Mathematics Online Class X On 27-07-2021

CIRCLES

If we draw the diameter of a circle, the circle is divided into two equal parts. Each part is a semicircle .
If we join the end points of the diameter to any other point on the circle we get a right angle.

If we draw a chord other than the diameter then also the circle is divided in to two parts, one part is larger and other part is smaller

Activity

Draw a circle of radius 5 cm . Draw a chord other than diameter. Mark 3 points on the larger part of the circle and other 3 points on the smaller part of the circle. Join the end points of the chord to the points marked in larger part and measure the angles so get. Similarly, join the end points of the chord to the points marked in smaller part and measure the angles so get.

Answer
We can find that
(a) These angles are not right angles.
(b) All angles are not equal.
(b) Angles in the larger part are same.
(c) Angles in the smaller part are same.

If we join the endpoints of a chord other than the diameter, to any point on the larger part of the circle, what is the relation between the angle so formed on the circle and central angle of the chord.

Proof:
We can prove this in 3 different situations
(1)

If the lines joined from the endpoints of a chord to a point on the circle, is on both sides of the centre of the circle.
Draw OA, OB and OP.
We have to find $\angle P$.
Let $\angle \mathrm{APO}=\mathrm{x}^{\circ}$ and $\angle \mathrm{BPO}=\mathrm{y}^{\circ}$
$\angle P=(x+y)^{\circ}$
Consider \triangle APO.
$O A=O P$ (radii of the same circle)
$\triangle A P O$ is an isosceles triangle .
In isosceles triangles, angles opposite to equal sides are equal.
$\therefore \angle A P O=\angle P A O=x^{\circ}$
Sum of angles of a triangle is 180°
$\therefore \angle A O P=180-\left(x^{\circ}+x^{\circ}\right)=(180-2 x)^{\circ}$
Consider \triangle BPO.
$O B=O P$ (radii of the same circle)
$\triangle \mathrm{BPO}$ is an isosceles triangle .
$\therefore \angle B P O=\angle P B O=y^{\circ}$
Sum of angles of a triangle is 180°

$\therefore \angle B O P=180-\left(\mathbf{y}^{\circ}+\mathbf{y}^{\circ}\right)=(180-2 y)^{\circ}$

Let $\angle \mathrm{AOB}=\mathrm{c}^{\circ}$
We know angles around a point is 360°

$$
\begin{aligned}
180-2 x+180-2 y+c & =360 \\
360-2 x-2 y+c & =360 \\
-2 x-2 y+c & =0 \\
c & =2 x+2 y=2(x+y)=2 \times \angle P
\end{aligned}
$$

\therefore We get $\angle P=\frac{1}{2} c^{0}=\frac{1}{2} \angle A O B$
(2)

If one of the lines joined from the endpoints of the chord to the point on the circle, is the diameter of the circle.
Let $\angle \mathrm{APB}=\mathrm{x}^{\circ}$
Draw OB.
Let $\angle A O B=c^{\circ}$
Consider 4 OPB.
$O P=O B$ (radii of the same circle)
$\triangle O P B$ is isosceles.
$\therefore \angle P B O=x^{\circ}$
$\angle B O P=(180-2 x)^{\circ}$
$\angle A O B$ and $\angle B O P$ are linear pairs

$$
\begin{aligned}
\therefore 180-2 x^{\circ}+\mathbf{c} & =180^{\circ} \\
-2 x^{\circ}+\mathbf{c} & =0 \\
\mathbf{c} & =\mathbf{2 x} \\
\mathbf{c} & =2 \times L P \\
\angle P & =\frac{1}{2} \mathbf{c}^{0}=\frac{1}{2} \angle A O B
\end{aligned}
$$

(3)

If the lines joined from the endpoints of a chord to a point on the circle, is on one side of the centre of the circle.
Draw OA, OB and OP.
Let $\angle A P O=x^{\circ}$ and $\angle B P O=y^{\circ}$
$\therefore \angle A P B=(y-x)^{0}$
Consider \triangle APO.
$O A=O P$ (radii of the same circle)
$\triangle \mathrm{APO}$ is isosceles.
$\angle A P O=\angle P A O=x^{\circ}$
$\angle A O P=(180-2 x)^{0}$
Consider $\triangle \mathrm{BPO}$.
$O B=O P$ (radii of the same circle)
$\triangle B P O$ is isosceles.
$\angle B P O=\angle P B O=y^{\circ}$

$\angle B O P=(180-2 y)^{0}$

$$
\text { Let } \begin{aligned}
\angle A O B & =c^{\circ} \\
c & =\text { LAOP }-\llcorner B O P \\
& =(180-2 x)-(180-2 y) \\
& =180-2 x-180+2 y \\
& =2 y-2 x=2(y-x) \\
& =2 \times L A P B \\
\angle A P B & =\frac{1}{2} c^{0}=\frac{1}{2} \angle A O B
\end{aligned}
$$

If we join the ends of a non diametrical chord to any point on the larger part of the circle, we get an angle which is half the size of the angle we get by joining them to the centre of the circle.

Assignment :

Is any relation between angle made on the larger part and the angle made on the smaller part of the circle

