Mathematics Online Class X On 22-07-2021

CIRCLES

Answer of question on previous class

Use a calculator to determine upto two decimal places, the perimeter and the area of the circle in the picture.

This figure can be drawn this way.
$\angle \mathrm{C}=\mathbf{9 0}^{\circ}$
$A B$ is the diameter of the circle.
$\triangle \mathrm{ABC}$ is a right triangle.
Using Pythagoras theorem,

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{AC}^{2}+\mathrm{BC}^{2} \\
& =3^{2}+6^{2} \\
& =9+36 \\
& =45
\end{aligned}
$$

$\mathrm{AB}=\sqrt{45}=6.71 \mathrm{~cm}$
Radius of circle $=\frac{6.71}{2}=3.36 \mathrm{~cm}$
Perimeter of circle $=\pi d=3.14 \times 6.71=21.07 \mathrm{~cm}$
Area of circle $=\pi r^{2}=3.14 \times 3.36 \times 3.36=35.45 \mathrm{~cm}^{2}$

Activity

Draw a line of length 5 cm . Draw a circle with this
line as diameter. Mark 3 points inside the circle.
Join each points to the end points of the diameter.
Measure the angles so get and find the common property.

All angles are greater than 90°

Proof :-
$A B$ is the diameter of the circle and P is a point inside the circle.
Join AP and BP.
Extend AP to meet the circle at Q. Join BQ.
Since angle in a semicircle is 90°,
$\angle A Q B=90^{\circ}$
ie; $\angle \mathrm{PQB}=90^{\circ}$
Consider the $\triangle B Q P$.

$\angle A P B$ is an outer angle of $\triangle B Q P$.
Therefore, $\angle \mathrm{APB}=\angle \mathrm{PQB}+\angle \mathrm{PBQ}$

$$
=90^{\circ}+\angle \mathrm{PBQ}
$$

which means $\angle A P B$ is greater than $90^{\circ}\left(\angle A P B>90^{\circ}\right)$

If we join the ends of the diameter of a circle to a point inside the circle gives an angle greater than 90°.

Activity

Draw a line of length 5 cm .
Draw a circle with this line as diameter.
Mark 3 points outside the circle. Join each points to the endpoints of the diameter.
Measure the angles so get and find the common property.

All angles are less than 90°.

Proof :-
$A B$ is the diameter of the circle and P is a point outside the circle.
Join AP and BP.
Q is a point on the circle where AP meet the circle. Join BQ.
Since angle in a semicircle is 90°, $\angle A Q B=90^{\circ}$
Consider the $\triangle B Q P$.
$\angle A Q B$ is an outer angle of $\triangle B Q P$.

Therefore, $\angle A Q B=\angle A P B+\angle P B Q$

$$
\mathbf{9 0}^{\circ}=\angle \mathrm{APB}+\angle \mathrm{PBQ}
$$

which means $\angle \mathrm{APB}$ is less than $90^{\circ}\left(\angle \mathrm{APB}<90^{\circ}\right)$

If we join the ends of the diameter of a circle to a point outside the circle gives an angle less than 90°

Note :
If a pair of lines drawn from the ends of a diameter of a circle are perpendicular to each other, then they meet on the circle .

