ONLINE MATHS CLASS - X - 11 (14 / 07 /2021)

1. ARITHMETIC SEQUENCE - CLASS 9

What did we study in the last class ?

- If n is an odd number , then the sum of n consecutive terms of an arithmetic sequence is n times the middle term .
- ★ In an odd number of consecutive terms of any arithmetic sequence , the sums of the pairs of terms equidistant from the centre are twice the middle term .
- ★ In an arithmetic sequence , if the sums of positions of two pairs of terms are equal

, then the sums of the pairs of the terms are equal .

<u>Activity1</u>

7th term of an arithmetic sequence is 15 . Calculate the sum of first 13 terms of this sequence

<u>Answer</u>

Sum of first 13 terms = 13 x Middle term

= 13 x 7th term = 13 x 15 = 195

Activity 2

The sum of 4th and 14th terms of an arithmetic sequence is 56.

a) Find the sum of first and 17th terms of this sequence .

b) What is its 9th term ?

c) Calculate the sum of 17 terms of this sequence .

<u>Answer</u>

- $x_4 + x_{14} = 56$
- **a)** $x_1 + x_{17} = 56$
- **b)** $x_9 = \frac{x_1 + x_{17}}{2} = \frac{56}{2} = 28$
- c) Sum of first 17 terms = 17 x Middle term

= 17 x x₉ = 17 x 28 = 476

Activity 3

The sum of first and 12th terms of an arithmetic sequence is 69.

a) Find the sum of second and 11th terms of this sequence .

b) Find the sum of third and 10th terms of this sequence .

c) Find the sum of 4th and 9th terms of this sequence .

d) Find the sum of 5th and 8th terms of this sequence .

e) Find the sum of 6th and 7th terms of this sequence .

f) Calculate the sum of 12 terms of this sequence .

<u>Answer</u>

- $x_1 + x_{12} = 69$
- **a)** $x_2 + x_{11} = 69$
- **b)** $x_3 + x_{10} = 69$
- **c)** $x_4 + x_9 = 69$
- **d)** $x_5 + x_8 = 69$
- **e)** $x_6 + x_7 = 69$

f) Sum of first 12 terms = $6 \times 69 = 414$

(Total 6 pairs)

<u>Activity 4</u> (Sum of a fixed number of natural numbers starting from 1)

Case 1 (Number is odd)		
	Sum	
1 + 2 + 3	3 x Middle number	$3 \times 2 = 6$
1+2+ 3 +4+5	5 x Middle number	5 x 3 = 15
1+2+3+4+5+6+7	7 x Middle number	7 x 4 = 28
1+2+3+4+5+6+7+8+9	9 x Middle number	9 x 5 = 45
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11	11 x Middle number	11 x 6 = 66

NOTE :

Number of terms (starting from 1)	Middle number
3	2
5	3
11	6
25	13
n , an odd number	$\frac{n+1}{2}$

 $1 + 2 + 3 + \ldots + 15 = 15 \times Middleterm = 15 \times (\frac{15+1}{2}) = 15 \times \frac{16}{2} = 15 \times 8 = 120$

 $1 + 2 + 3 + \ldots + 25 = 25 \times Middleterm = 25 \times (\frac{25+1}{2}) = 15 \times \frac{26}{2} = 25 \times 13 = 325$

$$1 + 2 + 3 + \ldots + 31 = 31 \times Middle term = 31 \times (\frac{31+1}{2}) = 31 \times \frac{32}{2} = 31 \times 16 = 496$$
$$1 + 2 + 3 + \ldots + 49 = 49 \times Middle term = 49 \times (\frac{49+1}{2}) = 49 \times \frac{50}{2} = 49 \times 25 = 1225$$
If *n* is an odd number,

1

$$1 + 2 + 3 + ... + n = n \times Middleterm = n \times (\frac{n+1}{2}) = \frac{n (n+1)}{2}$$

Finding

If *n* is an odd number , $1 + 2 + 3 + ... + n = \frac{n (n+1)}{2}$

<u>Case 2</u> (Number is even)

	Number of pairs of terms with equal sum of positions	Pair sum	Sum of the terms
1 + 2 + 3 + 4	2	5	2 x 5 = 10
1 + 2 + 3 + 4 + 5 + 6	3	7	3 x 7 = 21
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8	4	9	4 x 9 = 36
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10	5	11	5 x 11 = 55
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12	6	13	6 x 13 = 78

NOTE :

1. If the first 12 consecutive terms of an arithmetic sequence are given ,

$$x_1 + x_{12} = x_2 + x_{11} = x_3 + x_{10} = x_4 + x_9 = x_5 + x_8 = x_6 + x_7$$

2.

Number of terms (starting from 1)	Number of pairs of terms with equal sum of positions
4	2
6	3
10	5
50	25
n , an even number	$\frac{n}{2}$

$$1 + 2 + 3 + \ldots + 16 = \frac{16}{2} \times Sum of a pair of terms = \frac{16}{2} \times (1+16) = 8 \times 17 = 136$$

$$1 + 2 + 3 + \ldots + 20 = \frac{20}{2} \times Sum of a pair of terms = \frac{20}{2} \times (1+20) = 10 \times 21 = 210$$

$$1 + 2 + 3 + \ldots + 30 = \frac{30}{2} \times Sum of a pair of terms = \frac{30}{2} \times (1+30) = 15 \times 30 = 450$$

$$1 + 2 + 3 + \ldots + 50 = \frac{50}{2} \times Sum of a pair of terms = \frac{50}{2} \times (1+50) = 25 \times 51 = 1275$$

If n is an even number,

$$1 + 2 + 3 + \dots + n = \frac{n}{2} \times Sum of a pair of terms = \frac{n}{2} \times (1+n) = \frac{n(1+n)}{2}$$
$$= \frac{n(n+1)}{2}$$

Finding

If *n* is an even number ,
$$1 + 2 + 3 + ... + n = \frac{n (n+1)}{2}$$

Conclusion

The sum of any number of consecutive natural numbers , starting with one , is half the

product of the last number and the next natural number .

That is,
$$1 + 2 + 3 + ... + n = \frac{n (n+1)}{2}$$

Activity 5

Compute the following sums .

- **a)** 1 + 2 + 3 + . . . + 100
- **b)** 2 + 4 + 6 + . . . + 200
- **c)** 3 + 6 + 9 + . . . + 300
- **d)** 4 + 8 + 12+ . . . + 400

<u>Answer</u>

- **a)** 1 + 2 + 3 + . . . + 100 = $\frac{100 \times 101}{2}$ = 5050
- **b)** $2 + 4 + 6 + \ldots + 200 = 2(1 + 2 + 3 + \ldots + 100) = 2 \times 5050 = 10100$
- c) $3 + 6 + 9 + ... + 300 = 3(1 + 2 + 3 + ... + 100) = 3 \times 5050 = 15150$

d) 4 + 8 + 12 + . . . + 400 = 4(1 + 2 + 3 + . . . + 100) = 4
$$\times$$
 5050 = 20200

Activity 6

Compute the following sums .

- **a)** 1 + 2 + 3 + . . . + 100
- **b)** 5 + 10 + 15 + . . . + 500
- **c)** 6 + 11 + 16 + . . . + 501

<u>Answer</u> a) $1 + 2 + 3 + \ldots + 100 = \frac{100 \times 101}{2} = 5050$ **b)** $5 + 10 + 15 + \ldots + 500 = 5(1 + 2 + 3 + \ldots + 100) = 5 \times 5050 = 25250$ c) $6 + 11 + 16 + ... + 501 = 25250 + (100 \times 1) = 25250 + 100 = 25350$ (Here the terms of the arithmetic sequence 6, 11, 16, ..., 501 are got by adding 1 to the terms of the arithmetic sequence 5, 10, 15, ..., 500) Activity_7 Compute the following sums . a) 1 + 2 + 3 + . . . + 100 **b)** 7 + 14 + 21 + . . . + 700 **c)** 4 + 11 + 18 + . . . + 697 Answer **a)** 1 + 2 + 3 + . . . + 100 = $\frac{100 \times 101}{2}$ = 5050 **b)** 7 + 14 + 21 + . . . + 700 = 7(1 + 2 + 3 + . . . + 100) = 7 × 5050 = 35350 c) $4 + 11 + 18 + ... + 697 = 25250 - (100 \times 3) = 25250 - 300 = 24950$ (Here the terms of the arithmetic sequence 4, 11, 18, ..., 697 are got by subtracting 3 from the terms of the arithmetic sequence 7, 14, 21, ..., 700) Activity 8

Compute the following sums .

- **a)** 1 + 2 + 3 + . . . + 20
- **b)** 10 + 20 + 30 + . . . + 200
- **c)** 6 + 16 + 26 + . . . + 196

Answer

 X_1

a) 1 + 2 + 3 + . . . + 20 =
$$\frac{20 \times 21}{2}$$
 = 210

b) $10 + 20 + 30 + \ldots + 200 = 10(1 + 2 + 3 + \ldots + 20) = 10 \times 210 = 2100$

c) $6 + 16 + 26 + ... + 196 = 2100 - (20 \times 4) = 2100 - 80 = 2020$

(Here the terms of the arithmetic sequence 6, 16, 26, ..., 196 are got by subtracting 4 from the terms of the arithmetic sequence 10, 20, 30, ..., 200)

Activity 9 (The sum of first n terms of an arithmetic sequence)

An arithmetic sequence is of the form,

$$x_n = an + b$$

To calculate the sum its first n terms , we put $n = 1, 2, 3, \ldots$ in this and add .

First term =
$$a \times 1 + b = a + b$$

Second term = $a \times 2 + b = 2a + b$
Third term = $a \times 3 + b = 3a + b$
Fourth term = $a \times 4 + b = 4a + b$
Fifth term = $a \times 5 + b = 5a + b$
.....
 n^{th} term = $an + b$
 $+ x_2 + x_3 + \ldots + x_n = (a + 2a + 3a + \ldots + an) + (b + b + b + \ldots + b)$
 $= a (1 + 2 + 3 + \ldots + n) + b \times n$
 $= a \frac{n(n+1)}{2} + bn$

Finding

For the arithmetic sequence ,

$$x_n = an + b$$

the sum of the first *n* terms is

$$x_1 + x_2 + x_3 + \dots + x_n = a \frac{n(n+1)}{2} + bn$$

NOTE :

Arithmetic sequence	Algebraic form	Sum of the first <i>n</i> terms
5,8,11,	3n + 2	$3 \times \frac{n(n+1)}{2} + 2n$
7,11,15,	4 <i>n</i> + 3	$4 \times \frac{n (n+1)}{2} + 3n$
11 , 21 , 31 ,	10 <i>n</i> + 1	$10 \times \frac{n (n+1)}{2} + n$
1,6,11,	5n - 4	$5 \times \frac{n(n+1)}{2} - 4n$
7, 15, 23,	8n - 1	$8 \times \frac{n\left(n+1\right)}{2} - n$

Activity 10

Calculate the difference between the sums of the first 20 terms of the arithmetic sequences

2, 9, 16, ... and 5, 12, 19,

Answer

- 5 + 12 + 19 + . . . + x_{20} -2 + 9 + 16 + . . . + y_{20}
- $3 + 3 + 3 + ... + 3 = 3 \times 20 = 60$

Activity 11

What is the difference between the sum of the first 10 terms and the next 10 terms of the

arithmetic sequence 7, 11, 15, ...

<u>Answer</u>

d = 11 - 7 = 4 $x_{11} + x_{12} + x_{13} + \dots + x_{20} x_{1} + x_{2} + x_{3} + \dots + x_{10}$ $10d + 10d + 10d + \dots + 10d = 10 \times 10d$

 $= 10 \times 10 \times 4 = 400$

Activity 12

Common difference of an arithmetic sequence is 6 and the sum of the first 20 terms is

1300. Write down the sequence.

<u>Answer</u>

$$x_{1} + x_{20} = \frac{1300}{10} = 130$$

$$x_{1} + (x_{1} + 19d) = 130$$

$$2x_{1} + 19d = 130$$

$$2x_{1} + 19 \times 6 = 130$$

$$2x_{1} + 114 = 130$$

$$2x_{1} = 130 - 114 = 16$$

$$x_{1} = \frac{16}{2} = 8$$
Sequence = 8, 14, 20, ...

(20 terms = total 10 pairs)

NOTE : (Another method)

The algebraic form any arithmetic sequence of common difference 6 can be taken as 6n + b. Sum of first 20 terms = 1300 ==> $6 \times \frac{20 \times 21}{2} + b \times 20 = 1300$ $6 \times 210 + 20b = 1300$ 1260 + 20b = 130020b = 1300 - 1260 = 40 $b = \frac{40}{20} = 2$ $x_n = 6n + b = 6n + 2$ $x_1 = 6 \times 1 + 2 = 6 + 2 = 8$ Sequence = 8, 14, 20, .