MATHEMATICS ONLINE CLASS X ON 06-08-2021

CIRCLES

Answer to assignment of previous class Question
Draw a triangle of circumradius 3 cm and two of its angles are $\left(32 \frac{1}{2}\right)^{0}$ and $\left(37 \frac{1}{2}\right)^{0}$
Answer
Given angles of triangle are $\left(32 \frac{1}{2}\right)^{0}$ and $\left(37 \frac{1}{2}\right)^{0}$
\therefore Central angles of two arcs of the circle are
$2 \times\left(32 \frac{1}{2}\right)^{0}=65^{0}$ and $2 \times\left(37 \frac{1}{2}\right)^{0}=75^{0}$
$\angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 65^{0}=\left(32 \frac{1}{2}\right)^{0}$ $\angle \mathrm{BAC}=\frac{1}{2} \angle \mathrm{BOC}=\frac{1}{2} \times 75^{0}=\left(37 \frac{1}{2}\right)^{0}$

In the figure A, B, C, D are four points on the circle. Join ABCD to form a quadrilateral.
We have to find the properties of angles of this quadrilateral.

A quadrilateral have two diagonals.
Draw the diagonal AC. AC is a chord of the circle. Chord AC divides the circle into two parts. End points of chord AC makes angles $\angle B$ and $\angle D$ on both parts of the circle.

$\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$

Angles formed at the opposite arcs are supplementary That is,
$\angle B+\angle D=180^{\circ}$
Draw the diagonal BD. BD is a chord of the circle.
Angles formed at the opposite arcs are supplementary
$\therefore \angle A$ and $\angle C$ are supplementary.
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$

$\angle A+\angle C=180^{\circ}$

In the quadrilateral ABCD , four vertices are on the circle. Then, $\angle A+\angle C=180^{\circ}$ and $\angle B+\angle D=180^{\circ}$.

If all the four vertices of a quadrilateral are on a circle, its opposite angles are supplementary

The converse of this statement is :
"If the opposite angles of a quadrilateral are supplementary, then all of its vertices are on a circle"

We know that, we can draw a circle passing through 3 points which are not in a straight line. That circle is the circumcircle of triangle formed by joining these points.

In quadrilateral ABCD ,
Draw the circumcircle of $\triangle A B C$. The forth vertex D may be either outside the circle or inside the circle or on the circle.

Case:1 Forth vertex D is outside the circle We have to find the relation of $\angle B$ and $\angle D$. Mark the point E which meets $C D$ on the circle.
Join AE.
Consider quadrilateral ABCE.
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}$ are points on the circle.
\therefore Opposite angles of quadrilateral $A B C E$ are supplementary.
That is, $\angle B+\angle A E C=180^{\circ}$ \qquad 1
Consider \triangle AED
$\angle A E C$ is an outer angle of $\triangle A E D$.
We know that, the outer angle of a triangle at one vertex is the sum of inner angles at the other two vertices.
$\therefore \angle A E C=\angle E A D+\angle D$
whichmeans that $\angle D$ is less than $\angle A E C$
That is, $\angle \mathrm{D}<\angle \mathrm{AEC}$ 2

Apply equation 2 in equation 1
Then we get $\angle B+\angle D<180^{\circ}$
Case:1I Forth vertex D is inside the circle
Extend CD to meet at E, a pont on the circle.
Join AE
Consider quadrilateral ABCE.
A, B, C, E are points on the circle.
\therefore Opposite angles of quadrilateral ABCE are supplementary.

That is, $\angle B+\angle E=180^{\circ}$ 1
Consider $\triangle \mathrm{AED}$,
$\angle A D C$ is an outer angle of $\triangle A E D$.
$\angle \mathrm{ADC}=\angle \mathrm{E}+\angle \mathrm{EAD}$
That is , $\angle \mathrm{ADC}>\angle \mathrm{E}$ 2

Apply equation 2 in equation 1
Then we get $\angle B+\angle D>180^{\circ}$

Case:III Forth vertex D is on the circle
 If $\angle B+\angle D=180^{\circ}, D$ is on the circle. In a quadrilateral, if the opposite angles are supplementary, we can draw a circle passing through the four vertices.
Such quadrilaterals are called cyclic quadrilaterals.

NOTE

If the four vertices of a quadrilateral are on a circle, that quadrilateral is called cyclic quadrilateral.
Cyclic quadrilaterals are those quadrilaterals with opposite angles are supplementary.

Examples:

1. All squares are cyclic quadrilaterals

All angles of a square are 90°.
Since opposite angles are supplementary.
\therefore Squares are always cyclic.
(That means we can draw a circle passing through four vertices of a square)
2. All rectangles are cyclic quadrilaterals All angles of a rectangle are 90°. Since opposite angles are supplementary.
\therefore Rectangles are always cyclic.
(That means we can draw a circle passing through four vertices of a rectangle)

ASSIGNMENT

ABCD is an isosceles trapezium. Check whether it is a cyclic quadrilateral.

