MATHEMATICS ONLINE CLASS X ON 06-08-2021

CIRCLES

В

3

 $(32^{-})^{(32^{-})}$

Answer to assignment of previous class

Question

Draw a triangle of circumradius 3cm and two of its angles are $(32\frac{1}{2})^0$ and $(37\frac{1}{2})^0$

Answer

Given angles of triangle are $(32\frac{1}{2})^0$ and $(37\frac{1}{2})^0$

∴ Central angles of two arcs of the circle are

- $2 \times (32\frac{1}{2})^{\circ} = 65^{\circ}$ and $2 \times (37\frac{1}{2})^{\circ} = 75^{\circ}$
- $\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 65^{\circ} = (32\frac{1}{2})^{\circ}$ $\angle BAC = \frac{1}{2} \angle BOC = \frac{1}{2} \times 75^{\circ} = (37\frac{1}{2})^{\circ}$

In the figure A, B, C, D are four points on the circle. Join ABCD to form a quadrilateral. We have to find the properties of angles of this quadrilateral. A quadrilateral have two diagonals. Draw the diagonal AC. AC is a chord of the circle. Chord AC divides the circle into two parts. End points of chord AC makes angles ∠B and∠D on both parts of the circle.

 $\angle \mathbf{A} + \angle \mathbf{C} = 180^{\circ}$

Angles formed at the opposite arcs are supplementary That is, $\angle B + \angle D = 180^{\circ}$

Draw the diagonal BD. BD is a chord of the circle.

Angles formed at the opposite arcs are supplementary $\therefore \angle A$ and $\angle C$ are supplementary. $\angle A + \angle C = 180^{\circ}$

In the quadrilateral ABCD, four vertices are on the circle. Then, $\angle A + \angle C = 180^{\circ}$ and $\angle B + \angle D = 180^{\circ}$.

If all the four vertices of a quadrilateral are on a circle, its opposite angles are supplementary

The converse of this statement is : "If the opposite angles of a quadrilateral are supplementary, then all of its vertices are on a circle"

We know that, we can draw a circle passing through 3 points which are not in a straight line. That circle is the circumcircle of triangle formed by joining these points.

In quadrilateral ABCD,

Draw the circumcircle of \triangle ABC. The forth vertex D may be either outside the circle or inside the circle or on the circle.

That is, $\angle B + \angle E = 180^{\circ}$ 1 Consider $\triangle AED$, $\angle ADC$ is an outer angle of $\triangle AED$. $\angle ADC = \angle E + \angle EAD$ That is, $\angle ADC > \angle E$ 2 Apply equation 2 in equation 1 Then we get $\angle B + \angle D > 180^{\circ}$

Case:III Forth vertex D is on the circle If $\angle B + \angle D = 180^\circ$, D is on the circle. In a quadrilateral, if the opposite angles are supplementary, we can draw a circle passing through the four vertices. Such quadrilaterals are called cyclic quadrilaterals.

NOTE

If the four vertices of a quadrilateral are on a circle, that quadrilateral is called cyclic quadrilateral. Cyclic quadrilaterals are those quadrilaterals with opposite angles are supplementary.

Examples:

- All squares are cyclic quadrilaterals
 All angles of a square are 90°.
 Since opposite angles are supplementary.
 ∴ Squares are always cyclic.
 (That means we can draw a circle passing through four vertices of a square)
- 2. All rectangles are cyclic quadrilaterals All angles of a rectangle are 90°.
 Since opposite angles are supplementary.
 ∴ Rectangles are always cyclic.
 (That means we can draw a circle passing through four vertices of a rectangle)

