MATHEMATICS ONLINE CLASS X ON 09-08-2021

CIRCLES

Answer to assignment of previous class
 Question
$A B C D$ is an isosceles trapezium.
Check whether it is a cyclic quadrilateral.

Answer

$A B C D$ is an isosceles trapezium.
$\therefore \mathrm{AD}=\mathrm{BC}$
Also, $A B$ and $C D$ are parallel.
We have to prove, $\angle A+\angle C=180^{\circ}$ and $\angle B+\angle D=180^{\circ}$
Since ABCD is an isosceles trapezium
$\angle A=\angle B$ \qquad 1
Since $A B \| C D \quad \angle A+\angle D=180^{\circ}$2

From equations 1 and $2 \quad \angle B+\angle D=180^{\circ}$
Sum of all angles of a quadrilateral is 360°.
$\therefore \angle A+\angle C=180^{\circ}$
That is, in the isosceles trapezium $A B C D$, opposite angles are supplementary.
Therefore it is cyclic.

Question

Calculate the angles of the quadrilateral in the picture and also the angles between their diagonals

Answer
Angles drawn from the end points of a chord to one part of a circle are equal.
That is, Angles in the same arc of a circle are equal.

$$
\begin{aligned}
\therefore \angle A C D & =\angle A B D
\end{aligned}=50^{\circ}
$$

In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=50^{\circ}+45^{\circ}=95^{\circ}$

Sum of angles of a triangle is 180°

$$
\begin{aligned}
\therefore \angle \mathrm{ACB} & =\mathbf{1 8 0}^{\circ}-\left(\mathbf{3 0}^{\circ}+\mathbf{9 5}^{\circ}\right) \\
& =\mathbf{1 8 0}^{\circ}-\mathbf{1 2 5}^{\circ}=\mathbf{5 5 ^ { \circ }}
\end{aligned}
$$

Then,
$\angle A C B=\angle A D B=55^{\circ}$
\therefore Angles of quadrilateral ABCD are
$\angle A=45^{\circ}+30^{\circ}=75^{\circ}$
$\angle B=50^{\circ}+45^{\circ}=95^{\circ}$
$\angle \mathrm{C}=55^{\circ}+50^{\circ}=105^{\circ}$
$\angle \mathrm{D}=55^{\circ}+30^{\circ}=85^{\circ}$
Let the chords $A C$ and $B D$ intersect at P.
In \triangle APD, $\angle A P D=180^{\circ}-\left(45^{\circ}+55^{\circ}\right)=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle A P D$ and $\angle C P D$ makes a linear pair.
$\therefore \angle \mathrm{CPD}=180^{\circ}-80^{\circ}=100^{\circ}$
When two lines intersect each other, opposite angles are equal.
$\therefore \angle A P B=100^{\circ}$ and $\angle C P B=80^{\circ}$
That is, Angles between the diagonals are 100° and 80°

Assignments

1. PQRS is an isosceles trapezium and QR extended to X. If $\angle S R X=100^{\circ}$.
 Find all angles of PQRS.
2. Prove that any non-isosceles trapezium is not cyclic.
