MATHEMATICS ONLINE CLASS X ON 11-08-2021

CIRCLES

Answer to assignment of previous class

Question

1) PQRS is an isosceles trapezium and QR extended to X. If $\angle S R X=100^{\circ}$. Find all angles of PQRS.

Answer
Given $\angle S R X=100^{\circ}$
$\angle \mathrm{SRX}+\angle \mathrm{SRQ}=180^{\circ}$
[linear pair]

$$
\begin{aligned}
100^{\circ}+\angle \mathrm{SRQ} & =180^{\circ} \\
\angle \mathrm{SRQ} & =180^{\circ}-100^{\circ}=80^{\circ}
\end{aligned}
$$

Since $P Q R S$ is an isosceles trapezium in which $P Q=\mathbf{S R}$
$\angle \mathrm{SRQ}=\angle \mathrm{PQR}=80^{\circ}$
All isosceles trapeziums are cyclic
$\angle Q P S=180^{\circ}-\angle Q R S=180^{\circ}-80^{\circ}=100^{\circ}$
Also $\angle P S R=180^{\circ}-\angle P Q R=180^{\circ}-80^{\circ}=100^{\circ}$
Angles of PQRS are $\angle \mathrm{P}=100^{\circ}, \angle \mathrm{Q}=\mathbf{8 0 ^ { \circ }}, \angle \mathrm{R}=\mathbf{8 0 ^ { \circ }}, \angle \mathrm{S}=100^{\circ}$

Question
2) Prove that any non-isosceles trapezium is not cyclic.

Answer

In a trapezium, a pair of opposite sides are parallel.
Here, AB \| CD.
ABCD is a non-isosceles trapezium.

$$
\therefore \angle \mathbf{A} \neq \angle \mathbf{B}1
$$

Since $A B \| C D$, $\angle A+\angle D=180^{\circ}$
From equations 1 and 2 $\angle B+\angle D \neq 180^{\circ}$
$\therefore \angle \mathrm{A}+\angle \mathrm{C} \neq 180^{\circ}$

Since opposite angles are not supplementary, a non-isosceles trapezium ABCD is not cyclic.

Question

Prove that any outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex
Answer
We have to prove $\angle \mathrm{CBE}=\angle \mathrm{ADC}$.
ABCD is a cyclic quadrilateral, its opposite angles are supplementary.
$\therefore \angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ} \ldots . .1$
$\angle A B C$ and $\angle C B E$ are linear pairs.
$\therefore \angle \mathrm{ABC}+\angle \mathrm{CBE}=18 \mathbf{1 0}^{\circ}$
From equations 1 and 2
$\angle A B C+\angle C B E=\angle A B C+\angle A D C$

We get $\angle \mathrm{CBE}=\angle \mathrm{ADC}$

Question

The two circles below intersect at P, Q and lines through these points meet the circles at A, B , C , D . The lines AC and BD are not parallel, Proye that if these lines are of equal length , then ABDC is a cyclic quadrilateral.

Answer

In the figure, Join PQ.
ABQP and QDCP are cyclic quadrilaterals.
Let $\angle A=x^{\circ}$, then
$\angle P Q D=x^{\circ}$ (Any outer angle of a cyclic quadrilateral is equal to the inner angle at the opposite vertex)
$\angle C=180-x^{\circ}($ Opposite angles of a cyclic quadrilateral are supplementary)

AB and CD are parallel. ($\angle \mathrm{A}$ and $\angle \mathrm{C}$ are co-interior angles)
If $\mathrm{AC}=\mathrm{BD}, \mathrm{ABDC}$ become an isosceles trapezium.
We know that an isosceles trapezium is always cyclic.
\therefore ABDC is a cyclic quadrilateral.

ASSIGNMENT

In the picture, the circles on the left and right intersect the middle circle at P, Q, R, S; the lines joining them meet the left and right circles at A, B, C, D. Prove that $A B D C$ is a cyclic quadrilateral.

