π

GOVERNMENT OF KARNATAKA

OFFICE OF THE DEPUTY DIRECTOR OF PUBLIC INSTRUCTION DEPARTMENT OF PUBLIC INSCTRUCTION, CHIKKAMAGALURU

10TH STANDARD

MATHEMATICS

GANITHA GANI

QUESTION BANK-2020-21 PREPARED ACCORDING TO NEW EXAMINATION PATTERN

adj

Hyp

adi

8

= OPD

200

tan

adj

SOH CAH TOA

Ĥ

 \mathbb{H}

GOVERNMENT OF KARNATAKA

ZILLA PANCHAYATH OFFICE OF THE DEPUTY DIRECTOR(ADMINISTRATIVE) DEPARTMENT OF PUBLIC INSTRUCTION, CHIKKAMAGALURU

INSPIRATION:

SRI M.R. MARUTHI DIRECTOR ,D.S.E.R.T.,BANGALURU

CONCEPTUALIZATION:

SRI MALLESHAPPA DEPUTY DIRECTOR(ADMISATRATIVE) DEPARTMENT OF PUBLIC INSTRUCTION, CHIKKAMAGALURU.

Mrs. PUSHPALATHA, H.K. PRINCIPAL AND DEPUTY DIRECTOR(DEVELOPMENT) D.I.E.T .,CHIKKMAGALURU

GUIDENCE:

SRI JAYANNA K.N., EDUCATION OFFICER, CHIKKAMAGALURU

COOPERATION:

BLOK EDUCATION OFFICERS, CHIKKAMAGALURU SENIOUR LECTURES, D.I.E.T., CHIKKAMAGALURU DEPUTY PLANNING CORDINATAOR, S.S.K. CHIKKAMAGALURU SUBJECT INSPECTORS, D.D.P.I., OFFICE CHIKKAMAGALURU ASSISTANT PLANNING COORDINATOR, S.S.K., CHIKKAMAGALURU LECTURERS, D.I.E.T., CHIKKAMAGALURU BLOCK S.S.L.C. NODAL OFFICERS, CHIKKAMAGALURU SUBJECT RESOURCE TEAM, CHICKKAMAGALURU

DISTRICT AND TALUK H.M.'S ASSOCIATION, CHIKKAMAGALURU DISTRICT AND TALUK ASSISTANT TEACHERS ASSOCIATION, CHIKKAMAGALURU

COORDINATION COMMITTIEE

 1.
 SRI VASU, G.H.S., MUTTINAKOPPA

 2.
 Mrs. LATHA D.E., G.H.S., ANGADI

 3.
 Mrs. SHEELA G.M., G.H.S., SOMANAHALLI

 4.
 Mrs. BHAGYASHREE N.M. G.J.C., MUGHTIHALLI

 5.
 Mrs. GANAPI HEGADE, G.P.U.COLLEGE, MAILIMANE

 6.
 Mrs. JYOTHI H.M., G.H.S., KURUVANGI

LIVE WORK SHEETS: 1. SRI PRAKASH H.G., K.P.S., N.R.PURA 2. SRI KIRANKUMAR, K.P.S., N.R.PURA GOOGLE FORM: 1. SRI YOGEESH N., G.H.S., KOTTIGEHARA 2. SRI VASU, G.H.S. MUTTINAKOPPA

GOVERNMENT OF KARNATAKA

OFFICE OF THE DEPUTY DIRECTOR(ADMINISTRATIVE) DEPARTMENT OF PUBLIC INSTRUCTION, CHIKKAMAGALURU

LIST OF DISTRICT TEACHERS WHO INVOLVED IN PREPARING THE QUESTION BANK OF MULTIPLE CHOICE ACCORDING TO NEW EXAMINATION SYSTEM-2020-21

S.L.NO.	UNITS	RESOURCE PERSONS	SCHOOL
1	LINEAR EQUATION IN TWO VARIABLES	Mrs. GANAPI HEGADE	G.P.U.C. MAILIMANE
		Mrs. AMBIKA	G.H.S. LOKANATHAPURA
2	AIRTHMETIC PROGRESSION	Mrs. LATHA D.E.	G.II.S. ANGADI
		Mrs. SHEELA G.M.	G.H.S. SOMANAHALLI
3	QUADRATIC EQUATIONS	Mrs. NAGAMANI	A.M.R.G.H.S. BIRUR
		Sri, SHASHIKUMAR	K.L.K.G.P.U.C.H.S. BIRUR
4	FUNDAMENTALS OF TRIGONOMETRY AND	Sri. SIIIVASIIANKARA U.S.	G.II.S.IIOLEKOPPA
	TRIONOMETRIC APPLICATIONS	Sri. RAGAVENDRA S.L.	G.H.S. THOREHADLU
5	COORDINATE GEOMETRY	Sri. KIRANKUMAR S.N.	K.P.S., N.R.PURA
		Mrs. BHAGYASHREE M.N.	G.P.U.C.H.S., MUGUTHIHALLI
6	STATISTICS	Mrs. JYOTHI M.	G.H.S., KURUVANGI
		Mrs. SAVITHA K.P.	G.H.S. SANGAMESHWARA PETE
7	TRIANGLES	Mrs. TRIVENI B.J.	A.R.S.P.U.C.H.S.,HARIHARAPURA
		Mrs. JYOTIII	G.ILS. THOGARIHANKAL
8	CIRCLES	Sri. VASU	G.H.S.,MUTTINAKOPPA
9	CONSTRUCTIONS	Sri. HAREESH	G.H.S., KATTINAMANE
		Sri. YOGEESH Y.N.	G.H.S.,KOTTIGEHARA
10	SURFACE AREA AND SOLIDS	Sri. SRINGESWARA C.S.	G.P.U.C.II.S. KALASA
		Sri, SANDESH	G.P.U.C.H.S. KALASA

INDEX

SL.NO.	UNITS	PAGE NO.
1	AIRTHMETIC PROGRESSIONS	1-3
2	TRIANGLES	4-7
3	PAIR OF LINEAR EQUATIONS IN	8-10
	TWO VARIABLES	
4	CIRCLES	11-13
5	CONSTRUCTIONS	14-17
6	COORDINATE GEOMETRY	18-22
7	QUADRATIC EQUATIONS	2326
8	TRIGONOMETRY	27-29
9	APPLICATIONS OF TRIGONOMETRY	30
10	STASTISTICS	31-34
11	SURFACE AREA AND VOLUMES	35-38

UNIT 1 --- ARITHMETIC PROGRESSION

1. The n th term of an Arithmetic Progression is given by the formula							
A) $a_n = a + (a_n + a_n)$	n − 1)d B)	$a_n = a + (n+1)d$					
a = a + a	d D	$a_n = \frac{n(a+a_n)}{a_n}$					
$C_{j}u_{n} = u + u$	$C) a_n = a + a \qquad D) \qquad n \qquad 2$						
21,-4,-7, If	ne common differe	ence of Arithmetic					
A) -5	B) 5	C) -3	D) 3				
3. The n th term of	Arithmetic Progre	ession is given by a	a _n = 3n+1. Then its 3 rd term is				
A) 9	B) 10	C) 4	D) 28				
4. If 1 , x , 7 are i	n Arithmetic Prog	ression then the va	lue of "x" is				
A) 4	B) 8	C) 6	D) 3				
5. $a_n = 3n - 2$ i	s the n th term of A	rithmetic Progress	ion. Then its 5 th term is				
A) 15	B) 6	C) 17	D) 13				
6.The sum of first	n terms of an Arit	hmetic Progression	n is given by the formula.				
A) $s_n = \frac{n}{2}(a + b)$	$a_n)$	$s_n = \frac{n}{2}(a - a)$	(n)				
$c) s_n = n(a + a)$	(u_n)	D) $s_n = n(a - a)$	(n_n)				
7. The value of \sum	5 (sum of first 5	natural numbers) i	S				
A) 10	B) 15	C) 20	D) 25				
8. In an Arithmeti	c Progression a=10) and d =1.Then 20	th term is				
A) 10	B) 19	C) 11	D) 29				
9. 4,10,22	The 3 rd term of t	his Arithmetic Prog	gression is				
A) 6	B)16	C) 12	D) 26				
10.The first term a	and common diffe	rence of the Arithr	netic Progression -5,-1,3,7,are.				
A) -5 and 4	B) -5 and -4	C) -5 and 6	D) -5 and -6				
11. 2,7,12,, Th	e 10 th term of thi	is Arithmetic Progr	ession is				
A) 12	B) 47	C) 52	D) 32.				
12. 10,7,4,Th	e 30th term of thi	s Arithmetic Progr	ession is				
A) 97	B) 77	C) -77	D)-87				
133 ,-1/2, 2	The 11 th term o	of this Arithmetic P	rogression is				
A) 28	B) 22	C) -38	D) -48 $\frac{1}{2}$				
14. If 2,, 26 a	re the terms of Ar	ithmetic Progressio	on, then the middle term is				
A) 12	B) 14	C) -14	D) -16				

15. $a_n = 2n+3$ is the nth term of Arithmetic Progression. Then $a_3 = \dots$ B) 8 A) 5 C) 9 D) 10 16. $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ The common difference of this Arithmetic Progression is..... B) 2 A) 0 D) ¹/₄ C) 1 17. 7,4,1.... Next term of this Arithmetic Progression is A) 3 B) -3 C) -2 D) 2 18. The sum of n terms of Arithmetic Progression is A) $s_n = \frac{n}{2} [2a + (n-1)d]$ B) $s_n = \frac{n}{2} [2a - (n-1)d]$ D) $s_n = \frac{n}{2}[a + (n-1)d]$ C) $s_n = \frac{n}{2} [2a + (n+1)d]$ 19. The 9th term of the Arithmetic Progression 4,9,14,.....is A) 17 B) 44 C) 36 D) 40. 20. The 10th term of the Arithmetic Progression 5,9,13,..... is A) 36 B) 31 C) 41 D)21 21. Which of the following is not an Arithmetic Progression A) 1,3,9,27. B) -5,-3, -1, 1 D) 1,4,7,10. C) 2,6,10,14. 22. In an Arithmetic Progression $a_3=9$ and d=3. Then $a_2=$ A) 3 B) 6 C) -3 D) -6. 23. In an Arithmetic Progression a=m and d=2m then $a_5 =$ A) 5m B) 8m C) 9m D)10m 24. $S_n = 3n + 1$ Then the common difference of Arithmetic Progression is A)-1 B) 3 C) 9 D) 10 25. Which of the following is an Arithmetic Progression A) -5,-2, 2, 4. B) 11,14,16,20 C) -1, 1, 3, 5 D) 3,6,12,24. 26. The sum of first 'n' natural numbers is A) $S_n = \frac{n(n-1)}{2}$ B) $S_n = \frac{n(n+1)}{2}$ C) $S_n = n(n + 1)$ D) $S_n = a + (n - 1) d$ 27. The sum of first 20 odd numbers is A) 400 B) 200 C) 410 D) 555

28) The sum of first 20 natural numbers is					
A) 210	B)200	C)	110	D)160	
29) In 3 terme	d Arithmetic Pro	gression, the m	iddle term is	30. Then sum of end terms	
A) 50	B) 60	C) 70	D) 30	
30) S _n =50, S _{n-1}	= 42, then the v	alue of an is			
A) 50	B) 42	С) 20	D) 8	
31) The first te	erm and commor	n difference of t	he Arithmetio	c Progression -5, -1, 3, 7 , are	
A) 5 and -4		B) -5 and +4			
C) -5 and +6		D) -5 and -6			
32) a _n =4n+5	s the n th term of	Arithmetic Prog	gression. The	n its 3 th term is	
A) 5	B) 9	C) 1	13	D) 17	
33) If a _n = 4n+	1 then first thre	e terms of Arith	nmetic Progre	ssion are	
A) 5, 9, 13	I	3) 4, 5, 6			
C) 4, 8, 12		D) 5, 8, 12			
34) The sum o	of first 20 term o	f the Arithmetic	Progression	3, 5, 7, is	
A) 220	B) 880	C) 440	D) 380		
35) The first term is 26 and common difference is -7 , Then the Arithmetic Progression is					
A) 26,19,13,	7	B) 26,18,11,4			
C) 26,19,12,	5	D) 26,18,12,5			
36) The sum o	f first n terms of	an Arithmetic P	rogression is	given by the formula	
A) $s_n = \frac{n}{2}$ (a + d)	B) $s_n = \frac{n}{2}(a$	- l)		
C) $s_n = \frac{n}{2}$ (2a + l)	D) $s_n = \frac{n}{2}(a + a)$	+ l)		
27) The sum	of first 20 over r	umbers is			
57) The sum of	i ilist zu eveni				
A) 400	B) 200	C) 420	D) 555		
A) 400 38) the sum o	B) 200 Arithmetic Prog	C) 420 ression 3, 7, 11	D) 555 is 210	. Then the number of terms are	
A) 400 38) the sum of A) 12	B) 200 Arithmetic Prog B) 16	C) 420 ression 3, 7, 11 C) 15	D) 555 is 210 D) 10	. Then the number of terms are	
A) 400 38) the sum of A) 12 39) -37, -33,-2	B) 200 Arithmetic Prog B) 16 9 the co	C) 420 ression 3, 7, 11 C) 15 mmon differenc	D) 555 is 210 D) 10 :e of this Arith	. Then the number of terms are nmetic Progression is	
 A) 400 38) the sum of A) 12 39) -37, -33,-2 A) -33 	B) 200 Arithmetic Prog B) 16 9 the co B) 25	C) 420 gression 3, 7, 11 C) 15 mmon differenc C) -30	D) 555 is 210 D) 10 te of this Arith D) 4	. Then the number of terms are nmetic Progression is	
 A) 400 38) the sum of A) 12 39) -37, -33,-2 A) -33 40) The sum of 	B) 200 Arithmetic Prog B) 16 9 the co B) 25 of first 20 multipl	C) 420 gression 3, 7, 11 C) 15 mmon differenc C) -30 es of 5 is	D) 555 is 210 D) 10 e of this Arith D) 4	. Then the number of terms are nmetic Progression is	

UNIT TRIANGLES						
1.The sides of ty	1. The sides of two similar triangles are in the ratio 4:9, then the ratio of areas of these triangles is,					
A)2:3	B) 4:9	C)81:16	D)16:81			
2. Areas of two similar triangles are 81 cm ² and 16 cm ² respectively. The ratio of their corresponding sides is						
A)9:4	B)16:81	C)4:9	D)64:9			
3.Which of the f	following does	not represent a	Pythagorean triplet?			
A)3,4,5	B) 5,12,13	C)24,25,7	D) 8,12,15			
4.Two poles of I	ength 6cm and	11cm are 12 cr	n apart. The distance between their tops is			
A) 13m	B)7m	C)15m	D)14m			
5. In ∆ABD, ∟A=	90° and AC \bot	BD then AC ²	=			
A) BC.BD	B) BC.DC	C) BD.CD	D) AB.AD			
6. One of the sid	des of isosceles	s Right angled ti	riangle is 4V2cm, the measure of its Hypotenuse is			
A)12√2cm	B)12cm	C)8√2cm	D)8cm			
7. In a equilater	al triangle ABC	,D and E are th	ne midpoints of AB and AC respectively. The ratios of the			
areas of ∆ABC a	nd ΔADE is					
A) 2:1	B)1:2	C)4:1	D) 1:4			
8. ΔABC ~ ΔEFD	then the ratio	s of correspond	ing sides are			
$A)\frac{AB}{FD} = \frac{BC}{EF}$	$B)^{AB}_{\overline{EF}} = \frac{BC}{FD}$	C) $\frac{AC}{EF} = \frac{BC}{ED}$	D) none of the above			
9. Length of the	side of a rhom	bus with diagor	nals 12cm and 16cm is			
A) 8cm	B)9cm	C) 10cm	D)18cm			
A) Thales theo	rem	B) Convei	rse of Thales theorem			
C)Pythagoras theorem D) Co			rse of Pythagoras theorem			

OFFICE OF DDPI (ADMIN), CHIKKAMAALURU Page 6

26.ΔABC ~Δ DEF, If AB=4cm, BC=3.5cm, CA=2.5cm and DF=7.5cm, the perimeter of ΔDEF is.... A)10cm B)14cm C)30cm D)25cm 27. The diagonals of the trapezium PQRS are intersecting each other at a point 'O'. If PQIIRS and PQ=3RS then the ratio of areas of Δ POQ and Δ ROS is..... B)9:1 C)3:1 A)1:9 D)1:3 28. In ΔABC , DEIIBC, If AD=x, DB=x-2, AE=x+2 and EC=x-1 then the value of x A) 3 B) 4 C)5 D)3.5 29. If the perimeters of ΔABC and ΔPQR is 60cm and 36cm respectively and PQ=9cm, then the measure of AB is..... A) 6cm B)10cm C)15cm D)24cm 30. The perimeters of two similar triangles are in the ratio 4:5, then the ratio of their corresponding areas is..... A) 16:25 B) 2:5 C) 5:2 D) 25:16

	U	NIT PAIR	OF LINEAR EQUA	TIONS IN TWO VARIABLES
	A) 3	B) 6	C) -3	D) -6
	A) One		B) Two	
	C) No solut	tion	D) Infinite	
3)	In the equa	ation x + y =	7, if $x = 3$ then the value	alue of 'y' is,
	A) -4	B) 4	C) 10	D) -10
	co-efficien	ts are		
	A) $\frac{a1}{a2} \neq$	<u>b1</u> b2	B) $\frac{a1}{a2} = \frac{b1}{b2} \neq$	$\frac{c1}{c2}$
	$C) \frac{a1}{a2} = \frac{b1}{b2}$	$=\frac{c1}{c2}$	$D)\frac{a1}{a2} = \frac{b1}{b2}$	
5)	If the pair	of equations	3x + 2ky = 2 and 2x +	5y + 1 = 0 are parallel, then the value of 'k' is
	A) 15/4		B) 3/2	
	C) 5		D) 4/15	
5)	The pair of	equations 2	x - 5y + 4 = 0 and $2x - 5y + 4 = 0$	+ y – 8 = 0 has
	A) Exactly	two solution	s B) Infinitely m	any solutions
	C) A unique	e solution	D) No solutio	n
	A) x = 0 , y	= -3	B) x = 2, y = 3	
	C) x = 3, y =	= -2	D) x = -2, y = 3	
	D) A unique	e solution if th	ney intersect	
Ð)	In the equa	tion 2x – y = 5	5, if y = 1 then the va	lue of 'x' is,
А	A) 3	B) 6	C) 1	D) 4
D)	The cost of	5 pens and 7	' pencils is Rs 50. Wh	ich of the following equation describes the
	above state	ement,		
A)	5x / 7x = 5	50	B) 5x + 7y = 50	
B۱	C) 5x * 7	v = 50	D) 5x – 7y = 50	

	11) The s	1) The solution of the equation $x - y = 2$ and $x + y = 4$ is					
	A) 4,	2 B) 1, 3	C) 3, 1	D) 1, 2			
	A) In	tersects	B) Parallel				
	C) Co	oincides	D) None of the	above			
	13) If the	equations 4x + F	Py +8 = 0 and 2x +	2y + 2 = 0 have unique solution, then the value of			
	'P' is	5,					
	A) E	Except 2	B) Except 4				
	B)	C) Except -2	D) Except -4				
	14) x + y :	= 20 and x – y $= 4$	1 solve for x and y,	and substitute the values of x and y in			
y = mx + 3 then the value			alue of 'm' is,				
	A) 5	/ 12	B) 12/ 5				
	B) (C) 8/12	D) – 5/ 12				
	15) The v	alue of 'y' in the	equations 2x + 3y	= 12 and x + y = 5 is,			
	A) 3	B) 2	C) 4	D) 12			
	16) The va	alue of ' x' in the	equations 2x + y =	= 9 and 3x + y = 11 is,			
	A) 3	B) 1	C) 2	D) 11			

- 18) The pair of equations 2x + y 6 = 0 and 4x 2y 4 = 0 are examples for
 - A) Consistent with unique solution
 - B) consistent with infinitely many solutions
 - C) In consistent or not solvable
 - D) None of the above
- 19) In the equation x y = 10, if x = 13 then the value of 'y' is,

A) -3 B) 23 C) 3 D) -23

representing these equations,

- A) Coincides B) parallel
- C) intersects D) inconsistent

representing these equations are,	
A) Coincides	B) parallel
C) intersects	D) All of the above
x + y = 5 and $x - y = 8$	
A) No solution	B) Unique solution
C) infinitely many solutions	D) None of the above
24) In the equation $2x + y = 11$ and $x + y = 11$	y = 8 the values of 'x' and 'y' are respectively,
A) -3, 5 B) 2,5 C) 3, -5	D) 3,5
A) Coincident	B) parallel
C) Intersecting at one point	D) perpendicular to each other
26) The value of 'k' for which the syste	m of equations $kx - y = 2$ and $6x - 2y = 3$ has
unique solution is,	
A) = 3 B) \neq 3 C) \neq 0	D) = 0
27) The value of 'k' for which the system	o of equations 2x + 3y = 5 and 4x + ky = 10 has
infinite number of solutions,	
A) 1 B) 3 C) 6	D) 0
28) The value of 'k' for which the syst	em of equations x + 2y – 3 = 0 and 5x + ky + 7 = 0 has no solution, is
A) 10 B) 6 C) 3	D) 1
29) The sum of two numbers is 9 and	the second number is twice the first number, the equation
representing the above statement is	
A) $x + y = 9$, $2x = y$ B) x	-y = 9, 2x = y
C) $x + y = 9$, $x + 2y = 0$ D) x	x + y = 9, x + y = 2
A) parallel B) Ir	itersects at (4, 5)
C) coincides	tersects at (5.4)

	UNIT CIRCLES	
1.	The distance between two parallel tangents of a circle of radi	us 3 cm is
	(A) 2 cm (B) 4 cm (C) 6 cm (D) 8 cm	
2.	In the given figure, if \angle RPS = 25°, the value of \angle ROS is	0 25° P
	(A) 135° (B) 145° (C) 165° (D) 155°	S
3.	A tangent is drawn from a point at a distance of 17 cm from o	centre to a circle of radius 8 cm. The
	length of its tangent is	
	(A) 5 cm (B) 9 cm (C) 15 cm (D) 23	cm
4.	The length of tangents drawn from an external point to the c	ircle
	(A) are equal (B) are not equal (C) sometimes are equ	ual (D) are not defined
5.	Number of tangents drawn at a point on a circle is/are	
	(A) one (B) two (C) none (D) infinite	
6.	The tangents drawn at the extremities of the diameter of a c	ircle are
	(A) perpendicular (B) parallel (C) equal	(D) none of these
7.	Number of Tangents from an external point to a circle are	
	(A) one (B) two (C) none (D) infinite	
8.	The length of a tangent drawn from a point at a distance of 1	0 cm of circle is 8 cm. The radius of the
	circle is	
	(A) 4 cm (B) 5 cm (C) 6 cm (D) 7	cm
9.	In given figure, CP and CQ are tangents to a circle with centre	e O. ARB is $\begin{pmatrix} O \bullet \\ \end{pmatrix} R \subset C$
	another tangent touching the circle at R. If CP = 11 cm and BC	C = 6 cm then the
	length of BR is	
	(A) 6 cm (B) 5 cm (C) 4 cm (D) 3	3 cm
10). From a point P which is at a distance of 13 cm from the centr	e O of a circle of radius 5 cm, the pair
	of tangents PQ and PR to the circle are drawn. Then the area	of the quadrilateral PQOR is
	(A) 60 cm ² (B) 65 cm ² (C) 30 cm ²	(D) 32.5 cm ²
11	I. In the given figure, AB and AC are tangents to the circle with	centre O such that $A = 40^{\circ}$
	$\angle BAC = 40^{\circ}$, then $\angle BOC$ is equal to	₹~
	(A) 40° (B) 50° (C) 140°	(D) 150°
12	2. In the given figure, point P is 26 cm away from the centre O o	of a circle and the
	length PT of the tangent drawn from P to the circle is 24 cm.	Then the radius
	of the circle is	
	(A) 25 cm (B) 26 cm (C) 24 cm	(D) 10 cm

16. From a point	P which is at a dista	ance of 13 cm fro	m the cen	tre O of a circle of	f radius 5 cm. the pair
of tangents P	Q and PR to the cire	cle are drawn. Th	en the are	a of the quadrilat	eral PQOR is
(A) 60 cm²	(B) 65 cm²	(C) 30 cr	n²	(D) 32.5 cm ²	
17. In figure AT is	s a tangent to the ci	rcle with centre	O such tha	t OT = 4 cm and ∠	∠OTA = 30°. Then AT is
equal to					
(A) 4 cm	(B) 2 cm	(C) 2	2√3 cm	(D) 4√3 cm	
18. In figure if O	is centre of a circle,	PQ is a chord an	d the tang	ent PR at P makes	s an angle of 50° with
PQ, then ∠PC	DQ is equal to				PR
(A) 100°	(B) 80°	(C) 90°		(D) 75°	
19. In figure, O is	the centre of a circ	le, AB is a chord	and AT is t	he tangent at A. I	f ∠AOB = 100°, then
∠BAT is equa	ll to				
(A) 100°	(B) 40°	(C) 50°	(D)	90°	T T
20. In the figure	PA and PB are tange	ents to the circle	with centr	e O. If ∠APB = 60	°, then
∠OAB is					в
(A) 30°	(B) 60°	(C) 90°	(D) :	15°	Â
21. In the given f	igure, TP and TQ ar	e two tangents to	o a circle w	vith centre O, such	n B
that ∠POQ =	110°. Then ∠PTQ is	equal to			P
(A) 55°	(B) 70°	(C) 110°	(D) 90°		
22. In figure, PQ	and PR are tangent	s to a circle with	centre A. l	f ∠QPA=27°, then	
$\angle QAR equals$	to				
(A) 63°	(B) 153°	(C) 126°	(D) 90°		A
					R

23	23. In figure if PQR is the tangent to a circle at Q whose centre is O, AB is a chord parallel to PR and					
	$\angle BQR = 70^{\circ}$, then $\angle AQB$ is equal to					
	(A) 20°	(B) 40°	(C) 35°	(D) 45°		
24	. The common	point of the tan	gent and the cire	cle is called		
	(A) Point of co	ontact (B) C	entre (C) Ex	ternal point	(D) Internal point	
25	. Two concentr	ic circles are of	radii 13 cm and	5 cm. The leng	th of the chord of larger circle which	
	touches the s	maller circle is _	·			
	(A) 20 cm	(B) 24 cm	c) 12 cm	(D) 13 cm		
26	. A quadrilatera	al ABCD is drawn	n to circumscribe	e a circle. If AB	=12 cm, BC = 15 cm and CD = 14 cm,	
	then AD is equ	ual to				
	(A) 12 cm	(B) 15 cm	(C) 14 cm	(D) 11 cm		
27	. Number of ta	ngents to a circl	e which are para	allel to a secan	t is	
	(A) 2	(B) 1	(C) 0	(D) 3		
	(A) 20 cm	(B) 24 cm	(C) 7 cn	n (D) 1	14 cm	
29	. If the angle be	etween two tan	gents drawn fror	n an external	point P to a circle of radius r and centre	
	O, is 60°, then	the angle betw	een radii which	are drawn fro	m their point of contact is.	
	(A) 100°	(B) 60°	(C) 120°	(D) 90°		
30	. Match the col	umn:				

(1) The tangent at any point of a circle is	(A) known as tangent to the circle
circle is	

	A) 3 : 3	B) 5: 4	C) 4 : 3	D) 4	: 4
	A) 2:3	B) 3 : 2.	C)	3:5	D) 5 : 3
(AA ₂ / AA	A ₆) = (AC / AB)	,then AC:AE	3 =		
	A) 2 : 4	B) 6 : 2	C) 2 : 6	D) 4	: 2
	A) 3 : 2	B) 2 : 3	C) 1: 5	D) 5	:1
			і В)	BHOUDHA	
12) A ADC	C) THELE ST	HEUKEIVI	D,		
12) <u>ABC</u> ~	ABC ⁺ , then ΔA	B) 2	: 5 C)	3 : 2	D) 2 : 3
	·				
13) ∆ ABC~	AB ^I C ^I ,then ∆AE	^B C ¹ is 3/5 time	s of similar s	ides of a gi	iven triangle $\triangle ABC$ then $AB : BB^{1} = \dots$
	A) 2:3	B) 5	: 2 C)	5:3	D) 3 : 5
14) AARC ~		$\frac{1}{10}$ is 5/2 times of	of corrospon	ding sidos	of a given triangle then
		$AB^{I}C^{I}$	C)	$\Lambda ABC > \Lambda A$	
	B) \triangle ABC = A	∆AB ^I C ^I	с, D'	$\Delta ABC < \Delta ABC < ABC < \Delta ABC < \Delta ABC < \Delta ABC < \Delta ABC < AB$	AB ^I C ^I
15) ΔABC ~	AB ^I C ^I . If ΔAB ^I C	is 2/5 times o	f correspond	ding sides o	of a given triangle then,
,	A) ΔABC > Δ	AB ^I C ^I	C)	ΔABC < ΔA	AB ^I C ^I
	B) ΔABC = Δ	ABICI	D	ΔABC Δ	AB ^I C ^I
16) ΔАВС ~ ΔАВ ^I C ^I а	AB ^{ICI} and the ra	atio of corresp	onding sides	of the tria	angles is 5:5 ,then the triangles Δ ABC and
A)	UNEQUAL TRIA	NGLES	C) ISOSCELU	S TRIANGL	ES

	T TRIANGLES	D) EQUILATE	RAL TRIANGLES		
Γ) in fig. I	ΔΑΒC ~ ΔΑ'Β' Α) 3/1	C' ,then ratio of B) 1/3	C) 4/3	ΔABC and Δ A'E	3C' is
	, () 3/ <u>1</u>	0, 1, 0	0, 1,0	0)/4	
					B B, B, B, B, X 235, 6.3
18) Tangent	ts drawn to a	circle at the er	nd points of rac	dii whose angle	e between them is 90 ⁰ ,then the
quadrila	teral formed	by tangents an	d radii is?		
	A) RECTA	NGLE B)	SQUARE		
	в) C)TRE	PEZIUM D)	DIAMOND		
	A) A5 & I	B ₅ B) A ₃ &	& B ₃ C) A ₆ &	B ₅ D) A ₅ & B	6
	A) A ₅	B) A ₆	C) A7	D) A ₈	
		-) -			
	A) 2	B) 3	C) 7	D) 5	
	A \ 4	D) 11	()	D) 7	
	A)4	в) 11	C) 3	U) 7	
ΔP=					
<u> </u>	— A) 4	B) 3 5	() 3	D) 7	B,
		5, 5.5	0,0	0,,	B
	A)5 : 2	B) 2 : 5	C) 2 : 3	D) 3 : 2	A
	,	,	,	,	A ₂
					о веры потся режи 6.2 Со аказначание 6.2 2021/6/13 87:13
25) An equil	ateral ∆ABC	of side 5cm is c	drawn . A simila	ar ΔΑΒ ^ι C ¹ who	se corresponding sides are of 3/2
times th	e ΔABC is dr	rawn, then each	side of $\Delta AB^{I}C$	C ¹ is?	
	A) 5 cm	B) 7 cm	C) 7.5 cm	D) 5.5 cm	

	A) 6cm	B) 3cm	C) 4.5cm	D) 9cm
	A) 5:13	B) 13 : 5	C) 5 : 8	D) 8 : 5
28) In a circle	the angle, e	formed betw	een the radio	us and the tangent at point of tangent is?
	A) 30°	B) 45°	C) 60°	D) 90°
	A) 30°	B) 45°	C) 60°	D) 90°
30) The leng	th of the ta	angent drawn	to a circle o	f diameter 12cm from a point 10cm away from
its center	r ?			
	A) 8 cm	B) 6 cm	C) 10cm	D) 2cm
	,			
	A) 80°	B) 40°	C) 100°	D) 160°
32) To a circl	e of radius	3cm , a tange	nt of 4cm is	to be drawn, then distance between center and external
point is_	?			
	A) 6 cm	B) 5 cm	C) 7 cm	D) 8cm
33) An exteri	nal noint is '	,	om the cent	er of circle and 24cm away from tangential point. Then
radius of		2.5cm away n		
radius of	circle is	f		
A) 7cm	B) 14vm	C) 21cm	D) 28cm
34) In a circle	e of radius 5	cm, angle be	tween pair of	f tangents are twice of angle between the radii. Then
angle bet	tween radii	at the center	is ?	
A) 30	B) 60°	C) 45°	D) 90°
35) In a circle	e of radius 5	icm, angle be	tween pair of	f tangents is half of angle between the radii. Then angle
between	radii at the	center is	?	
	Δ) 40°	B) 80°	C) 120°	D) 160°
	A) 40	6) 80	C) 120	<i>b</i>) 100

A.
$$P(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

B. $P(x, y) = \left(\frac{m_1 x_1 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_2}{m_1 + m_2}\right)$
C. $P(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 - m_2}, \frac{m_1 y_2 + m_2 y_2}{m_1 - m_2}\right)$
A. (12, 18)
B. (12, 9)
C. (6, 18)
D. $P(x, y) = \left(\frac{m_1 x_2 - m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 - m_2 y_1}{m_1 + m_2}\right)$
A. (18, 6)
B. (9, 3)
C. (18, 10)
D. (9, 5)
A. $\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$
B. $\frac{1}{2}[x_1(y_1 - y_1) + x_2(y_2 - y_2) + x_3(y_3 - y_3)]$
C. $[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$
D. $[x_1(y_1 - y_1) + x_2(y_2 - y_2) + x_3(y_3 - y_3)]$
15. When the area a triangle is 0(zero) units, then the vertices of the triangle will be ______.
A. $a = 4$ and $b = 6$
C. $a = -4$ and $b = -6$
C. $a = -4$ and $b = -6$
C. $a = -4$ and $b = -6$
D. $a = 6$ and $b = 4$
A. $p = -5$ and $q = -3$
B. $p = -5$ and $q = -3$
C. $p = 3$ and $q = -5$
D. $p = 5$ and $q = -3$

OFFICE OF DDPI (ADMIN), CHIKKAMAALURU Page 19

A. ± 8 B. 64 C 64 D. $\sqrt{-64}$ 19. If the distance between the origin and the point P(5, K) is 13units , the value of 'k' is A. 12 B. 64 C. only A D. both A & B 20. When the distance between the points P(2,-3) and Q(10,y) is 10 units, the value of 'y' is A. 9 or 3 B9 or 3 C. 9 or -3 D9 or -3 A. (1,-3) B. (-1, 3) C. (1,3) D. (3, 1) 22. If (7, 6) and (3, -2) are the end points of the diameter of a circle , the co-ordinates of the center of the circle are
C. -64 D. $\sqrt{-64}$ 19. If the distance between the origin and the point P(5, K) is 13units , the value of 'k' isA. 12B. 64C. only AD. both A & B20. When the distance between the points P(2,-3) and Q(10,y) is 10 units, the value of 'y' isA. 9 or 3B9 or 3C. 9 or -3D9 or -3A. (1,-3)B. (-1, 3)C. (1,3)D. (3, 1)22. If (7, 6) and (3, -2) are the end points of the diameter of a circle , the co-ordinates of the center of the circle areA. (-5, 2)B. (5, 2)C. (10, 4)D. (10, 8)A. 2B. 3C. 4A. 3B. 2C. $\frac{1}{2}$ D. 0
19. If the distance between the origin and the point P(5, K) is 13units , the value of 'k' is A. 12 B. 64 C. only A D. both A & B 20. When the distance between the points P(2,-3) and Q(10,y) is 10 units, the value of 'y' is A. 9 or 3 B9 or 3 C. 9 or -3 D. 9 or -3 A. (1,-3) B. (-1, 3) C. (1,3) D. (3, 1) 22. If (7, 6) and (3, -2) are the end points of the diameter of a circle , the co-ordinates of the center of the circle are A. (1,-5, 2) B. (5, 2) C. (10, 4) D. (10, 8) A. 2 B. 3 C. 4 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. 12 B. 64 C. only A D. both A & B 20. When the distance between the points P(2,-3) and Q(10,y) is 10 units, the value of 'y' is
C. only A D. both A & B 20. When the distance between the points P(2,-3) and Q(10,y) is 10 units, the value of 'y' is
20. When the distance between the points P(2,-3) and Q(10,y) is 10 units, the value of 'y' is A. 9 or 3 B9 or 3 C. 9 or -3 D9 or -3 A. (1,-3) B. (-1, 3) C. (1, 3) D. (3, 1) 22. If (7, 6) and (3, -2) are the end points of the diameter of a circle , the co-ordinates of the center of the circle are A. (-5, 2) B. (5, 2) C. (10, 4) D. (10, 8) A. 2 B. 3 C. 4 A. 3 B. 2 C. $\frac{1}{2}$ D.0
A. 9 or 3 B9 or 3 C. 9 or -3 D9 or -3 A. (1,-3) B. (-1, 3) C. (1,3) D. (3, 1) 22. If (7, 6) and (3, -2) are the end points of the diameter of a circle, the co-ordinates of the center of the circle are
C. 9 or -3 D9 or -3 A. (1,-3) B. (-1,3) C. (1,3) D. (3,1) 22. If (7, 6) and (3, -2) are the end points of the diameter of a circle , the co-ordinates of the center of the circle are
A. $(1, -3)$ B. $(-1, 3)$ C. $(1, 3)$ D. $(3, 1)$ 22. If $(7, 6)$ and $(3, -2)$ are the end points of the diameter of a circle , the co-ordinates of the center of the circle are A. $(-5, 2)$ B. $(5, 2)$ C. $(10, 4)$ D. $(10, 8)$ A. 2 B. 3 C. 4 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. (1,-3) B. (-1, 3) C. (1,3) D. (3,1) 22. If (7, 6) and (3, -2) are the end points of the diameter of a circle, the co-ordinates of the center of the circle are A. (-5, 2) B. (5, 2) C. (10, 4) D. (10, 8) A. 2 B. 3 C. 4 A. 3 B. 2 C. $\frac{1}{2}$ D.0
C. (1,3) D. (3,1) 22. If (7, 6) and (3, -2) are the end points of the diameter of a circle , the co-ordinates of the center of the circle are A. (-5, 2) B. (5, 2) C. (10, 4) D. (10, 8) A. 2 B. 3 C. 4 D. 1 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
22. If (7, 6) and (3, -2) are the end points of the diameter of a circle , the co-ordinates of the center of the circle are A. (-5, 2) B. (5, 2) C. (10, 4) D. (10, 8) A. 2 B. 3 C. 4 D. 1 A. 3 B. 2 C. $\frac{1}{2}$
circle are A. $(-5, 2)$ B. $(5, 2)$ C. $(10, 4)$ D. $(10, 8)$ A. 2 B. 3 C. 4 D. 1 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. $(-5, 2)$ B. $(5, 2)$ C. $(10, 4)$ D. $(10, 8)$ A. 2 B. 3 C. 4 D. 1 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
C. (10, 4) D. (10, 8) A. 2 B. 3 C. 4 D. 1 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. 2 B. 3 C. 4 D. 1 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. 2 B. 3 C. 4 D. 1 A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. 3 B. 2 C. $\frac{1}{2}$ D. 0
A. a = b B. b = 2a
C. a = 2b D. 1
26. The distance of the co-ordinate p(4,3) from the x-axis is
A. 2units B.3units C. 4units D. 5units
OFFICE OF DDPI (ADMIN), CHIKKAMAALURU Page 20

OFFICE OF DDPI (ADMIN), CHIKKAMAALURU Page 21

32. Distance of the co-ordinate F form the Y-axis is

A. 2units B. 4units

_____•

C. $2\sqrt{5}$ units D. $2\sqrt{2}$ units

						^з ћУ
						2
						1
_x'						ž.
№ -6	-5 •	-4	-3	-2	-1	0 1 2 1
		F				
		•				-2
			1 1 1 1		1.154	
					1	Y
					3	
		. H			2	
					1	
X						
< -	4 -	-3	-2	-1	0	1 2 7
					-1-	
					-2	<i>γ</i> γ!

33. Co-ordinates of the point H are ______.

- A. (-3,-2) B. (3, 2)
- C. (-3, 2) D. (3, -2)

UNIT--- QUADRATIC EQUATIONS

1.	The standard form of	of an adfected quadrat	ic equation is	
	A) ax ² +bx+c=0	B) ax ² -bx+c=0	C) ax ² +bx-c=0	D) ax ² +c-bx=0
2.	The standard form of	of a quadratic equation	2x ² -3=7x is	
	A)2x ² -3=7x	B) 2x ² -3-7x=0	C) 2x ² -7x-3=0	D) -2x ² -3+7x=0
3.	Which one of the fo	llowing equation is not	a quadratic equatio	n?
	A)3x ² +4x-7=0	B) m ² -5m-8=0	C) 2b ² +b-6=0	D) 0x ² -2x-9=0
4.	Which one of the fo	llowing equation is a q	uadratic equation ?	
	A)4x ⁻² -6x+6=0	B) 3x-8y=1	C) 5x ³ +5x-7=0	D) 3x ² +9=7
5.	The highest power a	appearing in a quadrati	c equation 2x ² =4x-3	is
	A)1	B) 2	C) 3	D)4
6.	The constant term i	n a quadratic equation	7x ² -4x=5 is	
	A)7	B) -4	C) 5	sD) -5
7.	The polynomial equ	ation x(x+1)+8=(x+2)(x	-2) is aequation.	
	A)Linear equation		C) Cubic equation	
	B)Quadratic equation	on	D) Simultaneous eo	quation
8.	The numerical co-et	fficients of quadratic ec	uations ax ² +bx+c=0	are
	A) Rational number	S	C) Irrational numb	ers
	B) Integers		D) Real numbers.	
9.	The number of valu	es of y which satisfies t	he equation $3y^2=7y$ -	3 is
	A)1	B) 3	C) 7	D)2
10	. Which one of the fo	llowing value satisfies	the equation x ² -3x+2	=0 ?
	A)1	B) 3	C) -1	D) -3
11	. The maximum num	ber of roots of a quadra	atic equation ax ² +bx	+c=0 is
	A)2	B) 3	C) 1	D) 4

12. The formula is used to calculate the roots of a quadratic equation $ax^2+bx+c=0$ is....

A)
$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 B)-b $\pm\frac{\sqrt{b^2-4ac}}{2a}$ C) $\frac{-b\pm\sqrt{b^2+4ac}}{2a}$ D) $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

13. The roots of a quadratic equation x²+bx+c=0 is given by

A)
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 B)-b $\pm \frac{\sqrt{b^2 - 4ac}}{2a}$ C) $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ D) $\frac{-b \pm \sqrt{b^2 - 4ac}}{2}$

14.If (y-2) and (y+3) are the factors of the trinomial y^2+y-6 then the roots of a quadratic equation $y^2+y-6=0$ areand

A) -2+3 B) 2,-3 C)-2,-3 D) 2,3

15. If (x-1) is one the factor of x^2+px-3 , then the value of p in $x^2+px-3=0$ is.....

A) 2 B) -2 C) 3 D)-5

16. If -2 is the one of the roots of a quadratic equation $x^2+3x+2=0$ then the other root is..

A) 2 B) -1 C) +1 D) 3

17. The roots of a quadratic equation m²+m-12=0 are and

A) 4, 3 B) 4,-3 C) -4,-3 D) -4,3

18. The values of x which satisfies the equation $6x^2-x-2=0$ are ----and ----

A) $\frac{2}{3}, \frac{1}{2}$ B) $\frac{-2}{3}, \frac{1}{2}$ C) $\frac{2}{3}, \frac{-1}{2}$ D) $\frac{-2}{3}, \frac{-1}{2}$

19. if one of the roots of a quadratic equation $x^2+px+12=0$ is 4 then the value of P is ..

A) -7 B) +7 C) -5 D) +5

20.Which one of the following quadratic equation has -2 and +5 as roots?

A) x²-3x-10=0 B) x²+3x-10=0 C) x²-3x+10=0 D) x²+3x+10=0

- 21. 'b²-4ac' is called as the discriminant part of a quadratic equation $ax^2+bx+c=0$ because..
 - A) The value of b²-4ac is describes the nature of roots

B) The value of b²-4ac gives the roots of a equation

C) The value of b^2 -4ac explains the type of a equation.

D) The value of b²-4ac is describes the nature of an equation

22. In a quadratic equation ax²+bx+c=0, If c=0 then the roots are and

A)
$$0, \frac{-b}{a}$$
 B) $0, \frac{b}{a}$ C) $a, \frac{-b}{a}$ D) $b, \frac{-b}{a}$

23.For what condition, the	e roots of a quadr	ratic equation ax ² +bx+c=0 ar	e real, rational and distinct.			
A) b ² -4ac =0	E	B) b ² -4ac >0 and perfect square				
C) b ² -4ac <0	I	D) b ² -4ac >0 and non-perfec	t square			
A) Rational and Equ	A) Rational and Equal B) Rational and Unequal					
C) Irrational and Dis	stinct	D) Non-Real and Imaginary				
25. For what condition o	25. For what condition of the discriminant of equation ax ² +bx+c=0,the roots are unequal and irrational.					
A) b ² -4ac =0 B) b ² -4ac >0 and perfect square						
C) b ² -4ac <0	C	0) b ² -4ac >0 and non-perfect	square			
26.The quadratic equation	on whose discrim	inant is p ² -4qr is				
A) px ² +qx+r=0	C	C) qx ² +px+r=0				
B) px ² +rx+q=0	I	D) rx²+qx+p=0				
27. The root of a equat	ion ax ² +c=-bx wh	ose discriminant is zero is				
A) $\frac{-b}{a}$	B) $\frac{-b}{2a}$	C) $\frac{b}{a}$	D) $\frac{b}{2a}$			
28. The value of discrim	inant of a quadra	tic equation 2x ² =4x-3 is				
A) -8	B) 8	C) 40	D) -40			
29. The nature of roots	of a quadratic eq	uation 2x ² =4x-3 , is				
A) Rational	B) Irrational	C) Real	D) imaginary			
30. If the roots of a qua	dratic equation a	re 4 and ½ then discriminant	t of that equation is			
A) zero	B) Positive num	ber C) Negative number	D) None of these.			
31. The discriminant of	a quadratic equa	ntion having the roots 3/2 ar	nd ½ is			
A) zero	B) Perfect squar	re C) Non-perfect square	e D) Negetive square.			
32.The equation 9x ² +kx	+4=0 has two equ	ual roots then the value of K	is			
A) ±12	B) ±13	C) ±11	D) ±10			
33. If the discriminant o	f a quadratic equ	ation is 11 then the roots of	that equation are			
A)Rational and unequa	al C) Irrational a	nd unequal B) Rational and	equal D) Irrational and Equal			

34. If the discrimi	nant of a quadratic equat	tion is a perfect squar	re, then the roots of a
quadratic equa	ation are		
A) Real numb	er	B) Rational	
C) Unequal		D) All of these	
35. If the discrimin	nant of a quadratic equat	ion is equal to zero th	nen the roots of a
quadratic equa	ation are		
A) Real and Di	stinct	B) Rational and	Distinct
C) Real and Eq	ual	D) Irrational and	Distinct
36.The natures of	solutions of a quadratic e	quation 4x ² +2x+8=0	are
A) Real and Di	stinct	B) Non-Real and	Distinct
C) Real and Eq	ual	D) Irrational and	Distinct
37. The discrimina	nt of a quadratic equation	n 3x ² +8x-2=o is	
A) 40	B) 68	C)88	D)30
38 .The discrimina	nt of a quadratic equation	n x²+bx+c=o is	
A) b ² -4ac	B) b ² -4c	C) b-4ac	D) b ² -4a
39. In a equation ax	x^2 +bx+c=o, If b ² -4ac> 0 th	ien the roots of quad	ratic equation are
A) Real and Di	stinct	B) Rational and	Distinct
C) Irrational ar	nd Distinct	D) all of the the	se
A) b ² -4ac >0	B) b ² -4ac<0	C) b ² -4ac=0	D) None of these.
41. In a equation ax	2 +bx+c=o, If b ² -4ac= 0 t	hen the roots of qua	dratic equation
are			
A) Real	B) Rational	C) Equal	D) All of these

UNIT--- TRIGONOMETRY

1. sinθ =			
A) $\frac{\mathrm{adj}}{\mathrm{hyp}}$	B) $\frac{0pp}{hyp}$	C) $\frac{0pp}{adj}$	D) adj opp
2. If 13cosθ=	5, then $tan\theta$ =		
A) $\frac{5}{13}$	B) $\frac{13}{5}$	C) $\frac{5}{12}$	D) $\frac{12}{5}$
3. If cosecθ=	$\frac{13}{5}$, then $\frac{5}{13}$ =		
A) sinθ	B) cosθ	C) tanθ	D) secθ
4. If $tan\theta = \frac{3}{4}$,	, then sinθ+cosθ		
A) $\frac{9}{5}$	B) ⁵ / ₉	C) $\frac{9}{5}$	D) $\frac{5}{9}$
5. Reciprocal	of secθ is		
A) sinθ	B) cosθ	C) tanθ	D)cosec θ
6. sin45 ⁰ =			
A) $\frac{1}{2}$	B) $\frac{1}{\sqrt{2}}$	C) √2	D) 2
7. sin30 ⁰ is eq	ual to		
A) cos60 ⁰	B)cos30 ⁰	C)sin60 ⁰	D)tan30 ⁰
8. sin30 ⁰ +cos6	60 ⁰ =		
A) $\frac{1}{2}$	B) 1	C) $\frac{1}{4}$	D) 2
9.The value of $\frac{ta}{co}$	an65 ⁰ is		
A) √2	В)О	C) 1	D) $\frac{1}{\sqrt{2}}$
10. The Value of	cos48 ⁰ - sin42 ⁰ is		
A) $\frac{1}{2}$	B)0	C)1	D) $\frac{1}{\sqrt{2}}$
11. The value of o	$\cos^2 17^0$ - $\sin^2 73^0$ is	5	
A) 1	B) $\frac{1}{3}$	C) 0	D)-1
12. The value of $\frac{1}{3}$	sin53 ⁰ is		
A)0	B)1	C)2	D)3
13. The value of	cosec32 ⁰ sec58 ⁰ iS		
A) 1	B) 0	C) $\frac{1}{2}$	D) 2
14. sin(90 - 20)	⁰ is		
A) sin20 ⁰	B) cos20 ⁰	C)cos70 ⁰	D)sin90 ⁰

13. complimentary a	angle of sec	:θ is
A) cosθ	B)sinθ	
C)cosecθ	D)secθ	
14. The value of cos	$^{2}17^{0}$ - sin ²	73 [°] is
A) 0	B) 1	
C)2	D)3	
15. In triangle ABC a	ingle B is rig	ght angle and angle c is θ then sin(90- θ) = $ -$
A) $\frac{AB}{AC}$	B) $\frac{BC}{AC}$	
C) $\frac{BC}{AB}$	D) $\frac{AB}{Bc}$	
16. In the following	which of th	e following is not true
A) $\sin^2\theta^0 + \cos^2$	$\theta^0 = 1$	B) $\sin\theta = \sqrt{1 - \cos^2}\theta$
C) $\sin\theta = \sqrt{1 + c}$	$\cos^2\theta$	D) $\cos\theta = \sqrt{1 - \sin^2}\theta$
A)1+cot ² θ^0 =co	$\sec^2 \theta^0$	B) 1+tan ² θ^0 =sec ² θ^0
C) $\cot^2 \theta^0 + \tan^2 \theta^0$	$n^2 \theta^0 = 1$	D) $\cot^2 \theta^0 - \tan^2 \theta^0 = 1$
A)1+cot ² θ^0 =co	sec ² θ ⁰	B) $1+\tan^2\theta^0=\sec^2\theta^0$
C) $\cot^2 \theta^0 + \tan^2 \theta^0$	$n^2 \theta^0 = 1$	D) $\cot^2\theta^0 - \tan^2\theta^0 = 1$
19.($\sin\theta + \cos\theta$) ² =		
A)1+2sinθcosθ		B) 1-2sinθcosθ
C) 1+sinθcosθ		D) 1+sinθcosθ
20. If $3\tan\theta = \sqrt{3}$	then θ=	
A) 45 ⁰		в) 30 ⁰
C) 60 ⁰		D) 90 ⁰
21. $\sin^2 60^0 = \cdots$		
A) $\frac{3}{4}$		B) $\frac{4}{3}$
C) $\frac{\sqrt{3}}{2}$		$D)\frac{2}{\sqrt{3}}$
22. which of the foll	owing is eq	ual to cosec60 ⁰
A)sin60 ⁰		B)sec60 ⁰
C) sec30 ⁰		D)cos30 ⁰
1		

23. $\sin^2 45^0 x \cos^2 45$	0 ₌			
A) $\frac{1}{4}$	B)	<u>1</u> 2		
C) $\frac{1}{\sqrt{2}}$	D)	4		
24. If sec4A =cosec(A	A- 20°) and 4A is	acute ,then the value	e of A is	
A) 32 ⁰	B) 70 ⁰	C) 22 ⁰	D) 42 ⁰	
25. sin20 ⁰ sec70 ⁰ +c	os25 ⁰ cosec65 ⁰ =			
A)0	B)1	C)4	D) 2	
26. In the following	which of the foll	owing are both comp	lementary and reciprocal to	each other ?
A) tanθand co	otθ	B) sin θ and cos θ		
C) sinθand cos	ecθ	D) secθ and cosecθ		
$27)\frac{1+\tan^2 A^0}{1+\cot^2 A^0} =$				
A) $sec^2 A^0$		B) cosec ² A ⁰		
C) tan ² A ⁰		D) cot ² A ⁰		
28) 9sec ² A ⁰ -9tan ² A	$a^{0} =$			
A) 9	В)О	C) 1	D)-9	
$29. \frac{1 + \tan^2 45^0}{1 - \cot^2 45^0} = \dots$				
A) 0	B)N.D.	C) 1	D) 2	
30.For which value t	his is true? Sin2	A=2sinA		
A) 0 ⁰	B) 35 ⁰	C) 45 ⁰	D) 60 ⁰	

	UNIT	APPLICATI	ONS OF TRIGONOMETRY	/
1. In the figu	re AB and BC ar	e 10 units θ i	S	A
A) 30 ⁰	В) 45 ⁰	C) 60 ⁰	D) 90 ⁰	B C
A) 10m.	B) 5m	C)15m	D)20m	
 If the ratio elevation 	of the height o	f the tower a	nd the length of its shadow is	$\sqrt{3}$:1 , what is an angle of
A) 30 ⁰	B) 45 ⁰	C) 60 ⁰	D) 90 ⁰	
4. A ladder v	vhose length is	20m is stretc	hed the wall at the height of	10m . what is an angle made b
the ladder	with the groun	d? To solve t	his which of the following rat	tio is correct.
A)tanθ	B) sinθ	C) cosθ	D) cotθ	
5. From a po	int on the grou	nd, 20m away	y from the foot of a vehicle to	ower, the angle of elevation of
the top of	the tower is 60	⁰ what is the	height of the tower ?	
A)20√3	B) 20√2	C)3√ <u>20</u>	D) $\sqrt{10}$	
A) 300m A) Vertical	B) 100m angle B) Ang	C) 200m gle of depress	D) 500m ion C) Angle of elevation	D) Obtuse angle
A)Vertical 9. If a ratio c	angle B) Ang f a vertical pole	gle of depress e and its shad	ion C) Angle of elevation ow is (1: $\sqrt{3}$) ,then the angle c	D) Obtuse angle of elevation to the sun is—
A) 30 ⁰	B) 45 ⁰	C) 60 ⁰	D) 90 ⁰	P
10. In this figu	re QR=10 ,then	θ is		10\sqrt{3}
A) 30 ⁰	В) 45 ⁰	C) 60 ⁰	D) 90 ⁰	Q R

UNITSTATISTICS						
1. Mean of the first five natural numbers is						
A. 2	B. 3	. 3 C. 5 [
2. If the mean of	2. If the mean of the data x+3, 2x+6 is 15, then the value of x is					
A. 3	3 B.O C.7 D.9					
3. The runs score mean of these sc	3. The runs scored by a batsman in 10 matches of a series is given here. 60,25,36,54,85,62,95,18,29,75 mean of these scores is					
A. 53.9	B. 62.3	C. 58.5	D. 63.8			
4. Median of firs	t 6 prime numbe	rs is				
A. 6	B. 7	C. 5	D. 6.5			
5. When n is an o	odd number,	score is the r	median			
A. n - 1/2	B. n/2	C. n+1/2	D. n			
6. A student scored 65 marks in I language, 50 marks in Science, 55 marks in Social Science and some marks in Mathematics. If the average marks scored by him in all the four subjects is 60, then the marks scored by him in Mathematics is						
A. 65	B. 60	C. 50	D. 70			
7. The empherical relation between the three " central tendencies " is						
A. 3median = mode + 2mean B. 2Mean = mode + 3median						
C. 2median = 2mode + 3mean D. Mode = 3mean – median						
8. In the given frequency distribution table , the median class is :						
Class Interval	0-10	10-20	20-30	30-40	40-50	
Frequency	5	8	12	15	20	
A. 10 - 20	A. 10 - 20 B. 20 - 30 C. 30 - 40 D. 0 - 10					
9. When the mean is 3.3 and median is 2.4, is the Mode of a data						
A. 0.4	B. 0.5	C. 0.6	D. 0.7			

10. If the mean of data 8,12,21,42,x is 20,then the value of 'x' is				
A. 8	B.20	C. 21	D. 17	
11. If the mean and median of some data is 19 and 40 respectively, then their mode is				
A. 86	B. 75	C. 30	D. 82	
12. Median of 48,50),52,54,56,58,6	0,62,64 is		
A. 56	B. 48	C. 64	D. 50	
13. Mode of the sco	res 9,7,11,6,11	,23,24 is		
A. 9	B. 7	C. 11	D. 23	
14. Formula to find t	the mode of a ${}_{\!$	grouped data is		
A. $\frac{\sum fixi}{\sum fi}$		B. L + $\left[\frac{\frac{n}{2}-Cf}{f}\right] \times h$		
C. L+[$\frac{f_{1-f_{0}}}{2f_{1-f_{0}}}$	<u>0</u> − <i>f</i> 2]×h	D. All above		
15. More than ogive	and less than	ogive of a grou	ped data meet at the point (30,45), then their median is	
A. 75	B. 15	C. 30	D. 45	
16. If AM of a, a+3,	16. If AM of a, a+3, a+6, a+9 and a+12 is 10, then 'a' is equal to			
A. 1	B. 2	C. 3	D. 4	
17. If the mean of first n natural numbers is $3n/5$, then the value of n is				
A. 3	B. 4	C. 5	D. 6	
18. If the mean of frequency distribution is 7.5 and $\sum fi.xi = 120 + 3k$, $\sum fi = 30$, then k is equal to				
A . 40	B. 35	C. 50	D. 45	
19. If the sum of frequencies is 24, then the value of x in the obsevation: $x,5,6,1,2$ will be				
A. 4	В. 6	C. 8	D. 10	
20. If the mean and $\sum x$ of a data is 20 and 400 respectively then the number of scores in that data is				
A.10	B. 20	C. 40	D. 1600	

21. Lower limit of the class interval where the mode is present, in the following frequency distribution, is

Class Interval	0 - 10	10 - 20	20 - 30	30 - 40	
Frequency	3	7	4	2	
A. 0	B. 10 C.	20 D. 30			
2. Cumulative frequ	uency list helps to g	et the following			
A. Mean	B. Mediar	ו			
C. Mode	D. Midpoi	int.			
23. The graph repres	senting upper limit	on x-axis & correspo	nding cumulative fre	equencies on y-axis i	
A. less than t	ype ogive B.	More than type ogiv	e		
C. Pi-chart D. His	togram.				
24. Cumulative frequ	uency curve is also	called			
A. Histogram	B. Ogive				
2. Bar graph	D. Median				
25. The median of so	et of 9 distinct obse	ervations is 20.5. If ea	ach of the largest 4 c	observations of the s	
ncreased by 2, then	the median of the	new set,			
A. is increased by 2		B. Is dec	B. Is decreased by 2		
C. Is two time	es of the original nu	umber D. Rema	iins the same as that	t of the original set.	
26. Mean of 100 iter	ns is 49. It was disc	overed that ,three it	ems which should ha	ave been 60, 70,80 w	
vrongly read as 40,2	20,50 respectively.	The correct mean is,			
A. 48	B. 49 C.	50 D. 60			
A. 15	B. 20 C.	25 D. 40			
A. 2,2.2.2.4	B. 1,3,3.3	,5			
^ 11256	D. 1.1.1.2.5				

29. Median of the scores 5,3,14,16,19,20 is

A. 14 B. 16 C. 20 D. 15

30. Mean of the following data is

Class Interval	5 - 15	15 - 25	25 - 35	35 - 45	45 - 55
Frequency	4	3	6	5	2

A. 25 B. 29 C. 30 D. 35

UNIT SURFACE AREA AND VOLUME				
1 The curved surface area of a solid cylinder of radius 'r' cm and height 'h' cm is				
A) 2πr (r+h) sq .cm	. B) 2πrh sa. ci	m.		
C) πrl sa cm	D) πr^2 sq cm			
2 The formula to $\frac{1}{2}$	find total surfac	a area of a guli	nder baving beight "h" and radius "r" is	
z. me formula to		e area or a cyrr	nder naving height in and radius r is	
A) 2πr (r+h)	B) 2πrh	C) πrl	D) πr ²	
3. The formula to f	ind volume of cy	linder having ł	neight "h" and radius " r"	
A) 2πr (r+h)	B) 2πrh	C) 1/3 πr ² h	D) πr²h	
4) The formula to find	d curved surface	area of cone	having slant height "I" and radius "r" is	
A) πr (r+h)	B) 2πrh	C) πrl	D) πr (r+l)	
5) The formula to fin	id total surface a	rea of cone h	aving slant height "I" and radius "r" is	
A) πr (r+h)	B) 2πrh	C) πrl	D) πr (r+l)	
6) The formula to find volume of cone having height "h" and radius "r" is				
A) 4πr ²	B) 2πrh	C) 1/3 πr ² h	D) πr ² h	
7) The formula to find curved surface area of hemisphere having radius "r" is				
A) πr ²	B) 2πr ²	C) 3 πr²	D) 4πr ²	
8) The formula to find total surface area of hemisphere having radius "r" is				
A) πr ²	B) 2πr ²	C) 3 πr ²	D) 4πr ²	
9) The formula to find volume of hemisphere having radius "r" is				
A) 3πr ²	B) 4/3 πr ³	C) 2/3 πr ³	D) πr²h	
10) The formula to find curved surface area of sphere having radius "r" is				
A) πr ²	B) 2πr ²	C) 3 πr ²	D) 4πr ²	
11) The formula to find total surface area of a sphere having radius "r" is				
A) πr ²	B) 2πr ²	C) 3 πr ²	D) 4πr ²	

OFFICE OF DDPI (ADMIN), CHIKKAMAGALURU Page 35

12) The formula to find volume of sphere having radius "r" is A) $4\pi r^2$ B) 4/3 πr³ C) $2/3 \pi r^3$ D) $\pi r^2 h$ 13) The formula to find curved surface area of frustum of a cone having slant height "I" and radius "r" is A) $\pi(r_1+r_2)$ | B) $\pi(r_1+r_2)$ | + $\pi r_1^2 + \pi r_2^2$ D) πr (r+l) C) πrl 14) The formula to find total surface area of frustum of a cone having slant height "I" and radius " r" is A) $\pi(r_1+r_2)$ | B) $\pi(r_1+r_2)$ | + πr_1^2 + πr_2^2 D) πr (r+l) C) πrl 15) The formula to find volume of frustrum of a cone having height "h" and radius "r" is A) $\pi(r_1+r_2)$ | B) $\pi(r_1+r_2)$ | + πr_1^2 + πr_2^2 D) $1/3\pi$ h($r_1^2 + r_2^2 + r_1r_2$) C) $\pi r^2 h$ 16) The relationship between radius "r" and height "h" and slant height "l" of a cone A) $l^2 = r^2 + h^2$ B) $r^2 = l^2 + h^2$ C) $l^2 = r^2 - h^2$ D) $h = r^2 + l^2$ 17) The surface area of a sphere is 616 sq.m. The surface area of its hemisphere is A) 205.6 cm² B) 308 cm² C) 1232 cm² D) 38 cm² 18) The surface area of a sphere is 2464 sq.m. The surface area of its hemisphere is A) 205.6 cm² B) 308 cm² C) 1232 cm² D) 38 cm² 19) The perimeter of the base of a right circular cylinder is 44 cm and its height is 10 cm. Then its volume is A) 490 π cm³ B) 440 π cm³ C) 374 π cm³ D) 980 π cm³

20) Prepare a cone from "model clay". When wet, cut it with a knife parallel to its base, remove the smaller cone obtained. The solid left is			
A) Cylinder	B) Cone		
C) Sphere	D) Frustrum of a cone		
21) The perimeter or lateral surface area is	f the base of a right circular cylinder is 44 cm and its height is 10 cm. Then its		
A) 490 cm ²	B) 440 cm ²		
C) 374 cm ²	D) 220 cm ²		
22) The volume of a cylinder is $300m^3$. Then the volume of a cone having the same radius and height as that of the cylinder is,			
A) 900 m ³	B) 600 m ³		
C) 150 m ³	D) 100 m ³		
23) The surface are	ea of a sphere of radius 7 cm is,		
A) 154 cm ²	B) 308 cm ²		
C) 616 cm ²	D) 770 cm ²		
24) The curved surfa	ace area of a hemisphere of radius 14 cm,		
A) 1232 cm ²	B) 308 cm ²		
C) 616 cm ²	D) 2464 cm ²		
25) If the volume of a cone is 300 m^3 then the volume of a cylinder having same radius and same height as that of cylinder is			
A) 900 m ³	B) 600 m ³		
C) 150 m ³	D) 100 m ³		
26) A funnel is combination of frustrum of cone and			
A) Hemisphere	B) Cylinder		
C) Sphere	D) Cone		
27) The surface area of a sphere is 616 cm ² . Its radius is			
A) 7 cm B) 14	4 cm C) 21 cm D) 28 cm		

OFFICE OF DDPI (ADMIN), CHIKKAMAGALURU Page 37

28) If two solid hemispheres of same radius are joined together along their bases. The surface area of this new solid is A) $3 \pi r^2$ B) $4\pi r^2$ C) $5\pi r^2$ D) $6\pi r^2$ 29) A cylinder and cone are of same base, radius and height. Then the ratio of their volume is D) 3:2 A) 2:1 B) 3:1 C) 2:3 30) A solid has been melted and recast into a wire. Which of the following remains same. B) Volume C) Radius A) Length D) Height 31) The curved surface area of a frustrum of a cone having slant height 4 cm and radii of its circular bases $9/\pi$ cm and $3/\pi$ cm is A) $200 \,\pi \, \text{cm}^2$ B) 192 cm² C) 96 cm² D) 48 cm² 32) The slant height of a cone having radius 5cm and height 12 cm is A) 6 cm B) 9 cm C) 11 cm D) 13 cm 33) A drinking glass is in the shape of a frustrum of a cone of height 6cm. The radii of its two circular bases are 2cm and 1cm. The capacity of the glass is A) 22 cm³ B) 44 cm³ C) 88 cm³ D) 100 cm³ ****************