MATHEMATICS ONLINE CLASS X ON 02-08-2021

<u>CIRCLES</u>

Answers to assignments of previous class In all the pictures given below, O is the centre of the circle and A, B, C are points on it. Calculate all angles of $\triangle ABC$ and $\triangle OBC$ in each.

Answer

In the figure, $\angle ABO = 20^{\circ}$, $\angle ACO = 30^{\circ}$. Join OA. OA, OB and OC are radii of circle. \therefore OA = OB = OC $\triangle AOB$ and $\triangle AOC$ are isosceles triangles. $\angle ABO = \angle BAO = 20^{\circ}$ $\angle ACO = \angle CAO = 30^{\circ}$

 $\angle BAC = 20^{\circ} + 30^{\circ} = 50^{\circ}$ $\therefore \angle BOC = 2 \times 50^{\circ} = 100^{\circ}$ $\triangle OBC \text{ is an isosceles triangle.}$ $\angle OBC = \angle OCB$ $\angle OBC + \angle OCB = 180 - \angle BOC$ $= 180 - 100 = 80^{\circ}$ $\therefore \angle OBC = \angle OCB = \frac{80^{\circ}}{2} = 40^{\circ}$ Angles of $\triangle OBC$ are 100° , 40° , 40° Angles of $\triangle ABC$ are 50° , 60° , 70°

In the figure, $\angle OAC = 40^{\circ}$, $\angle ACO = 30^{\circ}$. Join OB.

OA, OB and OC are radii of circle. \therefore OA = OB = OC \triangle OAC is an isosceles triangle. \angle OAC = \angle OCA = 40° \angle AOC = 180 - (40°+ 40°) = 180 - 80 = 100° \angle ABC = $\frac{100^{\circ}}{2}$ = 50°

ΔOBC is an isosceles triangle.

 $\angle OCB = \angle OBC = 30^{\circ}$ $\angle BOC = 180 - (30^{\circ} + 30^{\circ}) = 180 - 60 = 120^{\circ}$ $\angle OBA = \angle ABC - \angle OBC = 50^{\circ} - 30^{\circ} = 20^{\circ}$ $\triangle OAB \text{ is an isosceles triangle.}$ Therefore, $\angle OBA = \angle OAB = 20^{\circ}$ That is,

Angles of $\triangle OBC$ are 120°, 30°, 30° Angles of $\triangle ABC$ are 60°, 50°, 70°

In the figure, $\angle AOC = 40^\circ$, $\angle BOC = 70^\circ$. Join OB. OA, OB and OC are radii of eircle. Therefore, OA = OB = OC $\triangle OBC$ is an isosceles triangle. $\angle OCB = \angle OBC = \frac{180^\circ - 70^\circ}{2}$ $= \frac{110^\circ}{2} = 55^\circ$

∠CAB is an angle made by arc CB at its alternate arc CAB.

 $\angle \mathbf{CAB} = \frac{70^{\circ}}{2} = 35^{\circ}$

 $\angle ABC$ is an angle made by arc AC at its alternate arc ABC. $\angle ABC = \frac{40^{\circ}}{2} = 20^{\circ}$ $\angle ACB = 180 - (35^{\circ} + 20^{\circ}) = 180 - 55 = 125^{\circ}$ Angles of $\triangle OBC$ are 70°, 55°, 55°. Angles of $\triangle ABC$ are 35°, 20°, 125°.

The numbers 1, 4, 8 on a clock's face are joined to make a triangle.Calculate the angles of this triangle? How many equilateral triangles can we make by joining numbers on the clock's face ?

Answer

Angle around a point is 360° . In a clock's face, $60 \text{ minutes} = 360^{\circ}$ $1 \text{ minute} = 6^{\circ}$ $5 \text{ minutes} = 30^{\circ}$ Central angle of arc BC = $\angle BOC = 120^{\circ}$ Central angle of arc AC = $\angle AOC = 150^{\circ}$ Central angle of arc AB = $\angle AOB = 90^{\circ}$

$$\angle A = \frac{120^{\circ}}{2} = 60^{\circ}$$
, $\angle B = \frac{150^{\circ}}{2} = 75^{\circ}$, $\angle C = \frac{90^{\circ}}{2} = 45^{\circ}$

ΔABC becomes an equilateral triangle when each central angle is 420.

