WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 2

The sum of the \mathbf{s} first $\mathbf{1 1}$ terms of an arithmetic sequence is 506 and the sum of its first $\mathbf{1 2}$ terms is 600 .
a) What is the $6^{\text {th }}$ term of this sequence ?
b) What is the $12^{\text {th }}$ term of this sequence ?
c) What is the sum of the first $\mathbf{1 7}$ terms of this sequence ?

Answer
a) $x_{6}=\frac{506}{11}=46$
b) $S_{12}-S_{11}=x_{12}=600-506=94$
c) $S_{17}=17 \times$ middle term $=17 \times \frac{\left(x_{6}+x_{12}\right)}{2}=17 \times \frac{(46+94)}{2}=17 \times 70=1190$

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 3

$10^{\text {th }}$ term of an arithmetic sequence is 30 and its $30^{\text {th }}$ term is 10 .
a) What is the common difference of this sequence ?
b) What is the $40^{\text {th }}$ term of this sequence ?
c) What is the $80^{\text {th }}$ term of this sequence ?
d) Sum of how many terms, starting from the first term of this sequence is zero ?

Answer
a) $d=\frac{10-30}{30-10}=-1$
b) $x_{40}=x_{10}+30 d=30+30 \times(-1)=0$
c) $x_{80}=x_{40}+40 d=0+40 \times(-1)=-40$
d) $x_{40}=0==>79 \times x_{40}=0==>S_{79}=0==>$ Sum of the first 79 terms is zero . Or

$$
x_{1}=x_{40}-39 d=0-39 \times(-1)=39 \quad, \quad x_{80}=-40 \Rightarrow=>\quad x_{79}=-39
$$

$x_{1}+x_{79}=0 \quad==>\quad S_{79}=0 \quad==>$ Sum of the first 79 terms is zero .

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 4

The sum of the first $\mathbf{1 3}$ terms of an arithmetic sequence is 208 and the sum of the first $\mathbf{1 6}$ terms is 304 .
a) What is the $7^{\text {th }}$ term of this sequence ?
b) What is the $15^{\text {th }}$ term of this sequence ?
c) Find the sum of the terms from the $14^{\text {th }}$ term to the $29^{\text {th }}$ term of this sequence ?

Answer
a) $\quad x_{7}=\frac{208}{13}=16$
b) $S_{16}-S_{13}=304-208=96===>x_{14}+x_{15}+x_{16}=96===>x_{15}=\frac{96}{3}=32$
c) $\quad S_{29}-S_{13}=29 \times x_{13}-13 \times x_{7}=29 \times 32-13 \times 16=720$

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 5

The sum of the first $\mathbf{8}$ terms of an arithmetic sequence is 136 and the sum of the first $\mathbf{1 2}$ terms is 300 .
a) What is the sum of the first and the $8^{\text {th }}$ terms?
b) What is the sum of the first and the $12^{\text {th }}$ terms ?
c) What is the number got by adding three times the first term to the $19^{\text {th }}$ term ?

Answer
a) $x_{1}+x_{8}=\frac{136}{4}=34$
b) $x_{1}+x_{12}=\frac{300}{6}=50$
c) $x_{1}+x_{12}=50+$

$$
x_{1}+x_{8}=34
$$

$$
2 x_{1}+x_{12}+x_{8}=84 \Rightarrow 2 x_{1}+x_{1}+x_{19}=84 \Rightarrow=>3 x_{1}+x_{19}=84
$$

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 6

Consider the arithmetic sequence $4,12,20$, . .
a) Prove that the sum of consecutive terms of this sequence (starting from the first term) is always a perfect square .
b) What is the difference between the sum of the first 20 terms and the next 20 terms of this sequence ?

Answer
a) $x_{n}=8 n+4-8=8 n-4$

Sum of the first n terms $=8 \times \frac{n(n+1)}{2}-4 n=4 n^{2}=(2 n)^{2}$
b) $20 \times 20 d=20 \times 20 \times 8=3200$

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 7

In the figure $B C$ is the diameter of the larger circle and $D E$ is the diameter of the smaller circle . AB is parallel to $\mathrm{FD} . \mathrm{AB}=20 \mathrm{~cm} ., \mathrm{AC}=15 \mathrm{~cm}, \mathrm{DE}=5 \mathrm{~cm}$.

Calculate the area of triangle DFE .
Answer
$\angle \mathrm{A}=\angle \mathrm{F}=90^{\circ} \quad$ (Angle in a semicircle)
$B C=\sqrt{\left(20^{2}+15^{2}\right)}=25 \mathrm{~cm}$
$\angle B=\angle E D F \quad$ (AB is parallel to FD , corresponding angles)
ABC and DEF are similar triangles .

$$
\frac{20}{D F}=\frac{15}{E F}=\frac{25}{5} \quad==>\quad D F=4 \mathrm{~cm} \quad, \quad E F=3 \mathrm{~cm}
$$

Area of triangle DFE $=\frac{1}{2} \times 4 \times 3=6 \mathrm{sq} . \mathrm{cm}$

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 8

In the figure ABCDE is a regular pentagon . The diagonals AC and BE intersect at \mathbf{P}.
a) What is the measure of $\angle \mathrm{APE}$?
b) Check whether PCDE is a cyclic quadrilateral or not .

Answer
$\angle \mathrm{BAE}=\angle \mathrm{ABC}=\angle \mathrm{CDE}=\frac{540}{5}=108^{\circ}$
In isosceles triangle BAE ,

$$
\angle \mathrm{AEB}=\angle \mathrm{ABE}=\frac{180-108}{2}=36^{\circ}
$$

In isosceles triangle ABC ,

$$
\angle \mathbf{B A C}=\angle \mathbf{A C B}=\frac{180-108}{2}=36^{\circ}
$$

In triangle APB ,

$\angle \mathrm{APB}=180-(36+36)=108^{\circ}===>\angle \mathrm{CPE}=108^{\circ}$
In quadrilateral PCDE , $\angle \mathrm{CDE}+\angle \mathrm{CPE}=108+108=216^{\circ}$
Since the opposite angles are not supplementary , PCDE is not cyclic .

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 9

What is the sum of the angles marked in the figure ? Justify your answer .

Answer

In the figure O is the centre of the circle .
$\angle A D B=\frac{1}{2} \angle A O B$
$\angle B E C=\frac{1}{2} \angle B O C$
$\angle C A D=\frac{1}{2} \angle C O D$
$\angle D B E=\frac{1}{2} \angle D O E$

$\angle A C E=\frac{1}{2} \angle A O E$
$\angle A D B+\angle B E C+\angle C A D+\angle D B E+\angle A C E$

$$
\begin{aligned}
& =\frac{1}{2} \angle A O B+\frac{1}{2} \angle B O C+\frac{1}{2} \angle C O D+\frac{1}{2} \angle D O E+\frac{1}{2} \angle A O E \\
& =\frac{1}{2}(\angle A O B+\angle B O C+\angle C O D+\angle D O E+\angle A O E)=\frac{1}{2} \times 360=180^{\circ}
\end{aligned}
$$

WANDOOR GANITHAM - CLASS X - STUDY MATERIAL 2021-22

Question of the day - 10

In the figure $A B$ is the diameter of the semicircle . Two chords $A C$ and $B D$ intersect at E.
Prove that $(A C \times A E)+(B D \times B E)=A B^{2}$
Answer
$\angle \mathrm{D}=\angle \mathrm{E}=90^{\circ}$
In right triangle $\mathrm{ABC}, \quad A C^{2}+B C^{2}=A B^{2}$
In right triangle $\mathrm{ADC}, \quad A D^{2}+B D^{2}=A B^{2}$
In right triangle ADE , $A D^{2}+D E^{2}=A E^{2}$

In right triangle $\mathbf{B C E}, \quad B C^{2}+C E^{2}=B E^{2}$
Triangle ADE and triangle BCE are similar $==>\frac{A E}{B E}=\frac{D E}{C E}==>\quad A E \times C E=B E \times D E$

$$
\begin{aligned}
&(A C \times A E)=(A E+C E) \times A E=A E^{2}+A E \times C E \\
&(B D \times B E)=(B E+D E) \times B E=B E^{2}+B E \times D E \\
&(A C \times A E)+(B D \times B E)=A E^{2}+A E \times C E+B E^{2}+B E \times D E \\
&=A E^{2}+A E \times C E+B E^{2}+A E \times C E \\
&=A E^{2}+2 A E \times C E+B E^{2}=A E^{2}+2 A E \times C E+\left(B C^{2}+C E^{2}\right) \\
&=\left(A E^{2}+2 A E \times C E+C E^{2}\right)+B C^{2}=(A E+C E)^{2}+B C^{2} \\
&=A C^{2}+B C^{2}=A B^{2}
\end{aligned}
$$

