Mathematics Online Class X On 19-07-2021

CIRCLES

Circle

Circle is a collection of points which are equidistant from a fixed point on a plane .

Fixed point is called the centre of the circle . Here O is the centre of the circle .

Distance from centre to any point on the circle is the radius of the circle. OA is the radius of the circle .

Diameter

Two times the radius is the diameter of a circle . Diameter = 2 radius

Chord

Chord is the line joining any two points on a circle .

Here AB and CD are chords of a circle .
Longest chord of a circle is the diameter of the circle .
Here PQ is the diameter of the circle .

Arc

Arc is a part of a circle. APB is an arc .

Central angle of an arc

If we join the end points of an arc to the centre of the circle, the angle so formed is called the central angle of the are? $\angle A O B$ is the central angle of arc APB .

Sector

The shape formed by the arc and radii through the end points is called sector .

Note:

The measure of central angle of an arc may be a number between 0^{0} and 360°.
If the central angle of an arc is 180°, the arc is half of the circle then it is called a semicircle .
If r is the radius of the circle ,
(i) Area of circle $=\pi \mathbf{r}^{2}$
(ii) Perimeter of the circle $=2 \pi r$ or $\pi d \quad$ [d is the diameter]

Activity

Draw a line of length 5 cm Draw right triangles with this line as hypotenuse
[Note : In right triangle angle opposite to hypotenuse is 90°]

Question

In the figure, $A B$ is a diameter and P is a point on the circle .

Answer

In the figure, $A B$ is a diameter and P is a point on the circle . O is the centre of the circle . Join $O P$.
Let $\angle \mathrm{APO}=x^{0}$ and $\angle \mathrm{BPO}=y^{0}$
$\therefore \angle A P B=x^{0}+y^{0}$
$O A=O P=O B \quad$ [Radii of the same circle]
$\triangle A O P$ and $\triangle B O P$ are isosceles triangles .
We know in an isosceles triangle angles opposite to equal sides are equal.

$$
\begin{array}{ll}
\angle A P O=\angle P A O=x^{0} & O A=O P \\
\angle B P O=\angle P B O=y^{0} & \text { OP }=\mathbf{O B}
\end{array}
$$

We know sum of all inner angles of a triangle is 180°
In $\triangle \mathrm{APB}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{APB}=18 \mathbf{1 8}^{\circ}$

$$
\begin{aligned}
x^{0}+y^{0}+x^{0}+y^{0} & =180^{0} \\
2\left(x^{0}+y^{0}\right) & =180^{0} \\
\left(x^{0}+y^{0}\right) & =\frac{180^{0}}{2}=\mathbf{9 0} \\
\therefore \angle A P B & =90^{0}
\end{aligned}
$$

If we join the ends of a diameter of a circle to a point on the circle, we get a right angle

OR

Angle in a semicircle is a right angle

Assignment

Use a calculator to determine upto two decimal places, the perimeter and the area of the circle in the picture.

