Notes of Online class

Session 4

1) In the figure the angle measures x, y, z are in an arithmetic sequence.

- a) What is x + z ?
- b) Find the angle measure \boldsymbol{y}
- c) Find x, y and z.

Answers

- a) We know that sum of the angle on the arc and in the complement is $180^\circ.$ That is $x+z=180^\circ$
- b) Since x, y, z are in an arithmetic sequence , 2y = x + z. That is $2y = 180, y = 90^{\circ}$
- c) We know that $x=\frac{y}{2}=45^\circ$, $z=180-45=135^\circ$
- 2) One vertex of a parallelogram is at the centre of a circle. Other vertices are on the circle.

- a) If $\angle APC = x$ then what is $\angle AOC$?
- b) What is $\angle ABC$?
- c) Find \boldsymbol{x}
- d) Find the angles of OABC

Answers

- a) 2x Reason: angle made by the arc at the centre is two times angle in the complement
- b) $\angle ABC = 2x$ Reason: Opposite angles of a parallelogram are equal
- c) $x+2x=180, 3x=180, x=60^\circ$ Reason: sum of the angles on the arc and in the complement is 180°
- d) Angles are $120^{\circ}, 120^{\circ}, 60^{\circ}, 60^{\circ}$
- 3) In the figure $\angle AOC = x, \angle AFB = y, \angle ACB = z$ then

- a) What is $\angle ADB$ and $\angle AEB$?
- b) What is $\angle DFE$?
- c) What are the angles of CDFE?
- d) Prove that x = y + z

Answers

a) $\angle ADB = \angle AEB = \frac{x}{2}$

- b) y Reason: vertically opposite angles are equal
- c) $180 \frac{x}{2}, 80 \frac{x}{2}, y, z$
- d) Sum of these angles is 360° . $180 - \frac{x}{2} + 180 - \frac{x}{2} + y + z = 360$ x = y + z
- 4) Draw a circle of suitable radius . Construct 60° angle at the centre , 30° angle and 150° angle on the circle without using protractor.

5) Draw a circle of suitable radius . Construct 90° angle at the centre , 45° angle and 135° angle on the circle without using protractor.

 $\label{eq:compiler:optimal} ^{1} Compiler: John P.A, sjpuzzles@gmail.com , jpavpz@gmail.com | 9847307721$

1