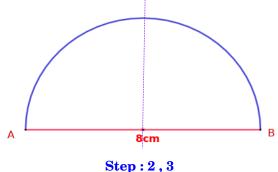

If PC =
$$\sqrt{12}$$
 cm,

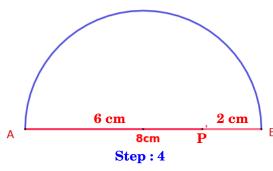
then $PC^2=12$ cm² we can take

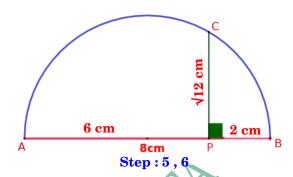
$$PA = 4 cm$$
, $PB = 3 cm$ or

$$PA = 6 cm$$
, $PB = 2 cm$ or

$$PA = 12 cm$$
, $PB = 1 cm$


Here we take PA = 6 cm, PB = 2 cm(You can take the lengths of PA and PB as your choice)


Steps:


- 1 Draw a line AB of length 6 + 2 = 8 cm
- 2 Mark the midpoint of AB.(Using scale or by drawing the perpendicular bisector of AB)
- 3 Draw a semicircle with diameter AB.

Step:1

- 4 Mark a point P such that AP = 6 cm and PB = 2 cm
- 5 Draw a perpendicular to AB through P.
- 6 Mark the intersecting point of semicircle and this perpendicular as C.

2) Draw a square of area 15 cm² We can apply the idea,

$$PA \times PB = PC^2$$

Here
$$PC^2 = 15$$

$$\therefore$$
 PC = $\sqrt{15}$ cm

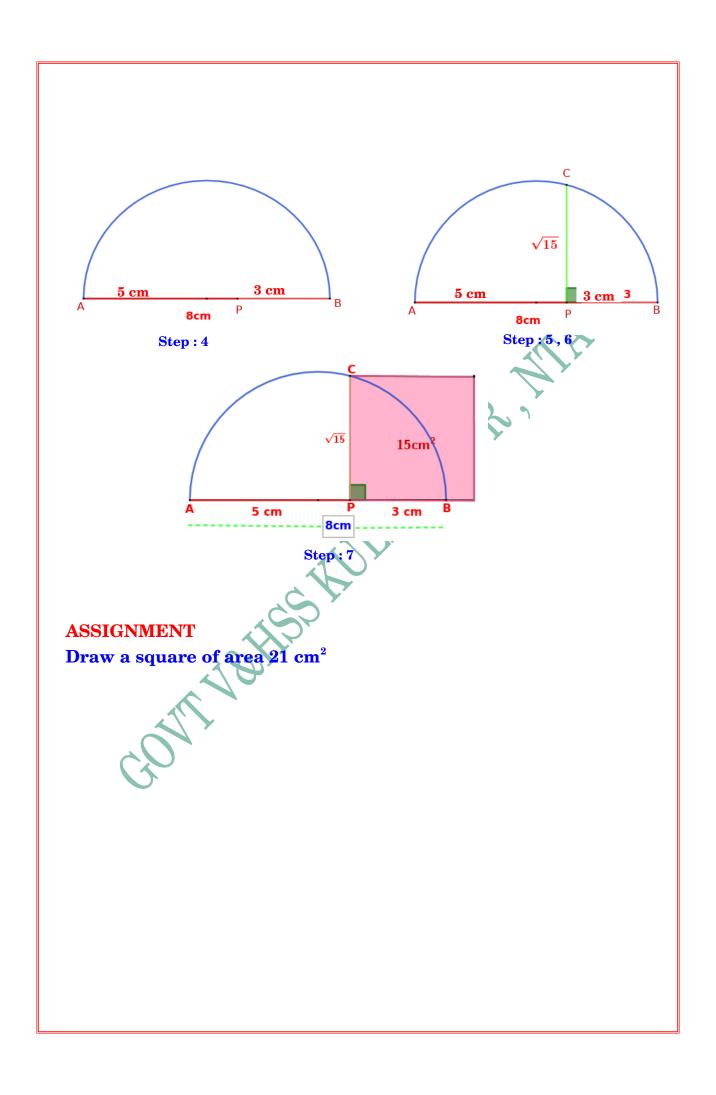
ie; we have to draw a line of length $\sqrt{15}$ cm

Take PA = 5 cm, PB = 3 cm

Steps:

- 1 Draw a line AB of length 5 + 3 = 8 cm
- 2 Mark the midpoint of AB. (Using scale or by drawing the perpendicular bisector of AB)
- 3 Draw a semicircle with diameter AB.
- 4 Mark a point P such that AP = 5 cm and PB = 3 cm
- 5 Draw a perpendicular to AB through P.
- 6 Mark the intersecting point of semicircle and this perpendicular as C.

The length of PC = $\sqrt{15}$ cm


7 Draw a square of side $\sqrt{15}$ cm. The area of the square will be $15~\text{cm}^2$

A 8cm

Step:1

Step:2,3

