MATHEMATICS ONLINE CLASS X ON 02-08-2021

CIRCLES

Answers to assignments of previous class
In all the pictures given below, O is the centre of the circle and A, B, C are points on it . Calculate all angles of $\triangle A B C$ and $\triangle O B C$ in each.

C

Answer

In the figure, $\angle \mathrm{ABO}=\mathbf{2 0}{ }^{\circ}$,
$\angle A C O=30^{\circ}$.
Join OA.
$O A, O B$ and $O C$ are radii of circle.
$\therefore \mathrm{OA}=\mathrm{OB}=0 \mathrm{OC}$
$\triangle A O B$ and $\triangle A O C$ are isosceles triangles.
$\angle A B O=\angle B A O=20^{\circ}$
$\angle A C O=\angle C A O=30^{\circ}$
$\angle B A C=20^{\circ}+30^{\circ}=50^{\circ}$
$\therefore \angle B O C=2 \times 50^{\circ}=100^{\circ}$
$\triangle O B C$ is an isosceles triangle.
$\angle O B C=\angle O C B$
$\angle O B C+\angle O C B=180-\angle B O C$

$$
=180-100=80^{\circ}
$$

$\therefore \angle O B C=\angle O C B=\frac{80^{\circ}}{2}=40^{\circ}$
Angles of $\triangle O B C$ are $100^{\circ}, 40^{\circ}, 40^{\circ}$
Angles of $\triangle \mathrm{ABC}$ are $50^{\circ}, \mathbf{6 0}^{\circ}, \mathbf{7 0}^{\circ}$

In the figure, $\angle O A C=40^{\circ}, \angle A C O=30^{\circ}$. Join OB.
$O A, O B$ and $O C$ are radii of circle.
$\therefore O A=O B=O C$
$\triangle O A C$ is an isosceles triangle.
$\angle O A C=\angle O C A=40^{\circ}$
$\angle A O C=180-\left(40^{\circ}+40^{\circ}\right)=180-80=100^{\circ}$
$\angle \mathrm{ABC}=\frac{100^{\circ}}{2}=50^{\circ}$
$\triangle O B C$ is an isosceles triangle.
$\angle O C B=\angle O B C=30^{\circ}$
$\angle B O C=180-\left(30^{\circ}+30^{\circ}\right)=180-60=120^{\circ}$
$\angle O B A=\angle A B C-\angle O B C=50^{\circ}-30^{\circ}=20^{\circ}$
$\triangle O A B$ is an isosceles triangle.
Therefore, $\angle O B A=\angle O A B=20^{\circ}$
That is,
Angles of $\triangle O B C$ are $120^{\circ}, 30^{\circ}, 30^{\circ}$
Angles of $\triangle \mathrm{ABC}$ are $\mathbf{6 0 ^ { \circ }}, \mathbf{5 0}^{\circ}, \mathbf{7 0}^{\circ}$

In the figure, $\angle A O C=40^{\circ}, \angle B O C=70^{\circ}$. Join OB. OA, OB and OC are radii of circle.
Therefore, $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
$\triangle O B C$ is an isosceles triangle.
$\angle O C B=\angle O B C=\frac{180^{\circ}-70^{\circ}}{2}$

$$
=\frac{110^{0}}{2}=55^{0}
$$

$\angle C A B$ is an angle made by arc $C B$ at its alternate arc CAB.
$\angle \mathrm{CAB}=\frac{70^{\circ}}{2}=35^{\circ}$
$\angle A B C$ is an angle made by arc $A C$ at its alternate arc $A B C$.
$\angle \mathrm{ABC}=\frac{40^{\circ}}{2}=20^{\circ}$
$\angle A C B=180-\left(35^{\circ}+20^{\circ}\right)=180-55=125^{\circ}$
Angles of $\triangle \mathrm{OBC}$ are $\mathbf{7 0}, \mathbf{5 5}^{\circ}, 55^{\circ}$.
Angles of $\triangle A B C$ are $\mathbf{3 5}, \mathbf{2 0}^{\circ}, 125^{\circ}$.

The numbers $1,4,8$ on a clock's face are joined to make a triangle. Calculate the angles of this triangle?
How many equilateral triangles can we make by joining numbers on the clock's face?

Answer

$\angle \mathrm{A}=\frac{120^{\circ}}{2}=60^{\circ}, \angle \mathrm{B}=\frac{150^{\circ}}{2}=75^{\circ}, \angle \mathrm{C}=\frac{90^{\circ}}{2}=45^{\circ}$
$\triangle A B C$ becomes an equilateral triangle when each central angle is 120°

4 equilateral triangle can draw in a clock. (By joining 12,4,8 , 1,5,9 , 2,6,10 and 3,7,11)

Assignments

1) In the figure, O is the centre of the circle and $A B C$ is an equilateral triangle. Find BAC and $\angle A B O$

2)

In the picture O is the centre of the circle and A, B, C are points on it . Prove that $\angle \mathrm{OAC}+\angle \mathrm{ABC}=\mathbf{9 0}^{\circ}$

