# **Question of the day - 2**

The sum of the s first 11 terms of an arithmetic sequence is 506 and the sum of its first 12 terms is 600.

- a) What is the 6<sup>th</sup> term of this sequence ?
- b) What is the 12<sup>th</sup> term of this sequence ?
- c) What is the sum of the first 17 terms of this sequence ?

#### <u>Answer</u>

- **a)**  $x_6 = \frac{506}{11} = 46$
- **b)**  $S_{12} S_{11} = x_{12} = 600 506 = 94$
- c)  $S_{17} = 17 \times middle \ term = 17 \times \frac{(x_6 + x_{12})}{2} = 17 \times \frac{(46 + 94)}{2} = 17 \times 70 = 1190$

### **Question of the day - 3**

10<sup>th</sup> term of an arithmetic sequence is 30 and its 30<sup>th</sup> term is 10.

- a) What is the common difference of this sequence ?
- b) What is the 40<sup>th</sup> term of this sequence ?
- c) What is the 80<sup>th</sup> term of this sequence ?
- d) Sum of how many terms, starting from the first term of this sequence is zero?

#### Answer

- **a)**  $d = \frac{10 30}{30 10} = -1$
- **b)**  $x_{40} = x_{10} + 30d = 30 + 30 \times (-1) = 0$
- c)  $x_{80} = x_{40} + 40d = 0 + 40 \times (-1) = -40$
- **d)**  $x_{40} = 0 = > 79 \times x_{40} = 0 = > S_{79} = 0 = > Sum of the first 79 terms is zero.$

Or  $x_1 = x_{40} - 39 \ d = 0 - 39 \times (-1) = 39$ ,  $x_{80} = -40 = x_{79} = -39$ 

 $x_1 + x_{79} = 0$  ==>  $S_{79} = 0$  ==> Sum of the first 79 terms is zero.

SARATH AS, GHS ANCHACHAVADI, MALAPPURAM

# **Question of the day - 4**

The sum of the first 13 terms of an arithmetic sequence is 208 and the sum of the first 16 terms

is 304.

- a) What is the 7<sup>th</sup> term of this sequence ?
- b) What is the 15<sup>th</sup> term of this sequence ?
- c) Find the sum of the terms from the 14<sup>th</sup> term to the 29<sup>th</sup> term of this sequence ?

#### <u>Answer</u>

**a)**  $x_7 = \frac{208}{13} = 16$ 

**b)**  $S_{16} - S_{13} = 304 - 208 = 96 = => x_{14} + x_{15} + x_{16} = 96 = => x_{15} = \frac{96}{3} = 32$ 

c)  $S_{29} - S_{13} = 29 \times x_{13} - 13 \times x_7 = 29 \times 32 - 13 \times 16 = 720$ 

# **Question of the day - 5**

The sum of the first 8 terms of an arithmetic sequence is 136 and the sum of the first 12 terms

is 300.

- a) What is the sum of the first and the 8<sup>th</sup> terms ?
- b) What is the sum of the first and the 12<sup>th</sup> terms ?
- c) What is the number got by adding three times the first term to the 19<sup>th</sup> term ?

#### <u>Answer</u>

- **a)**  $x_1 + x_8 = \frac{136}{4} = 34$
- **b)**  $x_1 + x_{12} = \frac{300}{6} = 50$
- c)  $x_1 + x_{12} = 50 +$

 $x_1 + x_8 = 34$ 

 $2x_1 + x_{12} + x_8 = 84 \implies 2x_1 + x_1 + x_{19} = 84 \implies 3x_1 + x_{19} = 84$ 

**Question of the day - 6** 

Consider the arithmetic sequence 4, 12, 20, . . .

- a) Prove that the sum of consecutive terms of this sequence (starting from the first term) is always a perfect square .
- b) What is the difference between the sum of the first 20 terms and the next 20 terms of this

sequence ?

<u>Answer</u>

**a)**  $x_n = 8n + 4 - 8 = 8n - 4$ 

Sum of the first *n* terms = 8 ×  $\frac{n (n + 1)}{2}$  - 4*n* = 4*n*<sup>2</sup> = (2*n*)<sup>2</sup>

**b)**  $20 \times 20d = 20 \times 20 \times 8 = 3200$ 

## **Question of the day – 7**



In the figure BC is the diameter of the larger circle and DE is the diameter of the smaller circle . AB is parallel to FD . AB = 20 cm , AC = 15 cm , DE = 5 cm .

Calculate the area of triangle DFE .

#### <u>Answer</u>

 $\angle A = \angle F = 90^{\circ}$  (Angle in a semicircle)

$$BC = \sqrt{(20^2 + 15^2)} = 25 \ cm$$

 $\angle$  B =  $\angle$ EDF (AB is parallel to FD, corresponding angles)

ABC and DEF are similar triangles .

$$\frac{20}{DF} = \frac{15}{EF} = \frac{25}{5} = > DF = 4 \text{ cm} , EF = 3 \text{ cm}.$$

Area of triangle DFE =  $\frac{1}{2} \times 4 \times 3 = 6$  sq.cm



In the figure ABCDE is a regular pentagon . The diagonals AC and BE intersect at P .

a) What is the measure of  $\angle$  APE ?

b) Check whether PCDE is a cyclic quadrilateral or not .

#### <u>Answer</u>

$$\angle$$
 BAE =  $\angle$  ABC =  $\angle$  CDE =  $\frac{540}{5}$  = 108°

In isosceles triangle BAE

$$\angle AEB = \angle ABE = \frac{180 - 108}{2} = 36^{\circ}$$

In isosceles triangle ABC,

$$\angle BAC = \angle ACB = \frac{180 - 108}{2} = 36^{\circ}$$

In triangle APB ,

 $\angle APB = 180 - (36 + 36) = 108^{\circ} = = 2222 \angle CPE = 108^{\circ}$ 

In quadrilateral PCDE ,  $\angle$  CDE +  $\angle$  CPE = 108 + 108 = 216<sup>o</sup>

Since the opposite angles are not supplementary, PCDE is not cyclic .



# **Question of the day – 9**



What is the sum of the angles marked in the figure ? Justify your answer .

#### Answer

In the figure O is the centre of the circle .

 $\angle ADB = \frac{1}{2} \angle AOB$   $\angle BEC = \frac{1}{2} \angle BOC$   $\angle CAD = \frac{1}{2} \angle COD$   $\angle DBE = \frac{1}{2} \angle DOE$   $\angle ACE = \frac{1}{2} \angle AOE$   $\angle ADB + \angle BEC + \angle CAD + \angle DBE + \angle ACE$ 



$$= \frac{1}{2} \angle AOB + \frac{1}{2} \angle BOC + \frac{1}{2} \angle COD + \frac{1}{2} \angle DOE + \frac{1}{2} \angle AOE$$
$$= \frac{1}{2} (\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle AOE) = \frac{1}{2} \times 360 = 180^{\circ}$$

# **Question of the day – 10**



D

 $\boldsymbol{B}$ 

In the figure AB is the diameter of the semicircle . Two chords AC and BD intersect at E .

**Prove that**  $(AC \times AE) + (BD \times BE) = AB^2$ 

#### <u>Answer</u>

 $\angle \mathbf{D} = \angle \mathbf{E} = \mathbf{90}^{\circ}$ 

**In right triangle ABC**,  $AC^2 + BC^2 = AB^2$ 

- In right triangle ADC ,  $AD^2 + BD^2 = AB^2$
- In right triangle ADE,  $AD^2 + DE^2 = AE^2$

In right triangle BCE,  $BC^2 + CE^2 = BE^2$ 

**Triangle ADE and triangle BCE are similar** ==>  $\frac{AE}{BE} = \frac{DE}{CE}$  ==>  $AE \times CE = BE \times DE$ 

$$(AC \times AE) = (AE + CE) \times AE = AE^{2} + AE \times CE$$
  

$$(BD \times BE) = (BE + DE) \times BE = BE^{2} + BE \times DE$$
  

$$(AC \times AE) + (BD \times BE) = AE^{2} + AE \times CE + BE^{2} + BE \times DE$$
  

$$= AE^{2} + AE \times CE + BE^{2} + AE \times CE$$
  

$$= AE^{2} + 2AE \times CE + BE^{2} = AE^{2} + 2AE \times CE + (BC^{2} + CE^{2})$$
  

$$= (AE^{2} + 2AE \times CE + CE^{2}) + BC^{2} = (AE + CE)^{2} + BC^{2}$$
  

$$= AC^{2} + BC^{2} = AB^{2}$$