ONLINE MATHS CLASS - X - 11 (14 / $07 / 2021$)

1. ARITHMETIC SEQUENCE - CLASS 9

What did we study in the last class ?
If n is an odd number, then the sum of n consecutive terms of an arithmetic sequence is n times the middle term .

In an odd number of consecutive terms of any arithmetic sequence, the sums of the pairs of terms equidistant from the centre are twice the middle term .

In an arithmetic sequence, if the sums of positions of two pairs of terms are equal , then the sums of the pairs of the terms are equal .

Activity1

$7^{\text {th }}$ term of an arithmetic sequence is 15 . Calculate the sum of first 13 terms of this sequence

Answer

Sum of first 13 terms $=13 \times$ Middle term

$$
\begin{aligned}
& =13 \times 7^{\text {th }} \text { term } \\
& =13 \times 15=195
\end{aligned}
$$

Activity 2

The sum of $4^{\text {th }}$ and $14^{\text {th }}$ terms of an arithmetic sequence is 56 .
a) Find the sum of first and $17^{\text {th }}$ terms of this sequence .
b) What is its $\mathbf{9}^{\text {th }}$ term ?
c) Calculate the sum of $\mathbf{1 7}$ terms of this sequence .

Answer

$$
x_{4}+x_{14}=56
$$

a) $x_{1}+x_{17}=56$
b) $\quad x_{9}=\frac{x_{1}+x_{17}}{2}=\frac{56}{2}=28$
c) Sum of first 17 terms $=17 \times$ Middle term

$$
=17 \times x_{9}=17 \times 28=476
$$

Activity 3

The sum of first and $12^{\text {th }}$ terms of an arithmetic sequence is 69 .
a) Find the sum of second and $11^{\text {th }}$ terms of this sequence .
b) Find the sum of third and $10^{\text {th }}$ terms of this sequence .
c) Find the sum of $4^{\text {th }}$ and $9^{\text {th }}$ terms of this sequence .
d) Find the sum of $5^{\text {th }}$ and $8^{\text {th }}$ terms of this sequence .
e) Find the sum of $6^{\text {th }}$ and $7^{\text {th }}$ terms of this sequence.
f) Calculate the sum of 12 terms of this sequence .

Answer

$$
x_{1}+x_{12}=69
$$

a) $x_{2}+x_{11}=69$
b) $x_{3}+x_{10}=69$
c) $x_{4}+x_{9}=69$
d) $x_{5}+x_{8}=69$
e) $x_{6}+x_{7}=69$
f) Sum of first $\mathbf{1 2}$ terms $=6 \times 69=414$

Activity 4 (Sum of a fixed number of natural numbers starting from 1)

Case 1 (Number is odd)

	Sum	
$1+2+3$	$3 \times$ Middle number	$3 \times 2=6$
$1+2+3+4+5$	$5 \times$ Middle number	$5 \times 3=15$
$1+2+3+4+5+6+7$	$7 \times$ Middle number	$7 \times 4=28$
$1+2+3+4+5+6+7+8+9$	$9 \times$ Middle number	$9 \times 5=45$
$1+2+3+4+5+6+7+8+9+10+11$	$11 \times$ Middle number	$11 \times 6=66$

NOTE :

Number of terms (starting from 1)	Middle number
3	2
5	3
11	6
25	13
n, an odd number	$\frac{n+1}{2}$

$1+2+3+\ldots+15=15 \times$ Middleterm $=15 \times\left(\frac{15+1}{2}\right)=15 \times \frac{16}{2}=15 \times 8=120$
$1+2+3+\ldots+25=25 \times$ Middleterm $=25 \times\left(\frac{25+1}{2}\right)=15 \times \frac{26}{2}=25 \times 13=325$
$1+2+3+\ldots+31=31 \times$ Middle term $=31 \times\left(\frac{31+1}{2}\right)=31 \times \frac{32}{2}=31 \times 16=496$
$1+2+3+\ldots+49=49 \times$ Middleterm $=49 \times\left(\frac{49+1}{2}\right)=49 \times \frac{50}{2}=49 \times 25=1225$

If n is an odd number ,
$1+2+3+\ldots+n=n \times$ Middleterm $=n \times\left(\frac{n+1}{2}\right)=\frac{n(n+1)}{2}$

Finding

$$
\text { If } n \text { is an odd number }, \quad 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

Case 2 (Number is even)

	Number of pairs of terms with equal sum of positions	Pair sum	Sum of the terms
$1+2+3+4$	2	5	$2 \times 5=10$
$1+2+3+4+5+6$	3	7	$3 \times 7=21$
$1+2+3+4+5+6+7+8$	4	9	$4 \times 9=36$
$1+2+3+4+5+6+7+8+9+10$	5	11	$5 \times 11=55$
$1+2+3+4+5+6+7+8+9+10+11+12$	6	13	$6 \times 13=78$

NOTE :

1. If the first $\mathbf{1 2}$ consecutive terms of an arithmetic sequence are given ,

$$
x_{1}+x_{12}=x_{2}+x_{11}=x_{3}+x_{10}=x_{4}+x_{9}=x_{5}+x_{8}=x_{6}+x_{7}
$$

2.

Number of terms (starting from 1)	Number of pairs of terms with equal sum of positions
4	2
6	3
10	5
50	25
n, an even number	$\frac{n}{2}$

$1+2+3+\ldots+16=\frac{16}{2} \times$ Sum of a pair of terms $=\frac{16}{2} \times(1+16)=8 \times 17=136$
$1+2+3+\ldots+20=\frac{20}{2} \times$ Sumof a pair of terms $=\frac{20}{2} \times(1+20)=10 \times 21=210$
$1+2+3+\ldots+30=\frac{30}{2} \times$ Sumof a pair of terms $=\frac{30}{2} \times(1+30)=15 \times 30=450$
$1+2+3+\ldots+50=\frac{50}{2} \times$ Sumof a pair of terms $=\frac{50}{2} \times(1+50)=25 \times 51=1275$

If n is an even number,
$1+2+3+\ldots+n=\frac{n}{2} \times$ Sum of a pair of terms $=\frac{n}{2} \times(1+n)=\frac{n(1+n)}{2}$

$$
=\frac{n(n+1)}{2}
$$

Finding

$$
\text { If } n \text { is an even number }, 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

Conclusion

The sum of any number of consecutive natural numbers, starting with one, is half the product of the last number and the next natural number .

That is, $\quad 1+2+3+\ldots+n=\frac{n(n+1)}{2}$

Activity 5

Compute the following sums .
a) $1+2+3+\ldots+100$
b) $2+4+6+\ldots+200$
c) $3+6+9+\ldots+300$
d) $4+8+12+\ldots+400$

Answer
a) $1+2+3+\ldots+100=\frac{100 \times 101}{2}=5050$
b) $2+4+6+\ldots+200=2(1+2+3+\ldots+100)=2 \times 5050=10100$
c) $3+6+9+\ldots+300=3(1+2+3+\ldots+100)=3 \times 5050=15150$
d) $4+8+12+\ldots+400=4(1+2+3+\ldots+100)=4 \times 5050=20200$

Activity 6

Compute the following sums .
a) $1+2+3+\ldots+100$
b) $5+10+15+\ldots+500$
c) $6+11+16+\ldots+501$
a) $1+2+3+\ldots+100=\frac{100 \times 101}{2}=5050$
b) $5+10+15+\ldots+500=5(1+2+3+\ldots+100)=5 \times 5050=25250$
c) $6+11+16+\ldots+501=25250+(100 \times 1)=25250+100=25350$
(Here the terms of the arithmetic sequence $6,11,16$, . ., 501 are got by adding 1 to the terms of the arithmetic sequence $5,10,15, \ldots, 500$)

Activity 7

Compute the following sums .
a) $1+2+3+\ldots+100$
b) $7+14+21+\ldots+700$
c) $4+11+18+\ldots+697$

Answer
a) $1+2+3+\ldots+100=\frac{100 \times 101}{2}=5050$
b) $7+14+21+\ldots+700=7(1+2+3+\ldots+100)=7 \times 5050=35350$
c) $4+11+18+\ldots+697=25250-(100 \times 3)=25250-300=24950$
(Here the terms of the arithmetic sequence 4, 11, 18 , .., 697 are got by subtracting $\mathbf{3}$ from the terms of the arithmetic sequence $7,14,21, \ldots, 700$)

Activity 8
Compute the following sums .
a) $1+2+3+\ldots+20$
b) $10+20+30+\ldots+200$
c) $6+16+26+\ldots+196$
a) $1+2+3+\ldots+20=\frac{20 \times 21}{2}=210$
b) $10+20+30+\ldots+200=10(1+2+3+\ldots+20)=10 \times 210=2100$
c) $6+16+26+\ldots+196=2100-(20 \times 4)=2100-80=2020$
(Here the terms of the arithmetic sequence $6,16,26, \ldots, 196$ are got by subtracting 4 from the terms of the arithmetic sequence $10,20,30, \ldots, 200$)

Activity 9 (The sum of first n terms of an arithmetic sequence)
An arithmetic sequence is of the form ,

$$
x_{n}=a n+b
$$

To calculate the sum its first n terms, we put $n=1,2,3$, . . in this and add .

$$
\begin{aligned}
& \text { First term }=a \times 1+b=a+b \\
& \text { Second term }=a \times 2+b=2 a+b \\
& \text { Third term }=a \times 3+b=3 a+b \\
& \text { Fourth term }=a \times 4+b=4 a+b \\
& \text { Fifth term }=a \times 5+b=5 a+b \\
& n^{\text {th }} \text { term }=a n+b \\
& \text { n times } \\
& x_{1}+x_{2}+x_{3}+\ldots+x_{n}=(a+2 a+3 a+\ldots+a n)+(b+b+b+\ldots+b) \\
& =a(1+2+3+\ldots+n)+b \times n \\
& =a \frac{n(n+1)}{2}+b n
\end{aligned}
$$

Finding

For the arithmetic sequence ,

$$
x_{n}=a n+b
$$

the sum of the first \boldsymbol{n} terms is

$$
x_{1}+x_{2}+x_{3}+\ldots+x_{n}=a \frac{n(n+1)}{2}+b n
$$

NOTE :

Arithmetic sequence	Algebraic form	Sum of the first n terms
$\mathbf{5}, \mathbf{8}, \mathbf{1 1}, \ldots$	$3 n+2$	$3 \times \frac{n(n+1)}{2}+2 n$
$\mathbf{7}, \mathbf{1 1}, \mathbf{1 5}, \ldots$	$4 n+3$	$4 \times \frac{n(n+1)}{2}+3 n$
$\mathbf{1 1}, \mathbf{2 1}, \mathbf{3 1}, \ldots$	$10 n+1$	$10 \times \frac{n(n+1)}{2}+n$
$\mathbf{1 , 6 , 1 1}, \ldots$	$5 n-4$	$5 \times \frac{n(n+1)}{2}-4 n$
$\mathbf{7 , 1 5}, \mathbf{2 3}, \ldots$	$8 n-1$	$8 \times \frac{n(n+1)}{2}-n$

Activity 10

Calculate the difference between the sums of the first 20 terms of the arithmetic sequences

```
2,9,16,\ldots.and 5,12,19,... .
```


Answer

$$
\begin{aligned}
& 5+12+19+\ldots .+x_{20}- \\
& 2+9+16+\ldots .+y_{20} \\
& 3+3+3+. .++3=3 \times 20=60
\end{aligned}
$$

Activity 11

What is the difference between the sum of the first 10 terms and the next 10 terms of the arithmetic sequence $7,11,15$, ..

Answer
$d=11-7=4$

$$
\begin{aligned}
& x_{11}+x_{12}+x_{13}+\ldots . \quad . \quad+x_{20}- \\
& x_{1}+x_{2}+x_{3}+\ldots . \quad+x_{10}
\end{aligned}
$$

$$
10 d+10 d+10 d+. . .+10 d=10 \times 10 d
$$

$$
=10 \times 10 \times 4=400
$$

Activity 12

Common difference of an arithmetic sequence is $\mathbf{6}$ and the sum of the first 20 terms is

1300 . Write down the sequence .

Answer

$$
\begin{aligned}
x_{1}+x_{20} & =\frac{1300}{10}=130 \\
x_{1}+\left(x_{1}+19 d\right) & =130 \\
2 x_{1}+19 d & =130 \\
2 x_{1}+19 \times 6 & =130 \\
2 x_{1}+114 & =130 \\
2 x_{1} & =130-114=16 \\
x_{1} & =\frac{16}{2}=8
\end{aligned}
$$

$$
\text { (} 20 \text { terms = total } 10 \text { pairs) }
$$

Sequence $=8,14,20, \ldots$

NOTE: (Another method)

The algebraic form any arithmetic sequence of common difference 6 can be taken as $6 n+b$.

$$
\begin{aligned}
& \text { Sum of first } 20 \text { terms }=1300 \\
&==\quad \begin{aligned}
6 \times \frac{20 \times 21}{2}+b \times 20 & =1300 \\
6 \times 210+20 b & =1300 \\
1260+20 b & =1300 \\
20 b & =1300-1260=40 \\
b & =\frac{40}{20}=2
\end{aligned}
\end{aligned}
$$

$$
x_{n}=6 n+b=6 n+2
$$

$$
x_{1}=6 \times 1+2=6+2=8
$$

Sequence $=8,14,20, \ldots$

