## MATHEMATICS ONLINE CLASS X ON 16-08-2021

## CIRCLES



Discussed in previous class

If two diameters intersects we get four parts PA, PB, PC and PD.
Here $\mathbf{P A}=\mathbf{P B}=\mathbf{P C}=\mathbf{P D}$ (Radii of circle)


If two non diametrical chords AB and CD intersecting at a point $P$ inside the circle. Here also we get 4 parts PA, PB, PC and PD. $\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$


IF TWO CHORDS OFA CIRCLE INTERSECT WITHIN THE CIRCLE THEN THE PRODUCT OF THE PARTS OF THE TWO CHORDS ARE EQUAL

IF TWO CHORDS OF A CIRCLE INTERSECT WITHIN THE CIRCLE, THEN THE RECTANGLE FORMED BY THE PARTS OF THE SAME CHORD HAVE EQUAL AREA.


## Question

The chords $A B$ and $C D$ intersect at a point $P$. If $P A=5 \mathrm{~cm}$, $P B=12 \mathrm{~cm}, P C=8 \mathrm{~cm}$. Find the length of $P D$.
Answer
PA $=5 \mathrm{~cm}$
$P B=12 \mathrm{~cm}$
$\mathrm{PC}=\mathbf{8 c m}$
$\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$
$5 \times 12=8 \times P D$
$60=8 \times$ PD
$P D=\frac{60}{8}=7.5 \mathrm{~cm}$


Answer to assignment of previous class

## Question

The chords $A B$ and $C D$ intersect at a point $P$. If $P A=9 \mathrm{~cm}$,
$P D=12 \mathrm{~cm}, A B=13 \mathrm{~cm}$. Find the lengths of PB, PC and CD.

Answer
PA $=9 \mathrm{~cm}$
$\mathrm{PD}=12 \mathrm{~cm}$
$\mathrm{AB}=13 \mathrm{~cm}$
$\mathbf{P B}=\mathbf{A B}-\mathbf{P A}$

$$
=13-9=4 \mathrm{~cm}
$$


$\mathbf{P A} \times \mathbf{P B}=\mathbf{P C} \times \mathbf{P D}$
$9 \times 4=\mathrm{PC} \times 12$

$$
36=12 \times \mathrm{PC}
$$

$$
\mathrm{PC}=\frac{36}{12}
$$

$$
=\mathbf{3} \mathrm{cm}
$$

$$
\mathbf{C D}=\mathbf{P C}+\mathbf{P D}
$$

$$
=3+12=15 \mathrm{~cm}
$$

## Construction

Draw a rectangle of width 5 cm and height 3 cm . Draw a rectangle of the same area with width 6 cm .

## Steps

1. Draw a rectangle of width 5 cm and height 3 cm .

2. Extend AB by $\mathbf{3 ~ c m}$ to $\mathbf{Q}$
(Extending length $=\mathbf{3 ~ c m}$ which is the height of the rectangle)

3. Extend BC by 6 cm to $P$
(Extending length $=6$ cm which is side of the rectangle to be constructed)

4. Draw a circle passing through $A, P$ and $Q$.
(For this, Join AP and QP. Draw perpendicular bisectors of AP and QP.

Draw the circumcircle of the $\triangle A P Q$ ).
[Circumcentre is the intersecting point of perpendicular bisector of sides of the $\triangle \mathrm{APQ}]$
Mark the intersecting point of circle and height of the rectangle as $\mathbf{X}$.

5. Draw a rectangle with $P B$ as length and $B X$ as the width which is the rectangle having same area of rectangle $A B C D$.


## ASSIGNMENT

Draw a rectangle of length 4 centimetres and width 3 centimetres.
Draw another rectangle of the same area with one side 5 centimetre

