Karnataka

Dakshina Kannada Zilla Panchayat Department of Public Instruction

 Office of Deputy Director of Public Instruction (Administration), Mangalore, D.K. andDistrict Institute of Education and Training, Kodialbail Mangalore, Dakshina Kannada

For Achievement in Mathematics...
(Resource material prepared based on the new Multiple-Choice Questions based Examination Pattern 2020-21)

๘ృ. శుదూరు, ఐ.ఉ.దసో
మొ2్య రలయిళనిదేદळణాధిซృరిగాళు,

సెందిలర

జిల్ల దంజాయితో రెణ్షెడ అซைอఁశనేగేర

దుంగiళఃలు, దెర్షిణ శేన్నెడె జిల్ల? 575006 దేర్షిణ శేన్నెడె

రుభాచయయిగెళు

మొ2్యరలయుళ నచ్చణळణాధిరారిగెళు
దెక్షిణరెన్నెడెజిల్లాడెంబాయెతో

దొన్నుడి

లుఱెనిబొల₹రశరు (ఆడళితె)

దై్షిణ రెన్నెడ జిల్లి-575001

 గళిసెబడుదు.
 అధిరారిగ่ళిగి ధెన్మదాద゙గ่ళస్ను సెదుటిళసుత్తేలనే.
.చుభెదాగగలి.

17-06-2021

నిదైఁరెనే

సిడియోృనో దేอంతేరేల

డిరిల్టని దుత్తు దూగగఁదదశణన
ిలల దుల్లిలన్టామి, లుడెనిదేల్రశరు (ఆడళిత దుత్తు అభిదృద్ధి)

దేల్టిబారెణి

క్షేల్ర శిర్షణాధిరారిగళు, బేళ్తంగిి తాలృచు.
ళిలదుతి బబిత

ళిల రంభు రంపరో

సెలळేగారేరేరు :
ిలలదుతి దయయోదతి

ళిలదుతి చౌలeభా దనో

ిలలదుతి చిలణా ఎలా

ళిలe శిలనిదాశ అదిగ

హృe గురురాజ ఎం.ఒ
లుడ్య్యాసేరుు, DIET దుంగెళృరు.
ళిలదుతి దినేలeద బి
లుడ్య్యాసేరు, DIET దుంగిళఃరు.
ళిలదుకి దెలదాదతి
లుడెన్యాసెరుు, DIET దుంగఆిృరు.
సెపరారర
ిృలదుతి జయికిల

Resource Persons involved in the preparation of the Resource Material

S. No.	Name	School
1.	Mr. Sadashiv Poojary	Shri Dharmastala Manjunatheshwara Secondary School, Ujire, Belthangady Taluk
2.	Mrs. Veena Ganapati Shanbhag	Government High School, Halepete, Ujire, Belthangady Taluk
3.	Dr. Annie Dimple Castelino	Government High School, Aliyooru, Moodubidre Taluk
4.	Mrs. Bindu C. Anthony	Ladyhill Victoria High School, Mangalore North
5.	Mr. Shyamprasad K.	Jain High School, Moodubidre, Moodubidre Taluk
6.	Mr. Parameshwar Hegde	Government High School, Kadumata, Bantwal Taluk
7.	Mrs. Umavathi N.	Netaji Subashchandra Bose Government High School, Kodange, Bantwal, Taluk
8.	Mrs. Veena Mallya	Government High School, Kalladi, Mangalore South
9.	Mr. Raghunath Bhat G.	Kittel Memorial High School, Gorigudde Mangalore South
10.	Mrs. Ramya K.	Government High School, Badaga Ekkaru, Mangalore North
11.	Mr. Harikiran K.	Government High School, Hirebandadi, Puttur Taluk
12.	Mr. Ramachandra Bhat N.	Karnataka Public School, Bellare, Sulya Taluk
13.	Mr. Shivakumar N. G.	Government High School, Edamangala, Kadaba Taluk, Sullya
14.	Mr. T.B. Basavalingappa H.M.	Government High School, Karaya, Belthangady Taluk
15.	Mr. Sharath Kumar Tulupule	Government High School, Venur, Belthangady Taluk
16.	Mr. Balakrishna Nayak	Government High School, Muttur, Mangalore South

CONTENT

Unit Number	Unit Name	Page Numbers
1.	Arithmetic Progression	$6-7$
2.	Triangles	$8-10$
3.	Pair of Linear Equations in Two Variables	$11-13$
4.	Circles	$14-16$
5.	Constructions	$17-18$
6.	Coordinate Geometry	$19-21$
7.	Quadratic Equations	$22-23$
8.	Introduction to Trigonometry	$24-27$
9.	Some Applications of Trigonometry	$28-29$
10.	Statistics	$30-32$
11.	Surface Areas and Volumes	$33-36$
12.	ANSWERS	$37-63$

Unit 1 : Arithmetic Progressions

1. If the $\mathrm{n}^{\text {th }}$ term of an Arithmetic Progression is $\mathrm{a}_{\mathrm{n}}=4 \mathrm{n}+5$ then the third term is \qquad
a) 5
b) 9
c) 13
d) 17
2. The value of ' x ' in the Arithmetic Progression 2, $x, 14$ is \qquad
a) 28
b) 16
c) 7
d) 8
3. In an Arithmetic Progression where $a_{n}=3 n-2$, the $2^{\text {nd }}$ term is \qquad
a) 2
b) 4
c) 6
d) 8
4. The fourth term of an Arithmetic Progression where $a_{n}=2 n-1$ is \qquad
a) 23
b) 9
c) 5
d) 7
5. The common difference of the Arithmetic Progression 3, 6, 9, 12 \qquad is \qquad
a) -3
b) 3
c) 6
d) 9
6. The sum of the first ' n ' Natural Numbers is \qquad
a) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
b) $\frac{n(n+1)}{2}$
c) $\frac{n(n+1)}{3}$
d) $n(n+1)$
7. Which among the following is an Arithmetic Progression?
a) $1,4,6 \ldots$
b) $12,10,14$.
c) $35,30,25$
d) $8,13,19$, \qquad
8. The formula to find the $\mathrm{n}^{\text {th }}$ term of an Arithmetic Progression is \qquad
a) $\mathrm{a}_{\mathrm{n}}=\mathrm{a}-(\mathrm{n}-1) \mathrm{d}$
b) $a_{n}=a+(n+1) d$
c) $a_{n}=a+(n-1) d$
d) $a_{n}=2 a+(n-1) d$
9. If in an Arithmetic Progression $a_{n}=3 n-1$ then the common difference is \qquad
a) 1
b) 2
c) 3
d) 4
10. Sum of first 10 Natural Numbers is \qquad
a) 45
b) 50
c) 55
d) 65
11. The common difference of the Arithmetic Progression 3, $1,-1,-3$ \qquad is \qquad
a) 2
b) -2
c) 4
d) -4
12. The common difference of the Arithmetic Progression $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. \qquad
\qquad
a) 0
b) 1
c) $\frac{1}{2}$
d) $-\frac{1}{2}$
13. The number to be entered into the in the Arithmetic Progression2, , 26 is
a) 12
b) 13
c) 14
d) 16
14. If the first term is ' a ' and the $n^{\text {th }}$ term is ' 1 ' then the sum of n terms of an Arithmetic Progression is \qquad
a) $\mathrm{S}_{\mathrm{n}}=\frac{a}{2}(n+l)$
b) $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(a+l)$
c) $\mathrm{S}_{\mathrm{n}}=\frac{l}{2}(a+n)$
d) $\mathrm{S}_{\mathrm{n}}=\frac{1}{2} a(n+l)$
15. If the first term is ' a ' and the common difference is ' d ' then the formula to calculate the sum of n terms of an Arithmetic Progression is \qquad
a) $\quad \mathrm{S}_{\mathrm{n}}=\frac{n}{2}(a+(n-1) d)$
b) $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(a+2(n-1) d)$
c) $\quad \mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 a+(n-1) d)$
d) $\left.\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(n+1) d\right)$
16. The next four terms of the Arithmetic Progression 2, 5, 8, 11, 14 \qquad is \qquad
a) $16,18,20,22$
b) $15,16,17,18$
c) $18,22,24,26$
d) $17,20,23,26$
17. The third term of an Arithmetic Progression whose fourth term is 9 and common difference is 2 is
a) 8
b) 7
c) 6
d) 5
18. If the $\mathrm{n}^{\text {th }}$ term of an Arithmetic Progression is $\mathrm{a}_{\mathrm{n}}=13-2 \mathrm{n}$ then its fourth term is \qquad
a) 9
b) 7
c) 5
d) 4
19. In an Arithmetic Progression of $\mathrm{a}_{3}=10$ and $\mathrm{a}_{4}=8$ then the common difference is \qquad
a) -2
b) 2
c) 1
d) -1
20. The next terms of the Arithmetic Progression 4, -1, -6 \qquad is \qquad
a) $-10,-15$
b) $-12,-15$
c) 11,16
d) $-11,-16$
21. The value of S_{3} in the Arithmetic Progression 7, 4, 1, $-2 \ldots \ldots$
a) 1
b) 3
c) -3
d) 12
22. If the sum of an Arithmetic Progression whose first term and the last term are 1 and 11 respectively is 36 then the number of its terms is \qquad
a) $5 \quad$ b) 6
c) 7
d) 8
23. If the $n^{\text {th }}$ term of an Arithmetic Progression is $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1$ then the Arithmetic Progression is \qquad
a) $1,5,9 \ldots \ldots$
b) $2,6,10 \ldots \ldots$
c) $1,3,5 \ldots \ldots$
d) $1,2,3 \ldots \ldots$
24. The common difference of an Arithmetic Progression whose $n^{\text {th }}$ term is $a_{n}=5-2 n$ is \qquad
a) -3
b) -2
c) -1
d) 2
25. In the Arithmetic Progression 6, $x, y, 18$ the value of x and y respectively are \qquad
a) 8,12
b) 10,13
c) 10,14
d) 14,10
26. The common difference of two Arithmetic Progressions is equal. If the first term of the first Arithmetic Progression is 6 and the first term of the second Arithmetic Progression is 10 then the difference of the $5^{\text {th }}$ term of these Arithmetic Progressions is \qquad
a) 2
b) 3
c) 4
d) 5
27. If the sum of ' n ' terms of an Arithmetic Progression is $S_{n}=3 n^{2}+5 n$ then its $2^{\text {nd }}$ term is \qquad
a) 22
b) 14
c) 12
d) 10

Unit 2: Triangles

28. The mathematician who proposed that " A line drawn parallel to one side of the triangle divides the other two sides in equal proportion" is \qquad
a) Pythagoras
b) Thales
c) Euclid
d) Euler
29. In the given figure if $S T \| Q R$ then $\frac{P S}{S Q}$ is equal to \qquad
a) $\frac{P T}{T R}$
b) $\frac{P S}{T R}$
c) $\frac{P T}{S Q}$
d) $\frac{P T}{S R}$
30. If the ratios of the sides of two similar triangles is $4: 9$ then the ratios of the areas
 of these triangles is \qquad
a) $2: 3$
b) $4: 9$
c) $81: 16$
d) $16: 81$
31. In the given figure if $X Y \| B C$ then $\frac{A X}{A B}$ is equal to \qquad
a) $\frac{A X}{A Y}$
b) $\frac{A X}{X B}$
c) $\frac{A Y}{A C}$
d) $\frac{A C}{A Y}$

32. The length of the sides of a triangle are given below. Which of the following forms a right-angled triangle?
a) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
b) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
b) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
d) $130 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$
33. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two similar triangles. If ' D ' is the midpoint of BC then

Area of $\triangle \mathrm{ABC}$: Areas of $\triangle \mathrm{BDE}$ is equal to \qquad
a) $2: 1$
b) $1: 2$
c) $4: 1$
d) $1: 4$

34. The mathematician who proposed the theorem which states that "In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares on the other two sides" is \qquad
a) Thales
b) Pythagoras
c) Brahma Gupta
d) Euclid
35. The corresponding sides of two similar triangles are \qquad
a) Equal
b) Parallel
c) Not Equal
d) Proportional
36. The areas of two similar triangles are $120 \mathrm{~cm}^{2}$ and $480 \mathrm{~cm}^{2}$ respectively, then the ratio of any pair of its corresponding sides is \qquad
a) $1: 4$
b) $1: 2$
c) $4: 1$
d) $2: 3$
37. In the given figure if $\angle B=90^{\circ}$ then the correct relation among the following is
a) $\mathrm{BC}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2}$
b) $\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}$
c) $\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BC}^{2}$
d) $\mathrm{AC}^{2}-\mathrm{BC}^{2}=\mathrm{AB}^{2}$

38. In the figure if two triangles are similar then the ratio of their corresponding sides is \qquad
a) $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{AC}}{\mathrm{QR}}$
b) $\frac{A B}{P R}=\frac{B C}{Q R}=\frac{A C}{P Q}$
c) $\frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{RP}}=\frac{\mathrm{AC}}{\mathrm{PQ}}$
d) $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$

39. In the given figure $\triangle A B C \sim \triangle D E F$ then $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}$ is equal to
a) $\frac{A B^{2}}{E F^{2}}$
b) $\frac{A C^{2}}{E F^{2}}$
c) $\frac{B C^{2}}{E F^{2}}$
d) $\frac{A B^{2}}{D F^{2}}$

40. The ratios of the areas of two similar triangles is $9: 16$ then the ratios of their corresponding sides is \qquad
a) $3: 4$
b) $4: 3$
c) $9: 16$
d) $81: 256$
41. In $\triangle A B C$ if $\angle B=90^{\circ}, \mathrm{AC}=13 \mathrm{~cm}$ and $\mathrm{AB}=5 \mathrm{~cm}$ then BC is equal to \qquad
a) 10 cm
b) 11 cm
c) 12 cm
d) 18 cm

42. In $\triangle A B C$ if area of $\triangle A B C=54 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ then area of $\triangle D E F$ is \qquad

44. In $\triangle A B C$ if $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$ then value of $\angle B$ is \qquad
a) 120^{0}
b) 90°
c) 60°
d) 30^{0}
45. In $\triangle A B C \angle B=90^{\circ}$ if $\mathrm{AD}=8 \mathrm{~cm}, \mathrm{CD}=2 \mathrm{~cm}$ then BD is \qquad
a) 4 cm
b) 8 cm
c) 10 cm
d) 16 cm
46. A 6 m tall pole casts a shadow of length 4 m on the ground. At the same time if
 a building standing next to it, casts a shadow of length 28 m then the height of the building is \qquad
a) 48 m
b) 42 m
c) 40 m
d) 36 m
47. In the figure if $\triangle A B C \sim \triangle D E F$ then length of $D E$ is \qquad
a) 15 cm
b) 12 cm
c) 10 cm
d) 8 cm

48. In triangle ABC if $\angle \mathrm{B}=90^{\circ}$, then $\mathrm{AD}=$
a) 4 cm
b) 3.2 cm
c) 2.8 cm
d) 1.8 cm

49. In the figure $\triangle D E F \sim \triangle A B C$ and $\angle \mathrm{F}=\angle \mathrm{C}=50^{\circ}$ then length of $A B$ is \qquad
a) 8 cm
b) 6 cm
c) 4 cm
d) 3 cm

50. In triangle ABC if $\angle \mathrm{B}=90^{\circ}$, then $\mathrm{CD}=$ \qquad
a) 6.4 cm
b) 6.2 cm
c) 5.4 cm
d) 5.2 cm

51. In triangle ABC if $\mathrm{DE} \| \mathrm{BC}$ and $\mathrm{AD}: \mathrm{DB}=3: 4$ then

Area of $\triangle \mathrm{ABC}$: Area of $\triangle \mathrm{DEF}=$ \qquad
a) $9: 49$
b) $49: 9$
c) $1: 49$
d) $49: 1$

Unit 3: Pair of Linear Equations in Two Variables

52. If a pair of linear equations $x+2 y=3$ and $2 x+4 y=k$ are coincident then the value of ' k ' is \qquad
a) 3
b) 6
c) -3
d) -6
53. If $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are pair of linear equations which form intersecting lines then the ratio of their co-efficient is \qquad
a) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
b) $\quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
c) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
d) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$
54. Number of solutions for the pair of Linear Equations $2 x+3 y-9=0$ and $4 x+6 y-18=0$ is \qquad
a) 0
b) 1
c) 2
d) Infinity
55. In the equation $x+y=7$ if $x=3$ then the value of y is \qquad
a) 6
b) 5
c) 4
d) 3
56. If the pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are coincident then the correct relation among the following is \qquad
a) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
b) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
c) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
d) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
57. If $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are pair of linear equations which have infinite solutions, then the correct relation among the following is \qquad
a) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
b) $\quad \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
c) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
d) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
58. For what value of k will the graphs of the linear equations $2 x-y+4=0$ and $6 x-k y+12=0$ coincide?
a) $\frac{1}{3}$
b) $\frac{-1}{3}$
c) 3
d) -3
59. If the graphical representation of pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ is coincident then they have \qquad
a) No solution
b) Unique Solution
c) Two solutions
d) Infinitely many solutions
60. If the graphical representation of the pair of linear equations $4 x+k y+8=0$ and $4 x+4 y+2=0$ are parallel then the value of k is \qquad
a) -4
b) 2
c) 4
d) 8
61. Types of lines represented by the pair of linear equations $6 x+2 y-4=0$ and $2 x+4 y-12=0$ is \qquad
a) Intersecting
b) Perpendicular
c) Parallel
d) Coincident
62. On solving the equation $\mathrm{x}+\mathrm{y}=4$ and $\mathrm{x}-\mathrm{y}=2$ the values of x and y will be \qquad
a) $(3,1)$
b) $(2,2)$
c) $(1,3)$
d) $(10,4)$
63. In the given equations $2 x+y=5$ and $x-y=1$ the values of x and y will be \qquad
a) $(3,2)$
b) $(2,1)$
c) $(1,2)$
d) $(2,3)$
64. In the equation $2 x+y=8$ if $x=3$ then the value of y is \qquad
a) 4
b) 3
c) 2
d) 1
65. If the pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are consistent then the number of solutions is \qquad
a) 0
b) 1
c) 2
d) Infinite
66. The value of $\frac{c_{1}}{c_{2}}$ in the pair of linear equations $3 x+2 y=5$ and $2 x-y-6=0$ is \qquad
a) $\frac{-5}{6}$
b) $\frac{-6}{5}$
c) $\frac{5}{6}$
d) $\frac{3}{2}$
67. If $x+2 y-3=0$ and $5 x+k y+7=0$ are a pair of linear equations which have no solution then the value of k is \qquad
a) 10
b) 6
c) 3
d) 1
68. If the pair of linear equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ are consistent then their graphical representation is \qquad
a) Parallel
b) Coincident
c) Intersecting
d) Intersecting or Coincident
69. Number of solutions for the pair of linear equations $x+y=0$ and $x+y=3$ is \qquad
a) One solution
b) Two solutions
c) No solutions
d) Infinite Solutions
70. In the equation $3 x+y=10$ if $y=4$ then the value of x is \qquad
71.0
b) 1
c) 2
d) 3
71. In the given graphical representation, the solution to the pair of linear equations is \qquad
a) $(3,3)$
b) $(2,3)$
c) $(3,2)$
d) $(4,4)$
72. If $y=5$ in the linear equation $y=2 x-3$ then the value of x is \qquad

a) 2
b) 3
c) 4
d) 5
73. The solution to the pair of linear equations $2 x-y=2$ and $x-y=0$ is
a) $(4,4)$
b) $(3,3)$
c) $(2,2)$
d) $(1,1)$
74. The solution for the given pair of linear equations from the graph is \qquad
a) $(0,2)$
b) $(2,0)$
c) $(0,0)$
d) $(2,2)$
75. If the line formed by the linear equation $2 \mathrm{x}-\mathrm{y}=5$ passes through the point (3 ,

a) then the value of ' a ' is \qquad
a) 0
b) 1
c) 2
d) -1
76. The solution to the pair of linear equations $x+y=3$ and $x+y=-7$ is \qquad
a) One Solution
b) Two Solutions
c) Infinite Solutions
d) No Solutions
77. If the graphical representation of the equations $x+4 y=5$ and $3 x+2 k y+15=0$ are parallel then the value of ' k ' is \qquad
a) 3
b) 4
c) 6
d) 12
78. The value of x and y which satisfies the equation $4 x-3 y=5$ is \qquad
a) $x=1, y=-1$
b) $x=2, y=1$
c) $x=3, y=2$
d) $x=2, y=-2$
79. The number of solutions for the pair of linear equations $3 x+4 y=5$ and $9 x+12 y=15$ is \qquad
(a) Two Solutions
(b) One Solution
(c) Infinitely many Solutions
(d) No Solutions

Unit 4: Circles

81. A straight line which intersects a circle at two points is called \qquad
a) Secant
b) Tangent
c) Radius
d) Perpendicular Line
82. The number of points in which a tangent touches a circle are \qquad
a) 0
b) 1
c) 2
d) Infinite
83. The number of tangents that a circle can have is \qquad
a) 1
b) 2
c) 3
d) Infinite
84. The maximum number of parallel tangents that a circle can have are \qquad
a) 1
b) 2
c) 4
d) Infinite
85. The common point between the circle and the tangent of a circle is \qquad
a) Centre
b) Point of Contact
c) External Point
d) None of these
86. The length of the tangent drawn to a circle of radius 3 cm from a distance 5 cm from its centre is
a) 3 cm
b) 4 cm
c) 5 cm
d) 6 cm
87. If the length of the tangent drawn from an external point Q to a circle is 24 cm and the distance between the point Q and centre of the circle is 25 cm then the measure of the radius is \qquad
a) 7 cm
b) 12 cm
c) 15 cm
d) 24.5 cm
88. In the figure $\angle P O Q=110^{\circ}$. If TP and TQ are the tangents to the circle with ' O ', then the measure of $\angle P T Q$ is \qquad
a) 60^{0}
b) 70°
c) 80^{0}
d) 90°
89. If the angle between the tangents PA and PB drawn from an external point
 ' P ' to a circle with centre ' O ' is 80° then measure of $\angle P O A$ is \qquad
a) 40^{0}
b) 50°
c) 80°
d) 100°
90. If the length of the tangent drawn from an external point ' A ', 5 cm away from the centre of the circle is 4 cm , then the length of the radius is \qquad
a) 5 cm
b) 4.5 cm
c) 4 cm
d) 3 cm
91. In the figure ' O ' is the centre of the circle. If $\angle A O B=100^{\circ}$ then $\angle O A B$ is to \qquad
a) 80°
b) 50°
c) 40^{0}
d) 30^{0}

92. The angle between the tangent and the radius drawn at the point of contact is \qquad
a) 45^{0}
b) 60°
c) 80°
d) 90°
93. The maximum number of tangents that can be drawn to a circle from an external point is \qquad
a) 0
b) 1
c) 2
d) Infinite
94. In the figure if PA and PB are tangent to the circle with centre ' O ' then $\angle A P B=$ \qquad
a) 90°
b) 120°
c) 180°
d) 360°
95. In the figure ' O ' is the centre of the circle, PA and PB are tangents.

If $\angle A O B=100^{\circ}$ then measure of $\angle A P O$ is \qquad
a) 90°
b) 80°
c) 50^{0}
d) 40^{0}
96. In the figure ' O ' is the centre of the circle, PA is the tangent. If $\angle A P O=50^{\circ}$ then $\angle A P O=$ \qquad
a) 60^{0}
b) 50°
c) 40^{0}
d) 30^{0}
97. The maximum number of tangents that can be drawn to circle at a point on it is

\qquad
a) 0
b) 1
c) 2
d) Infinite
98. In the figure ' O ' is the centre of the circle. If $\mathrm{OA}=\mathrm{PA}$ then $\angle A O P=$
a) 50^{0}
b) 45^{0}
c) 40^{0}
d) 30^{0}

99. In the figure PA and PB are tangents to the circle. If $\angle A P B=60^{\circ}$ then $\triangle A P B$ is
\qquad .
a) Isosceles Triangles
b) Equilateral Triangle
c) Scalene Triangle
d) Right Angled Triangle

100.In the figure PQ and PR are the tangents. If $\angle P Q R=60^{\circ}$ and $\mathrm{PQ}=9 \mathrm{~cm}$ then the length of the chord QR is \qquad
a) 6 cm
b) 7 cm
c) 8 cm
d) 9 cm

101.The tangents drawn at the end points of the diameter of a circle \qquad
a) Intersect each other
b) Coincide with each other
c) Parallel to each other
d) Perpendicular to each other
102. In the figure ' O ' is centre of the circle. Measure of $\angle A C B$ is \qquad
a) 45^{0}
b) 60°
c) 90°
d) 100°

103. In the figure PQ and PR are the tangents. If $\angle Q P R=70^{\circ}$ then $\angle P Q R=$ \qquad
a) 70°
b) 65^{0}
c) 55^{0}
d) 50^{0}

104.In the figure AB, AD and DE are the tangents to the circle. If $\mathrm{AB}=3 \mathrm{~cm}$ and $\mathrm{DE}=4 \mathrm{~cm}$ then the length of AD is \qquad
b) 8 cm
b) 7 cm
c) 6 cm
d) 5 cm

105.In the figure TQ and TF are the tangents to the bigger circle and TR and TF are the tangents to the smaller circle. If $\mathrm{TQ}=8 \mathrm{~cm}$ the $\mathrm{TR}=$
a) 10 cm
b) 9 cm
c) 8 cm
d) 6 cm

106. In the figure if ' O ' is the centre of the circle then the longest chord is
a) AB
b) CD
c) $P Q$
d) RS

Unit 5: Constructions

106. In the figure the ratio in which the point ' P ' divides the line segment $A B$ is \qquad
a) $3: 2$
b) $2: 3$
c) $2: 1$
d) $3: 1$
107.If a point ' P ' divides a line segment AB such that $\frac{P B}{A B}=\frac{3}{7}$ then the ratio of AP : PB will be \qquad

a) $4: 7$
b) $7: 4$
c) $7: 3$
d) $4: 3$
107. To construct a triangle similar to $\triangle A B C$, given $B C=4.5 \mathrm{~cm}, \angle B=45^{\circ}, \angle C=60^{\circ}$ and the ratio of the corresponding sides is $\frac{3}{7}$ then the given line segment $B C$ should be divided in the ratio \qquad
a) $3: 4$
b) $3: 7$
c) $3: 10$
d) $4: 7$
108. In the figure the ratio in which the point ' P ' divides the line segment $A B$ is \qquad
a) $3: 2$
b) 3: 4
c) $4: 3$
d) $2: 3$
110.In order to divide a given line segment in the ratio $3: 5$, the number of
 arcs to be constructed on the line forming an acute angle with the given line segment is \qquad .
a) 3
b) 5
c) 8
d) 10
109. In the given figure to construct $\triangle A B C$ similar to $\triangle A D E$, the ratio of the corresponding sides will be \qquad
a) $\frac{7}{3}$
b) $\frac{3}{4}$
c) $\frac{4}{3}$
d) $\frac{3}{7}$
112.If two tangents with angles between them to be 60° are to be constructed from an external point, then the angle between the radii should be \qquad

a) 60^{0}
b) 75^{0}
c) 90°
d) 120°
110. In the given figure the ratio in which the point ' P ' divides the line segment $A B$ is \qquad
a) $4: 3$
b) $3: 4$
c) $4: 7$
d) $7: 4$

111. To construct tangents to a circle from an external point such that the angle between the tangents is 100° then the angle between the radii should be \qquad
a) 100^{0}
b) 90°
c) 80^{0}
d) 50^{0}
115.Number of tangents that can be drawn to a circle from its non-centric end of a radii is \qquad
a) 1
b) 2
c) 3
d) Infinite
112. On constructing $\triangle A B C \sim \triangle A D E$ the ratio of the corresponding sides of $\triangle A D E$ are $\frac{3}{5}$ times the corresponding sides of $\triangle A B C$. If $A B=5 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and BC $=7 \mathrm{~cm}$ then the length of sides BD and DE of $\triangle A D E$ (By Calculations)

a) $2 \mathrm{~cm}, 3 \mathrm{~cm}$
b) $3 \mathrm{~cm}, 3.6 \mathrm{~cm}$
c) $3 \mathrm{~cm}, 4.6 \mathrm{~cm}$
d) $4 \mathrm{~cm}, 3.6 \mathrm{~cm}$
\qquad
117.Number of tangents that can be drawn to a circle from a point inside it is
a) 2
b) 1
c) 0
d) Infinite
113. $\triangle A B C$ is constructed similar to $\triangle B D E$. In $\triangle A B C \angle B=90^{\circ}, A B=3 \mathrm{~cm}$ and $\mathrm{BC}=4 \mathrm{~cm}$. If the corresponding sides of $\triangle B D E$ is $\frac{5}{2}$ times that of $\triangle A B C$ then the length of BD and BE respectively are \qquad (By Calculations)
a) $10 \mathrm{~cm}, 7.5 \mathrm{~cm}$
b) $7.5 \mathrm{~cm}, 10 \mathrm{~cm}$
c) $8 \mathrm{~cm}, 12 \mathrm{~cm}$
d) $12 \mathrm{~cm}, 8 \mathrm{~cm}$

Unit 6: Coordinate Geometry

119. The distance of the point $P(4,3)$ from the x-axis is \qquad
a) 2 units b) 3 units
c) 4 units
d) 5 units
120.In the given graph the coordinates of the point A is \qquad
a)
$(-1,0)$
b) $(1,-1)$
c) $(0,2)$
d) $(2,0)$
121.The coordinates of the midpoint which divides the line joining A $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is \qquad

a) $\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}\right)$
b) $\left(\frac{x_{2}-x_{1}}{2}, \frac{y_{2}-y_{1}}{2}\right)$
b) $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
d) $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$
122.In the given figure if D is the midpoint of BC , then the coordinates of D are
a) $\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$
b) $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
c) $\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right)$
d) $\left(\frac{x_{2}+y_{3}}{2}, \frac{y_{2}+x_{3}}{2}\right)$

120. The distance of the point $P(5,2)$ from the $y-$ axis is \qquad
a) 2 units
b) 4 units
c) 5 units
d) 7 units
124.The co-ordinates of the origin are \qquad
a) $(0,0)$
b) $(0,1)$
c) $(1,0)$
d) $(1,1)$
125.The formula to find out the distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
a) $\sqrt{\left(x_{1}+x_{2}\right)^{2}+\left(y_{1}+y_{2}\right)^{2}}$
b) $\sqrt{\left(x_{1}+x_{2}\right)^{2}-\left(y_{1}+y_{2}\right)^{2}}$
c) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
d) $\sqrt{\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}}$
121. The distance between the origin and the point (x, y) is \qquad
a) $\sqrt{x^{2}+y^{2}}$
b) $\sqrt{x^{2}-y^{2}}$
c) $\sqrt{(x+y)^{2}}$
d) $\sqrt{(x-y)^{2}}$
127.The formula to find out the area of the triangle whose vertices are $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is \qquad
a) $\frac{1}{2}\left\lfloor x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\rfloor$
b) $\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)-x_{2}\left(y_{3}-y_{1}\right)-x_{3}\left(y_{1}-y_{2}\right)\right\rfloor$
c) $\frac{1}{2}\left\lfloor x_{1}\left(y_{2}+y_{3}\right)+x_{2}\left(y_{3}+y_{1}\right)+x_{3}\left(y_{1}+y_{2}\right)\right\rfloor$
d) $\frac{1}{2}\left\lfloor x_{1}\left(y_{2}+y_{3}\right)-x_{2}\left(y_{3}+y_{1}\right)-x_{3}\left(y_{1}+y_{2}\right)\right\rfloor$
128.The distance between the origin and the point $(3,4)$ is \qquad
a) 3 units
b) 4 units
c) 5 units
d) 6 units
129.The co-ordinates of the midpoint of the line joining the points $A(1,4)$ and $B(3,6)$ is \qquad
a) $(5,2)$
b) $(2,5)$
c) $(4,10)$
d) $(10,4)$
130.The distance between the origin and the point (p, q) is \qquad
a) $\sqrt{\mathrm{p}^{2} \mathrm{Xq}^{2}}$
b) $\sqrt{p^{2}-q^{2}}$
c) $\sqrt{(p+q)^{2}}$
d) $\sqrt{p^{2}+q^{2}}$
131.The distance between the origin and the point $(4,-3)$ is \qquad
a) 5 units
b) 4 units
c) 3 units
d) 1 unit
132.The distance between the origin and the point $(12,5)$ is \qquad
a) 13 units
b) 12 units
c) 7 units
d) 5 units
122. The distance of the point $P(5,3)$ from x axis and y axis is \qquad
a) 5 units, 3 units
b) 3 units, 5 units
c) 4 units, 3 units
d) 5 units, 2 units
134.The distance between the origin and the point $(0,4)$ is \qquad
a) 2 unitsb) 4 units
c) 8 units
d) 16 units
135.The distance of the point $(-4,-7)$ from the y axis is \qquad
a) 4 unitsb) 7 units
c) 11 units
d) $\sqrt{65}$ units
136.The distance between the points $(2,3)$ and $(6,6)$ is \qquad
a) 7 units
b) 5 units
c) 4 units
d) 3 units
123. The coordinates of the point on the x axis will be in the form \qquad
a) $(0, \mathrm{y})$
b) $(x, 0)$
c) $(0,0)$
d) (x, y)
124. The co-ordinates of the point of intersection of the x-axis and y-axis is \qquad
a) $(1,0)$
b) $(0,1)$
c) $(0,0)$
d) $(1,1)$
125. Ordinate of all points on the x -axis is \qquad
a) 0
b) 1
c) 2
d) 3
140.Abscissa of all points on the y-axis is \qquad
a) 3
b) 2
c) 1
d) 0
141.The coordinates of the points which divides the line segment joining the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ internally in the ratio $m_{1}: m_{2}$ is \qquad
a) $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
b) $\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}-m_{2}}\right)$
c) $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}-m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}-m_{2}}\right)$
d) $\left(\frac{m_{1} x_{2}-m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}-m_{2} y_{1}}{m_{1}+m_{2}}\right)$
126. Which of the following point is on the x -axis?
a) $(2,0)$
b) $(0,2)$
c) $(2,3)$
d) $(0,-2)$
127. Which of the following point is on the y-axis?
a) $(3,0)$
b) $(0,-4)$
c) $(-2,0)$
d) $(4,6)$
144.If the midpoint of the line joining the coordinates $\mathrm{A}(5,-2)$ and $\mathrm{B}(\mathrm{a}, \mathrm{b})$ is the origin then the value of ' a ' and ' b ' is \qquad
a) $(5,-2)$
b) $(-5,2)$
c) $(0,0)$
d) $(5,5)$
145.If $\mathrm{A}(2,3), \mathrm{B}(4, \mathrm{k})$ and $\mathrm{C}(6,-3)$ are collinear then the value of ' k ' is \qquad
a) -1
b) 0
c) 1
d) 2
146.If $\mathrm{A}(1,1) \mathrm{B}(0,0)$ and $\mathrm{C}(\mathrm{a}, \mathrm{b})$ then the correct relation among the following is \qquad
a) $a=2 b$
b) $a=b$
c) $b=2 a$
d) $a=-b$
147.In the given figure the length of PQ IS
a) 3 units
b) 4 units
c) 5 units
d) 6 units

Unit 7 : Quadratic Equations

148.If the roots of the equation $x^{2}+6 x+k=0$ are equal then the value of ' k ' is equal to \qquad
a) 9
b) -9
c) 8
d) 5
149.The standard form of quadratic equation is \qquad
a) $a x^{2}-b x+c=0$
b) $a x^{2}+b x+c=0$
c) $a x^{2}-b x-c=0$
d) $a x^{2}+b x-c=0$
150.If one root of the quadratic equation $(x-2)(x+1)=0$ is 2 then the other root is \qquad
a) 0
b) -1
c) 1
d) 3
151.The roots of the quadratic equation $a x^{2}+b x+c=0$ are \qquad
a) $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
b) $\frac{-\mathrm{b} \pm \sqrt{\mathrm{a}^{2}-4 \mathrm{bc}}}{2 \mathrm{a}}$
c) $\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}+4 \mathrm{ac}}}{2 \mathrm{a}}$
d) $\frac{-\mathrm{b} \pm \sqrt{\mathrm{a}^{2}+4 \mathrm{bc}}}{2 \mathrm{a}}$
152.If the roots of the quadratic equation $x^{2}-k x+4=0$ are equal then the value of ' k ' is \qquad
a) ± 2
b) ± 4
c) ± 8
d) ± 16
153. The discriminant of the quadratic equation $x^{2}+5 x+6=0$ is \qquad
a) 49
b) 25
c) 24
d) 1
154.The roots of the equation $x^{2}-x-6=0$ are \qquad
a) $(-2,3)$
b) $(-2,-3)$
c) $(2,3)$
d) $(2,-3)$
155.The roots of the equation $(x-1)(x-2)=0$ are \qquad
a) $-1,-2$
b) 1,2
c) $-1,2$
d) $-2,1$
156. The discriminant of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is \qquad
a) $b^{2}+4 a c$
b) $b^{2}-4 a c$
c) $\sqrt{b^{2}+4 a c}$
d) $\sqrt{b^{2}-4 a c}$
157.The standard form of the quadratic equation $x(x+1)=30$ is \qquad
a) $\mathrm{x}^{2}+\mathrm{x}=30$
b) $x^{2}+x-30=0$
c) $x^{2}-x-30=0$
d) $x^{2}-x=30$
158.If the roots of the quadratic equation are real then the value of its discriminant is \qquad
a) Less than zero
b) Greater than or equal to zero
c) -1
d) None of the above
159.If the quadratic equation $a x^{2}+b x+c=0$ does not have real roots then $b^{2}-4 a c$ is \qquad
a) Less than zero
b) Greater than zero
c) Equal to zero
d) Equal to one
160.If the roots of the quadratic equation $a x^{2}+b x+c=0$ are equal then the value of $b^{2}-4 a c$ is \qquad
a) Less than zero
b) Greater than zero
c) Equal to zero
d) Equal to one
161.The roots of the equation $x^{2}-5 x+6=0$ are \qquad
a) 2,3
b) $-2,3$
c) $2,-3$
d) $-2,-3$
162. The roots of the equation $x^{2}-6 x=0$ are \qquad
a) $(0,-6)$
b) $(0,6)$
c) $(6,-6)$
d) $(-6,-6)$
163. If $(x+4)(x-4)=9$ then the value of x is \qquad
a) ± 5
b) $\pm \frac{1}{5}$
c) 5,5
d) $4,-4$
164.The quadratic equation whose roots are equal to 2 and -1 is \qquad
a) $\mathrm{x}^{2}+2 \mathrm{x}-2=0$
b) $x^{2}+x+2=0$
c) $x^{2}-2 x+2=0$
d) $x^{2}-x-2=0$
165.If the roots of the equation $k x^{2}+2 x+3=0$ are equal the value of ' k ' is \qquad
a) $\frac{1}{3}$
b) $\frac{-1}{3}$
c) 3
d) -3
166.The discriminant of the equation $2 x^{2}-x-8=0$ is \qquad
a) -127
b) -65
c) -15
d) 65
167.If the discriminant of a quadratic equation $a x^{2}+b x+c=0$ is -3 then the roots of the equation are \qquad
a) Real and distinct
b) No real roots
c) Roots are equal
d) None of the above
168. The maximum number of roots that a quadratic equation can have is \qquad
a) 1
b) 2
c) 3
d) Infinite
169. If one root of the equation $2 x^{2}+k x+4=0$ is 2 then the value of ' k ' is \qquad
a) 6
b) -1
c) -2
d) -6
170. The standard form of the quadratic equation $x^{2}=3 x+2$ is \qquad
a) $x^{2}-3 x+2=0$
b) $x^{2}+3 x-2=0$
c) $x^{2}-3 x-2=0$
d) $x^{2}+3 x+2=0$
171.If one root of the equation $(3 x-2)(x+3)=0$ is -3 then the other root is \qquad
a) $\frac{2}{3}$
b) $\frac{3}{2}$
c) $\frac{-2}{3}$
d) $\frac{-3}{2}$
172. The standard form of the equation $2 x^{2}-5(4 x-1)=0$ is \qquad
a) $2 x^{2}-20 x-5=0$
b) $2 x^{2}-20 x+5=0$
c) $2 x^{2}+20 x-5=0$
d) $2 x^{2}+20 x+5=0$
173.The nature of the roots of the equation $2 x^{2}-x-3=0$ is \qquad
a) Roots are equal
b) Roots are real and distinct
c) No real roots
d) Roots are irrational
174. The sum of the squares of two consecutive even numbers is 164 . Its mathematical representation is
a) $x^{2}+(x+1)^{2}=164$
b) $x^{2}+(x+2)^{2}=164$
c) $[x+(x+2)]^{2}=164$
d) $x^{2}+(2 x)^{2}=164$
175.The sum of the squares of two consecutive odd numbers is 130. Its mathematical representation is
a) $x^{2}+(x+1)^{2}=130$
b) $x^{2}+(2 x)^{2}=130$
c) $x^{2}+(x+2)^{2}=130$
d) $(x+2 x)^{2}=130$

Unit 8: Introduction to Trigonometry

176. The value of $\sin 60^{\circ} x \cos 30^{\circ}$ is \qquad
a) $\frac{1}{4}$
b) $\frac{\sqrt{3}}{4}$
c) $\frac{3}{4}$
d) $\frac{1}{2}$
177. The value of $\sin \left(90^{\circ}-\theta\right)$ is \qquad
a) $\cos \theta$
b) $\tan \theta$
c) $\sec \theta$
d) $\cot \theta$
178. The value of $\tan 45^{\circ}$ is \qquad
a) $\sqrt{3}$
b) 0 -
c) 1
d) $\frac{1}{\sqrt{3}}$
179. The value of $\tan \theta-\cot \left(90^{\circ}-\theta\right)$ is \qquad
a) 1
b) 0
c) -1
d) $\frac{1}{2}$
180. In the figure if $\angle \mathrm{B}=90^{\circ}, \angle \mathrm{A}=\angle \mathrm{C}$ and $\mathrm{BC}=10 \mathrm{~cm}$ then the value of $\tan \mathrm{A}$ is \qquad
a) 0
b) 1
c) $\sqrt{3}$
d) $\frac{1}{\sqrt{3}}$
181. If $15 \cot A=8$ then the value of $\tan A$ is \qquad

a) 0
b) $\frac{8}{15}$
c) 1
d) $\frac{15}{8}$
182.If $\sqrt{3} \tan \theta=1$ then the value of θ is \qquad
a) 30°
b) 45^{0}
c) 60^{0}
d) 90°
182. The value of $\tan 45^{\circ}+\cot 45^{\circ}$ is \qquad
a) 0
b) 1
c) 2
d) N.D.
183. The value of $\cot \left(90^{0}-30^{\circ}\right)$ is \qquad
a) $\frac{1}{\sqrt{3}}$
b) $\frac{1}{2}$
c) 1
d) $\sqrt{3}$
184. In the figure if $\angle B=90^{\circ}, \angle C=\theta, \angle A=\alpha$ then the value of $\sin \alpha+\cos \theta$ is \qquad
a) $\frac{6}{5}$
b) $\frac{8}{5}$
c) $\frac{7}{5}$
d) $\frac{3}{4}$
185. The value of $\frac{\sin 80^{\circ}}{\cos 10^{\circ}}$ is \qquad

a) -1
b) 0
c) 1
d) N.D.
187.If $3 \tan \theta=3$ then the value of acute angle θ is \qquad
a) 90°
b) 60^{0}
c) 45^{0}
d) 30^{0}
186. The value of $\cos ^{2} \theta+\cos ^{2}\left(90^{\circ}-\theta\right)$ is \qquad
a) 2
b) 1
c) 0
d) -1
187. $(1+\cos \theta)(1-\cos \theta)=$
a) $\sin ^{2} \theta$
b) $\cos ^{2} \theta$
c) $\sec ^{2} \theta$
d) $\tan ^{2} \theta$
188. In the given figure if $\angle \mathrm{Y}=90^{\circ}, \angle \mathrm{Z}=30^{\circ}$ and $\mathrm{XY}=5 \mathrm{~cm}$ then the length of XZ is
a) 5 cm
b) 10 cm
c) 15 cm
d) 20 cm

191.If $\sin 18^{\circ}=\cos \mathrm{A}$ and A is an acute angle then $\angle \mathrm{A}=$ \qquad
a) 90°
b) 82^{0}
c) 72^{0}
d) 36°
189. If $5 \sin \mathrm{~A}=3$ then $\operatorname{cosec} \mathrm{A}=$ \qquad
a) $\frac{3}{5}$
b) $\frac{4}{5}$
c) $\frac{5}{4}$
d) $\frac{5}{3}$
190. In triangle ABC if $\angle \mathrm{B}=90^{\circ}$ then $\tan \mathrm{A}=$ \qquad
a) $\frac{13}{5}$
b) $\frac{5}{12}$
c) $\frac{12}{5}$
d) $\frac{5}{13}$
191. $\frac{1-\sin ^{2} \mathrm{~A}}{1-\cos ^{2} \mathrm{~A}}=$ \qquad

a) $\cot ^{2} \mathrm{~A}$
b) $\tan ^{2} \mathrm{~A}$
c) $\sec ^{2} \mathrm{~A}$
d) $\operatorname{cosec}^{2} A$
192. In triangle ABC if $\angle \mathrm{A}=90^{\circ}$ then $\sin \mathrm{B}=$ \qquad
a) $\frac{A C}{A B}$
b) $\frac{\mathrm{BC}}{\mathrm{AC}}$
c) $\frac{\mathrm{AC}}{\mathrm{BC}}$
d) $\frac{A B}{B C}$
193. The value of $\cos ^{2} 17^{0}-\sin ^{2} 73^{0}$ is \qquad
a) 1
b) $\frac{1}{3}$
c) 0
d) -1
194. The value of $\tan 10^{\circ} \mathrm{x} \tan 80^{\circ}$ is \qquad
a) -1
b) 1
c) 0
d) $\sqrt{3}$
195. $\frac{1-\tan ^{2} 45}{1+\tan ^{2} 45}=$ \qquad
a) 0
b) 1
c) -1
d) $\frac{1}{2}$
196. $\frac{\tan 55^{\circ}}{\cot 35^{\circ}}=$ \qquad
a) 0
b) 1
c) -1
d) $\frac{1}{\sqrt{3}}$
197. In the figure if $\angle \mathrm{C}=90^{\circ}$ then $\cot \mathrm{A}=$ \qquad
a) $\frac{12}{13}$
b) $\frac{5}{13}$
c) $\frac{13}{5}$
d) $\frac{5}{12}$
201.If $\sin \alpha=\frac{1}{2}$ and $\cos \beta=\frac{1}{2}$ then $\alpha+\beta=$ \qquad

a) 0^{0}
b) 30^{0}
c) 60^{0}
d) 90°
202.The trigonometric ratio equivalent to $\frac{1}{\sqrt{3}}$ is \qquad
a) $\sin 30^{\circ}$
b) $\cos 60^{\circ}$
c) $\tan 30^{\circ}$
d) $\tan 60^{\circ}$
198. The value of $10 \sin ^{2} \theta+10 \cos ^{2} \theta$ is \qquad
a) 10
b) 1
c) 0
d) $\frac{1}{10}$
199. $\cos 48^{\circ}-\sin 42^{0}=$ \qquad
a) 6
b) 1
c) 0
d) -1
200. $\sec \left(90^{\circ}-A\right)=$ \qquad
a) $\cos \mathrm{a}$
b) $\sin \mathrm{a}$
c) $\cot a$
d) cosec a
201. $\frac{\operatorname{cosec} 31^{0}}{\sec 59^{\circ}}=$ \qquad
a) 0
b) $\frac{1}{2}$
c) 1
d) -1
202. The value of $\sin ^{2} 60^{\circ}$ is \qquad
a) $\frac{\sqrt{3}}{2}$
b) $\frac{3}{4}$
c) $\frac{4}{3}$
d) $\frac{2}{\sqrt{3}}$
$208.1+\cot ^{2} \mathrm{~A}=$ \qquad
a) $\operatorname{cosec}^{2} \mathrm{~A}$
b) $\cos ^{2} \mathrm{~A}$
c) $\sec ^{2} \mathrm{~A}$
d) $\tan ^{2} \mathrm{~A}$
203. $\sec ^{2} \mathrm{~A}=$ \qquad
a) $1+\cot ^{2} \mathrm{~A}$
b) $1+\tan ^{2} \mathrm{~A}$
c) $1+\operatorname{cosec}^{2} \mathrm{~A}$
d) $1+\cos ^{2} \mathrm{~A}$
204. $\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=$ \qquad
a) 0
b) 1
c) -1
d) 2
211.Among the following the trigonometric ratios the ratio whose value is 1 is \qquad
a) $\sin 30^{\circ}$
b) $\cos 30^{\circ}$
c) $\sin 0^{0}$
d) $\cos 0^{0}$
$212 \cdot \sin 30^{\circ}+\cos 60^{\circ}=$ \qquad
a) 1
b) 0
c) $\frac{1}{4}$
d) $\frac{1}{2}$
205. If $5 \sec \mathrm{~A}=11$ then $\cos \mathrm{A}=$ \qquad
a) $\frac{11}{5}$
b) $\frac{5}{11}$
c) $\frac{1}{2}$
d) 1
206. In the figure if $\angle \mathrm{B}=90^{\circ} \angle \mathrm{A}=\theta$ (θ is an acute angle) then $\cos \left(90^{\circ}-\theta\right)=$ \qquad
a) $\frac{12}{13}$
b) $\frac{5}{13}$
c) $\frac{13}{5}$
d) $\frac{12}{13}$
207. If $2 \cos \theta=1$ then $\theta=$
a) 90°
b) 60°
c) 45^{0}
d) 30°

216.If $\sqrt{2} \cos \theta=1$ then $\theta=$
a) 30°
b) 45^{0}
c) 60^{0}
d) 90°
217.If $\sqrt{3} \tan \theta=1$ then $\theta=$ \qquad
a) 90°
b) 60°
c) 45^{0}
d) 30°
208. In the figure $\angle B=90^{\circ}$, if $\angle A$ is an acute angle then $\sin \left(90^{\circ}-A\right)=$
a) $\frac{3}{5}$
b) $\frac{4}{5}$
c) $\frac{5}{4}$
d) $\frac{5}{3}$
209. If $\cos \mathrm{A}+\cos ^{2} \mathrm{~A}=1$ then the value of $\sin ^{2} \mathrm{~A}+\sin ^{4} \mathrm{~A}$ is \qquad

a) 3
b) 2
c) 1
d) $\frac{1}{2}$
210. In the figure ' O ' is the centre, AC is the tangent. If $\mathrm{OC}=10 \mathrm{~cm}$ then
the length of the radius $\mathrm{OA}=$ \qquad
a) $10 \sqrt{3} \mathrm{~cm}$
b) $5 \sqrt{3} \mathrm{~cm}$
c) 5 cm
d) $4 \sqrt{3} \mathrm{~cm}$

Unit 9: Some Applications of Trigonometry

221.If a pole of height $4 \sqrt{3} \mathrm{~m}$ from the ground casts a shadow of length 4 m , then its angle of elevation towards the sun is \qquad
a) 30^{0}
b) 45^{0}
c) 60^{0}
d) 90°
222.From a point on the ground 30 m away from the foot of the tower, if the angle of elevation of the top of the tower is 45^{0} then the height of the tower is \qquad
a) 60 m
b) 45 mc$) 30 \mathrm{~m}$
d) $30 \sqrt{3} \mathrm{~m}$
223. The angle of depression from point A are $\angle \mathrm{DAC}=30^{\circ}, \angle \mathrm{DAE}=45^{\circ}$ then the angle of elevation from point C is
a) 15^{0}
b) 30°
c) 45^{0}
d) 75^{0}
224.A 10 m long rope is tied from a pole of height 5 m to the ground. The angle of
 elevation made by the rope with the ground is \qquad
a) 15^{0}
b) 30°
c) 45^{0}
d) 60^{0}
225.If the angle of elevation of the sun is 45^{0} then the length of the shadow cast by a 15 m tall building is
a) 25 m
b) 20 m
c) 15 m
d) 10 m
226.If the height of the pole and the shadow cast by it are in the ratio $\frac{1}{\sqrt{3}}$ then the angle of elevation formed is
a) 30^{0}
b) 45^{0}
c) 60°
d) 90°
227.If the length of the shadow cast by a building is 20 m and angle of elevation from the tip of the shadow to the top of the building is 60° then the height of the building is \qquad
a) 20 m
b) $20 \sqrt{3} \mathrm{~m}$
c) 25 m
d) $30 \sqrt{3} \mathrm{~m}$
228.If a pole of height 2 m casts a shadow of length $2 \sqrt{3} \mathrm{~m}$, then the angle of elevation towards the tip of the pole from the tip of the shadow is \qquad
a) 30^{0}
b) 45^{0}
c) 60^{0}
d) 90^{0}
229.If the height of a pillar is equal to the length of the shadow cast by it then the angle of elevation of the top of the pillar is \qquad
a) 30^{0}
b) 45^{0}
c) 60^{0}
d) 90°
230. The angle of elevation formed by the shadow of a pole to the top of the pole is 30°. If the height of the pole is 100 m then the length of the shadow cast by it is \qquad
a) $100 \sqrt{3} \mathrm{~m}$
b) 100 m
c) $100(\sqrt{3}-1) \mathrm{m}$
d) $\frac{100}{\sqrt{3}} \mathrm{~m}$
231.From the point 15 m away from the foot of the pole of height 50 m the angle of elevation to the top of the pole is \qquad .
a) 15^{0}
b) 30°
c) 45^{0}
d) 60^{0}
232.A kite is flying at a height of 75 m above the ground. If the inclination of the string of the kite with the ground is 60° then the length of the string is \qquad
a) $50 \sqrt{2} \mathrm{~m}$
b) $50 \sqrt{3} \mathrm{~m}$
c) $\frac{50}{\sqrt{2}} \mathrm{~m}$
d) $\frac{50}{\sqrt{3}} \mathrm{~m}$
233.If the angle of depression of a ship as observed from the top of a 75 m high light house is 30° then the distance between the ship and the light house is \qquad
a) $25 \sqrt{3} \mathrm{~m}$
b) $75 \sqrt{3} \mathrm{~m}$
c) $\frac{75}{\sqrt{2}} \mathrm{~m}$
d) $75 \sqrt{2} \mathrm{~m}$
234.A ladder placed along the wall makes an angle of 60° with the the ground. If the
 foot of the ladder is 8 m away from the wall then the height of the wall is \qquad
a) 4 m
b) 8 m
c) $8 \sqrt{2} \mathrm{~m}$
d) 16 m
235.The angle of depression of a car which is at a distance of $10 \sqrt{3} \mathrm{~m}$ from the foot of the building which is 10 m tall is \qquad
a) 30°
b) 45^{0}
c) 60^{0}
d) 90°
236.If the angle of depression of a boat from the top of a bridge of height 50 m is 30°, then the distance of the boat from the bridge is \qquad
a) $50 \sqrt{3} \mathrm{~m}$
b) 50 m
c) $25 \sqrt{3} \mathrm{~m}$
d) 25 m

Unit 10 : Statistics

237.The empirical relationship between the three measures of central tendency is \qquad
a) 2 Median $=$ Mode +3 Mean
b) 3 Median $=$ Mode +2 Mean
c) Median $=$ Mode + Mean
d) Median $=$ Mode - Mean
238. The median of the data $5,3,14,16,19$ and 20 is \qquad
a) 14
b) 14.5
c) 15
d) 16
239. The midpoint of the class interval $(10-25)$ is \qquad
a) 18
b) 17.5
c) 17
d) 15
240.The mean of the data $1,2,3,4,5$ is \qquad
a) 15
b) 7.5
c) 3.5
d) 3
241.The mode of the following frequency distribution is \qquad

X	5	10	15	20	25
f	2	8	3	10	5

a) 25
b) 20
c) 15
d) 10
242.In the frequency distribution of grouped data if $\sum f_{i} x_{i}=400$ and $\sum f_{i}=20$ then its mean is \qquad
a) 20
b) 25
c) 40
d) 800
243.The median of the data $15,17,19,14,12$ is \qquad
a) 17
b) 15
c) 14
d) 13
244.The mean of the first five prime numbers is \qquad
a) 5.7
b) 5.6
c) 5.5
d) 5
245.If for certain data the mean is 16 and median is 15 then the mode is equal to \qquad
a) 10
b) 11
c) 12
d) 13
246. The mode of the data $1,0,2,2,3,1,4,5,1,0$ is \qquad
a) 3
b) 2
c) 1
d) 0
247. If the point of intersection of 'less than ogive' and 'more than ogive' of a given frequency distribution is $(30,40)$ then the median will be \qquad
a) 30
b) 35
c) 40
d) 70
248. The value that repeats most often in given set of data is \qquad
a) Mean
b) Median
c) Mode
d) None of the above
249. The mean of 50 and 20 is \qquad
a) 70
b) 35
c) 30
d) 20
250. Which among the following is not a measure of central tendency?
a) Mean
b) Median
c) Mode
d) Range
251. If the mean of the data $11,8,9,12$ and x is 10 then the value of ' x 'is \qquad
a) 8
b) 9
c) 10
d) 11
252.In a group of data, the mode is \qquad
a) Score which is repeated less number of times
b) Middle Score
c) Most frequently repeated score
d) None of the above
253.If the mode of $16,15,17,16,15, x, 19,17,14,8$ is 15 then $\mathrm{x}=$ \qquad
a) 19
b) 15
c) 14
d) 8
254.If a certain group of data has its mean as 24 and mode as 12 then its median is \qquad
a) 25
b) 22
c) 20
d) 18
255. The mean of first 5 odd numbers is \qquad
a) 4
b) 5
c) 6
d) 7
256. The size of the class interval (40-50) is \qquad
a) 10
b) 40
c) 45
d) 50
257. The formula to calculate the mode is \qquad
a) $1+\left\lfloor\frac{f_{1}-f_{0}}{f_{1}-f_{0}-2 f_{2}}\right\rfloor$ h
b) $1+\left\lfloor\frac{2 f_{1}-f_{0}}{f_{1}-f_{0}-f_{2}}\right\rfloor h$
c) $1+\left\lfloor\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right\rfloor$ h
d) $1+\left\lfloor\frac{f_{1}-f_{0}}{2 f_{1}+f_{0}-2 f_{2}}\right\rfloor h$
258. The class interval which contains the mode in the following frequency distribution

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	3	9	15	30	18	5

a) (20-30)
b) (30-40)
c) (40-50)
d) $(50-60)$
259. In the given frequency distribution table if mode lies in the class interval (30-40) then which of the following is correct?

Class Interval	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	5	8	x	4	2

a) $x<8$
b) $x<4$
c) $x<5$
d) $x>8$
260.In the following distribution table the class-interval which contains the mode is \qquad

Class Interval	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
Frequency	10	12	15	8	13

a) 15
b) 13
c) 12
d) 8
261.In the following distribution table the class-interval which contains the median is \qquad

Class Interval	Frequency	Cumulative Frequency
$10-20$	7	7
$20-30$	12	19
$30-40$	11	30
$40-50$	18	48
$50-60$	12	60

a) $20-30$
b) $30-40$
c) $40-50$
d) $50-60$
262.The formula to calculate the median is \qquad
a) $1+\left[\frac{\frac{n}{2}-C_{f}}{f}\right] h$
b) $1+\left[\frac{\frac{n}{2}+C_{f}}{f}\right] h$
c) $1+\left[\frac{\frac{n}{4}-C_{f}}{f}\right] h$
d) $1+\left[\frac{\frac{n}{3}-C_{f}}{f}\right] h$
263. In the following frequency distribution table the value of ' 1 ' when calculating the mode is \qquad

Class Interval	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
Frequency	7	10	8	6	5

a) 40
b) 50
c) 60
d) 70
264.The marks scored by a student in 6 subjects are $27,30,45,60,35$ and x . If the mean of all scores is 42 then the value of x is \qquad
a) 40
b) 42
c) 55
d) 52

Unit 11: Surface Areas and Volumes

265. Volume of a cylinder is $300 \mathrm{~m}^{3}$. Volume of the cone whose radius and height is equal to that of the cylinder is \qquad
a) $900 \mathrm{~m}^{3}$
b) $600 \mathrm{~m}^{3}$
c) $150 \mathrm{~m}^{3}$
d) $100 \mathrm{~m}^{3}$
266.Surface Area of a sphere whose radius is 7 cm is \qquad
a) $154 \mathrm{~cm}^{2}$
b) $308 \mathrm{~cm}^{2}$
c) $616 \mathrm{~cm}^{2}$
d) $770 \mathrm{~cm}^{2}$
267.The formula to calculate the Curved Surface Area of the frustum of a cone is \qquad
a) $\pi\left(r_{1}^{2}+r_{2}^{2}\right) 1$
b) $\pi\left(r_{1}-r_{2}\right) 1$
c) $\pi\left(r_{1}+r_{2}\right) 1$
d) $\pi\left(\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right) 1$
268.Formula to calculate the Total Surface Area of a right circular cylinder is \qquad -
a) $\pi r^{2} h$
b) $2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
c) $\pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
d) $2 \pi r^{2}(r+h)$
269.Formula to find the volume of a solid sphere \qquad
a) $\frac{2}{3} \pi r^{3}$
b) $\frac{1}{3} \pi r^{3}$
c) $\frac{4}{3} \pi r^{3}$
d) $\frac{1}{3} \pi r^{2}$
270.Mathematical relationship between slant height (l), height (h) and radius (r) of a cone \qquad .
a) $\mathrm{l}^{2}=\mathrm{h}^{2}+\mathrm{r}^{2}$
b) $\mathrm{l}^{2}=\mathrm{h}^{2}-\mathrm{r}^{2}$
c) $\mathrm{l}^{2}=\mathrm{r}^{2}-\mathrm{h}^{2}$
d) $1=\sqrt{\mathrm{h}^{2}-\mathrm{r}^{2}}$
266. If the radius of the cone is ' r ', height is ' h ' then the slant height is $1=$ \qquad
a) $\sqrt{\mathrm{h}^{2}-\mathrm{r}^{2}}$
b) $\sqrt{\mathrm{r}^{2}-\mathrm{h}^{2}}$
c) $\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$
d) $\sqrt{(r+h)^{2}}$
272.Lateral Surface Area of a cube whose volume is $27 \mathrm{~cm}^{3}$ is \qquad
a) $36 \mathrm{~cm}^{2}$
b) $54 \mathrm{~cm}^{2}$
c) $63 \mathrm{~cm}^{2}$
d) $108 \mathrm{~cm}^{2}$
273.A sphere of radius ' r ' cm is melted to form a cone ' R ' cm and height ' h ' cm then the correct relation is
a) $\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi R^{3} h$
b) $\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi R^{2} h$
c) $\frac{2}{3} \pi r^{3}=\frac{1}{3} \pi R^{2} h$
d) $\frac{1}{3} \pi r^{3}=\frac{4}{3} \pi R^{2} h$
274.Perimeter of a base of a cylinder is 24 cm , height is 8 cm then the Curved Surface Areas will be \qquad
a) $136 \mathrm{~cm}^{2}$
b) $160 \mathrm{~cm}^{2}$
c) $190 \mathrm{~cm}^{2}$
d) $192 \mathrm{~cm}^{2}$
267. A cuboid of dimensions $12 \mathrm{~cm} \times 6 \mathrm{~cm} \times 3 \mathrm{~cm}$ is melted to form a cube, then the edge of each face of the cube is \qquad _.
a) 21 cm
b) 12 cm
c) 6 cm
d) 3 cm
268. Volume of the frustum of a cone whose height is ' h ' and radii of two circular ends are r_{1} and r_{2} is
a) $\frac{1}{3} \pi \mathrm{~h}\left(r_{1}+r_{2}+r_{1} r_{2}\right)$
b) $\frac{1}{3} \pi \mathrm{~h}\left(r_{1}^{2}+r_{2}^{2}+r_{1}^{2} r_{2}^{2}\right)$
c) $\frac{1}{3} \pi \mathrm{~h}\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
d) $\frac{1}{3} \pi \mathrm{~h}\left(r_{1}+r_{2}+r_{1}^{2} r_{2}^{2}\right)$
277.Curved Surface Areas of a cone whose radius of the base is 7 cm , and slant height 10 cm is \qquad
a) $110 \mathrm{~cm}^{2}$
b) $210 \mathrm{~cm}^{2}$
c) $220 \mathrm{~cm}^{2}$
d) $240 \mathrm{~cm}^{2}$
269. A metallic sphere of radius ' R ' cm is melted to form a metallic wire of radius ' r ' cm and length ' h ' cm . The correct relation among the following is \qquad
a) $\frac{4}{3} \pi R^{3}=\frac{1}{3} \pi r^{2} h$
b) $\frac{4}{3} \pi R^{3}=\pi r^{2} h$
(c) $\frac{1}{3} \pi \mathrm{R}^{3}=\frac{4}{3} \pi \mathrm{r}^{2} \mathrm{~h}$
(d) $\frac{2}{3} \pi R^{3}=\pi r^{2} h$
279.A solid cone is melted to from a cylinder whose radius is equal to that of the cone. If the height of the cylinder is 5 cm , then the height of the cone is \qquad
a) 18 cm
b) 15 cm
c) 12 cm
d) 10 cm
280.The ratio of the volumes of two spheres is $64: 27$ respectively. The ratio of their radii is \qquad
a) $3: 4$
b) $4: 3$
c) $9: 16$
d) $16: 9$
270. A Sphere of radius ' r ' units is converted into a cone of height ' r ' units. Radius of the cone is \qquad
a) runits
b) $2 r$ units
c) $3 r$ units
d) 4 r units
282.Total Surface Area of a solid hemisphere is \qquad
a) $4 \pi r^{2}$
b) $3 \pi r^{2}$
c) $2 \pi r^{2}$
d) $\frac{4}{3} \pi r^{2}$
283.A pencil sharpened at one edge is a combination of \qquad
a) Frustum of a cone and a cylinder
b) Cone and cylinder
c) Cylinder and Hemisphere
d) Cone and Hemisphere
284.A toy is prepared by mounting a cone on the hemisphere. Its Total Surface Area
a) $3 \pi r^{2}+\pi r l$
b) $4 \pi r^{2}+\pi r l$
c) $2 \pi r^{2}+\pi r l$
d) $\frac{2}{3} \pi r^{2}+\pi r l$

285.If the ratio of the radii of 2 spheres is $4: 5$ then the ratio of their areas is \qquad
a) $4: 5$
b) $5: 4$
c) $16: 25$
d) $25: 16$
271. The combination of solids in this funnel is \qquad
a) Cone and cylinder
b) Frustum of a cone and cylinder
c) Cylinder and Hemisphere
d) Cone and Cuboid
287.If the volume of two spheres is in the ratio $27: 8$ then the ratio of their radii is

a) $2: 3$
b) $3: 2$
c) $4: 9$
d) $9: 4$
272. The correct formula to find the volume of the given combination of solids is
a) $\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}+\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{r}^{2}+\mathrm{r}^{2}+\mathrm{rr}\right)$
b) $\frac{1}{3} \pi \mathrm{~h}\left(\mathrm{r}^{2}+\mathrm{r}^{2}+\mathrm{rr}\right)+\pi \mathrm{r}^{2} \mathrm{~h}$
c) $\frac{1}{3} \pi h\left(r^{2}+r^{2}+r^{2} r^{2}\right)+\pi r^{2} h$
d) $\frac{1}{3} \pi h\left(r^{2}+r^{2}+r r\right)+2 \pi r h$

273. Number of lead sheets each of radius 2 cm can made by melting a sphere of radius 4 cm is
a) 1
b) 2
c) 4
d) 8
290.The Combination of solids in the capsule is \qquad
a) 2 cylinders
b) 2 hemispheres + cylinder
c) 2 spheres + cylinder
d) 1 cylinder +1 hemisphere

291.The surface area of the capsule whose radius is ' r ' is \qquad
a) $2 \times 2 \pi r^{2}+2 \pi r h$
b) $2 \times 3 \pi r^{2}+2 \pi r h$
c) $2 x 2 \pi r^{2}+2 \pi r(r+h)$
d) $\frac{4}{3} \pi r^{3}+\pi r^{2} h$

274. Total surface area of the cone whose radius is ' r ', and slant height is ' 1 ' is \qquad
a) $\pi(r+1)$
b) $\pi r(r+1)$
c) $\pi l(\mathrm{r}+1)$
d) $2 \pi r(r+1)$
275. Volume of hemisphere whose radius ' r ' units is \qquad
a) $\frac{1}{3} \pi r^{3}$
b) $\frac{2}{3} \pi r^{3}$
c) $\frac{4}{3} \pi r^{3}$
d) $\frac{3}{2} \pi r^{3}$
294.The volume of this toy \qquad
a) $\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
(b) $\frac{4}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
(c) $\frac{1}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
(d) $\frac{2}{3} \pi r^{3}+\frac{2}{3} \pi r^{2} h$

276. The volume of the cuboid whose dimensions are $(5 \times 6 \times 3)$ is \qquad
a) 180 cubic units
b) 120 cubic units
c) 90 cubic units
d) cubic units [-c x9
277. Surface area of the sphere whose radius is 7 cm is \qquad
a) $616 \mathrm{~cm}^{2}$
b) $432 \mathrm{~cm}^{2}$
c) $343 \mathrm{~cm}^{2}$
d) $312 \mathrm{~cm}^{2}$
278. Curved surface area of a hemisphere whose radius is 7 cm is \qquad
a) $324 \mathrm{~cm}^{2}$
b) $316 \mathrm{~cm}^{2}$
c) $312 \mathrm{~cm}^{2}$
d) $308 \mathrm{~cm}^{2}$
279. Total surface area of the hemisphere whose radius is 7 cm is \qquad
a) $412 \mathrm{~cm}^{2}$
b) $432 \mathrm{~cm}^{2}$
c) $462 \mathrm{~cm}^{2}$
d) $484 \mathrm{~cm}^{2}$
280. Curved Surface Area of the cylinder whose radius is 7 cm and height is 10 cm is \qquad
a) $220 \mathrm{~cm}^{2}$
b) $410 \mathrm{~cm}^{2}$
c) $432 \mathrm{~cm}^{2}$
d) $440 \mathrm{~cm}^{2}$
281. Total Surface Area of the water pipe whose radius is ' r ' units and length is ' h ' units \qquad
a) $2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
b) $2 \pi \mathrm{rh}$
c) $\pi r^{2}+2 \pi r h$
d) $\pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
301.If the perimeter of the base of the cylinder is 88 cm and the height is 10 cm , then the volume of the cylinder is \qquad
a) $1890 \pi \mathrm{~cm}^{3}$
b) $1940 \pi \mathrm{~cm}^{3}$
c) $1960 \pi \mathrm{~cm}^{3}$
d) $1960 \mathrm{~cm}^{3}$
302.If the perimeter of the base of the cylinder is 22 cm and height is 5 cm then its Curved Surface Areas is
a) $45 \pi \mathrm{~cm}^{2}$
b) $35 \pi \mathrm{~cm}^{2}$
c) $35 \pi \mathrm{~cm}^{2}$
d) $25 \pi \mathrm{~cm}^{2}$
303.Taking some clay, a cone is formed. It is cut parallel to its base with a knife. When the smaller cone is separated the Total Surface Area of the solid that is remaining is \qquad
a) $\pi\left(r_{1}+r_{2}\right) 1$
b) $\pi\left(r_{1}+r_{2}\right) 1+\pi r_{1}^{2}+\pi r_{2}^{2}$
c) $\frac{1}{3} \pi \mathrm{~h}\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
d) $\pi\left[\left(r_{1}+r_{2}\right) 1+\pi r_{1}^{2}+\pi r_{2}^{2}\right.$

ANSWERS

Unit 1 : Arithmetic Progressions

1. d) $17\left(a_{n}=4 n+5\right.$

$$
\mathrm{a}_{3}=4(3)+5=12+5=17
$$

2. d) $8\left(x=\frac{2+14}{2}=\frac{16}{2}=8\right)$
3. b) $4\left(a_{n}=3 n-2\right.$

$$
\left.\mathrm{a}_{2}=3(2)-2=6-2=4\right)
$$

4. c) $7\left(\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-1\right.$

$$
\left.a_{4}=2(4)-1=8-1=7\right)
$$

5. b) $3\left[d=a_{2}-a_{1}=a_{3}-a_{2}=-----\right]$
$\left[\mathrm{d}=6-3=3\right.$ ($2^{\text {nd }}$ term $-1^{\text {st }}$ term) OR d=9-6=3 ($3^{\text {rd }}$ term- $2^{\text {nd }}$ term $)$]
6. b) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
7. c) $35,30,25 \ldots \ldots$. (Common difference, $\mathrm{d}=30-35=25-30=-5$ is equal. In other options $\mathrm{c} . \mathrm{d}$ is unequal)
[A) $d=4-1 \neq 6-4$
B) $d=10-12 \neq 14-10$
D) $\mathrm{d}=13-8 \neq 19-13$

$$
3 \neq 2 \quad 2 \neq 4 \quad 5 \neq 6]
$$

8. c) $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
9. c) $3\left[\mathrm{a}_{\mathrm{n}}=(3 \mathrm{n}-1) \Rightarrow \mathrm{a}_{1}=3(1)-1=3-1=2\right.$

$$
\mathrm{a}_{2}=3(2)-1=6-1=5 \Rightarrow d=\mathrm{a}_{2}-\mathrm{a}_{1}=5-2=3
$$

10. c) 55
$\mathrm{S}_{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}=\mathrm{S}_{10}=\frac{10(10+1)}{2}=\frac{5}{10 \times X_{11}}=55$
11. b) $-2\left[d=a_{2}-a_{1}=a_{3}-a_{2}=-----\right]$
$\left[\mathrm{d}=1-3=-2\left(2^{\text {nd }}\right.\right.$ term $-1^{\text {st }}$ term $)$ OR $d=-1-1=-2\left(3^{\text {rd }}\right.$ term- $2^{\text {nd }}$ term $\left.)\right]$
12. a) $0 \quad\left[d=a_{2}-a_{1}=a_{3}-a_{2}=-----\right]$
$\left[\mathrm{d}=\frac{1}{2}-\frac{1}{2}=0\left(2^{\text {nd }}\right.\right.$ term $-1^{\text {st }}$ term $)$ or $\mathrm{d}=\frac{1}{2}-\frac{1}{2}=0\left(3^{\text {rd }}\right.$ term- $2^{\text {nd }}$ term $)$]
13. c) $14 \quad\left(x=\frac{2+26}{2}=\frac{28}{2}=14\right)$
14. b) $S_{n}=\frac{n}{2}(a+1)$
15. c) $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
16. d) $17,20,23,26\left(d=a_{2}-a_{1}=5-2=3\right.$

Next 4 terms are $=14+3=17,17+3=20,20=3=23,23+3=26$)
17. b) $7\left(\mathrm{a}_{4}=9\right.$ and $\mathrm{d}=2 \therefore \mathrm{a}_{3}=\mathrm{a}_{4}-\mathrm{d}=9-2=7$
(To get previous term subtract d from that term)
18. c) $5\left(a_{n}=13-2 n\right.$
$\mathrm{a}_{4}=13-2(4)=13-8=5$
19. a) $-2\left(\mathbf{a}_{3}=10, \mathrm{a}_{4}=8 \therefore \mathrm{~d}=\mathrm{a}_{4}-\mathbf{a}_{3}=8-10=-2\right.$
20. d) $-11,-16\left(d=a_{2}-a_{1}=-1-4=-5\right.$

Next 2 terms are $=-6-5=-11$ and $-11-5=-16$)
21. d) $12\left(=a_{1}+a_{2}+\mathrm{a}_{3}=1+4=7=12\right)$
22. b) $6\left(a=1 a_{n}=11 S_{n}=36 S_{n}=\frac{n}{2}\left(a+a_{n}\right)\right.$

$$
36=\frac{\mathrm{n}}{2}(1+11)=\frac{\mathrm{n}}{2}(1 \not \partial)^{6}
$$

$$
6 n=36
$$

$$
n=\frac{36^{6}}{\varnothing_{1}}=6
$$

23. c) $1,3,5$. $\left(a_{n}=2 n-1\right.$
$\mathrm{a}_{1}=2(1)-1=2-1=1$
$\mathrm{a}_{2}=2(2)-1=4-1=3$
$a_{3}=2(3)-1=6-1=5$
24. b) -2
($\mathrm{a}_{\mathrm{n}}=5-2 \mathrm{n}$
$a_{1}=5-2(1)=3$ and $a_{2}=5-2(2)=5-4=1 \therefore d=a_{2}-a_{1}=1-3=-2$
25. c) 10,14 (Answer by seeing the options)
26. c) $4(10-6=4$, same difference continues)
27. b) $14 \quad S_{n}=3 n^{2}+5 n$
$S_{1}=3(1)^{2}+5(1)=3+5=8=a_{1}$
$S_{2}=3(2)^{2}+5(2)=12+10=22=a_{1}+a_{2}$
$\therefore \mathrm{a}_{2}=22-8=14$

Unit 2 : Triangles

28. b) Thales.
29. a) $\frac{P T}{T R}$ (According to BPT or Thales theorem,,$\frac{P S}{S Q}=\frac{P T}{T R}$)
30. d) $16: 81\left(4^{2}: 9^{2}\right.$, According to Areas of Similar Triangles theorem, The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides)
31. c) $\frac{A Y}{A C}$ (According to BPT or Thales theorem $\frac{A X}{A B}=\frac{A Y}{A C}$)
32. a) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ (According to Pythagoras theorem $7^{2}+24^{2}=25^{2}$ $49+576=625 \Rightarrow 625=625)$
33. c) $4: 1$ (Equilateral triangles are similar and D is midpoint of $B C$).
$\therefore \mathrm{BD}=\frac{1}{2} \mathrm{BC} \Rightarrow 2 \mathrm{BD}=\mathrm{BC} \therefore \mathrm{BC}: \mathrm{BD}=2: 1$
Ratio of corresponding Sides $=2: 1$
\therefore The ratio of the areas of two similar triangles $=2^{2}: 1^{2}=\mathbf{4}: 1$
\because The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding
sides.
OR
$\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{BDC}}=\frac{\mathrm{BC}^{2}}{\mathrm{BD}^{2}}=\frac{(2 \mathrm{BD})^{2}}{\mathrm{BD}^{2}}=\frac{4 \mathrm{BD}^{2}}{\mathrm{BD}^{2}}=\frac{4}{1}$
\therefore Area of $\triangle A B C$: Area of $\triangle \mathrm{BDC}=\mathbf{4 : 1}$
34. b) Pythagoras
35. d) In same ratio
36. b) $1: 2$ (According to Areas of Similar Triangles theorem, $\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}$

$$
\begin{aligned}
\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEF}}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}=\frac{120}{480}=\frac{1}{4} \\
\left.\therefore \frac{B C}{F F}=\sqrt{\frac{1}{4}}=\frac{1}{2}\right)
\end{aligned}
$$

37. d) $\mathrm{AC}^{2}-\mathrm{BC}^{2}=\mathrm{AB}^{2}$ (According to Pythagoras theorem $\mathrm{AC}^{2}=A \mathrm{~B}^{2}+\mathrm{BC}^{2}$ $\left.\Rightarrow A C^{2}-B C^{2}=A B^{2}\right)$
38. d) $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}$ (Corresponding sides of similar triangles are in same ratio.

Corresponding sides $\mathrm{AB} \rightarrow \mathrm{PQ}, \mathrm{BC} \rightarrow \mathrm{QR}$, and $\mathrm{AC} \rightarrow \mathrm{PR}$)
39. c) $\frac{B C^{2}}{E F^{2}}$ (According to Areas of Similar Triangles theorem $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}$
40. a) $3: 4$ (According to Areas of Similar Triangles theorem, $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{B C^{2}}{E F^{2}}=\left(\frac{B C}{E F}\right)^{2}=\frac{9}{16}$

$$
\left.\Rightarrow \frac{B C}{E F}=\sqrt{\frac{9}{16}}=\frac{3}{4}\right)
$$

41. c) 12 cm (According to Pythagoras theorem, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$

$$
\begin{aligned}
5^{2}+\mathrm{BC}^{2} & =13^{2} \\
& \Rightarrow \mathrm{BC}^{2}=13^{2}-5^{2}
\end{aligned}
$$

$=169-25=144$

$$
\Rightarrow \mathrm{BC}=\sqrt{144}=12)
$$

42. d) $96 \mathrm{~cm}^{2}$ (According to Areas of Similar Triangles theorem, $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{B C^{2}}{E F^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{54}{\text { Area of } \triangle D E F}=\frac{3^{2}}{4^{2}} \\
& \Rightarrow \frac{54}{\text { Area of } \triangle D E F}=\frac{9}{16}
\end{aligned}
$$

\therefore Area of $\triangle \mathrm{DEF}=\frac{54 \times 16}{9}=96 \mathrm{~cm}^{2}$.
43. b) 4.5 cm (According to BPT or Thales theorem,,$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\left.\Rightarrow \frac{2}{3}=\frac{3}{\mathrm{EC}} \Rightarrow \mathrm{EC}=\frac{3 \times 3}{2}=\frac{9}{2}=4.5 \mathrm{~cm}\right)$
44. b) $90^{0} \quad\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}=6^{2}+8^{2}=36+64=100\right.$
$\mathrm{AC}^{2}=10^{2}=100$
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \because$ According to Pythagoras converse theorem, $\angle \mathrm{B}=90^{0}$)
45. a) $4 \mathrm{~cm}\left(\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{CD} \Rightarrow \mathrm{BD}^{2}=8 \times 2=16 \Rightarrow \mathrm{BD}=\sqrt{16}=4 \mathrm{~cm}\right)$
46. b) 42 m

Simple Method: Height --Shadow

OR
In Figure, According to Thales Theorem

$$
\begin{aligned}
& \frac{A B}{D E}=\frac{B C}{E C} \\
& \frac{A B}{6}=\frac{28^{7}}{4_{1}} \\
& A B=6 \times 7=42 \mathrm{~m}
\end{aligned}
$$

47. c) $10 \mathrm{~cm}\left(\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F} \Rightarrow \frac{5}{D E}=\frac{4}{8}\right.$
$\frac{5}{D E}=\frac{4}{\beta_{2}}$
$5 \times 2=D E \leadsto D E=10 \mathrm{~cm}$
48. d) $1.8 \mathrm{~cm}\left(\mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}\right.$
$3^{2}=\mathrm{AD} \times 5$
$9=5 \mathrm{AD} \Rightarrow \mathrm{AD}=\frac{9}{5}=1.8$)
49. d) $3 \mathrm{~cm} \quad\left(\frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{EF}}{\mathrm{BC}}=\frac{\mathrm{DF}}{\mathrm{AC}}=\right.$
$\frac{6}{\mathrm{AB}}=\frac{8}{4}=\frac{10}{5}=2 \Rightarrow \mathrm{AB}=\frac{6}{2}=3$)
50. a) $6.4 \mathrm{~cm}\left(\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}\right.$
$8^{2}=10 \times C D$
$64=10 \mathrm{CD} \Rightarrow \mathrm{CD}=\frac{64}{10}=6.4$
51. b) $49: 9(\mathrm{AD}: \mathrm{DB}=3: 4 \Rightarrow \mathrm{AD}: \mathrm{AB}=3: 7$
$\Rightarrow \mathrm{AB}: \mathrm{AD}=7: 3 \Rightarrow \therefore \Delta \operatorname{area}(A B C): \Delta \operatorname{area}(A D E)=\mathbf{A B} \mathbf{B}^{\mathbf{2}}: \mathbf{A D}^{\mathbf{2}}$

$$
7^{2}: 3^{2} \quad=49: 9
$$

Unit 3 : Pair Of Linear Equations in Two Variables

52. b) 6 (Lines are coincident then, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{1}{2}=\frac{2}{4}=\frac{3}{k}$
$\Rightarrow \frac{1}{2}=\frac{3}{k} \Rightarrow \mathrm{k}=3 \times 2=6$

OR

We can understood in this way,

53. a) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
54. d) Infinite

$$
\left.\left.\left(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{2}{4}\right) \times 2=\frac{3}{6}\right) \times 2=\frac{-9}{-18}\right) \times 2=\frac{1}{2} .
$$

\therefore Lines are coincident \Rightarrow Infinite many solutions.
55. c) $4(x+y=7 \Rightarrow 3+y=7 \Rightarrow y=7-3=4$

$$
\begin{aligned}
& x+(y)=7 \\
& 3+(4)=7
\end{aligned}
$$

56. a) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
57. a) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
58. c) 3 (Lines are coincident $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{2}{6}=\frac{-1}{-k}=\frac{4}{12} \quad$ Numerator $\times 3=$ Denominator

$$
\begin{aligned}
& 2 \times 3=6 \quad 4 \times 3=12 \\
& \therefore(-1) \times 3=-k=-3)
\end{aligned}
$$

59. d) Infinite many solutions.
60. c) 4 (Lines are parallel then, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow \frac{4}{4}=\frac{k}{4} \Rightarrow \mathrm{k}=4$
61. a) Intersecting (If lines are intersecting then, $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ here $\frac{6}{2} \neq \frac{2}{4}$ after simplification $3 \neq \frac{1}{2}$
62. a) $(3,1)$ (Easily identify the answer3+1 $=4$ and $3-1=2)$

Method: $\quad x+y=4$
$\underline{x-y=2---(2)}$
$2 \mathrm{x}=6 \Rightarrow \mathrm{x}=\frac{6}{2}=3$

Substitute $\mathrm{x}=3$ in equation (1),
$3+y=4$
$y=4-3 \Rightarrow y=1$.
63. b) $(2,1) \quad[2 x+y=5$ and $x-y=1$ Easily identify the answer $]$
$2(2)+1=52-1=1]$
Method: $2 \mathrm{x}+\mathrm{y}=5$
$\underline{x-y}=1---(2)$
$3 x=6 \Rightarrow x=\frac{6}{3}=2$
Substitute $\mathrm{x}=2$ in equation (1),
$2 \mathrm{x} 2+\mathrm{y}=5$
$4+y=5 \Rightarrow y=5-4 \Rightarrow y=1$
64. c) 2 (Substitute $x=3$ in equation $2 x+y=8$, we get $2(3)+y=8$
$6+y=8 \Rightarrow y=8-6=2)$
65. b) 1 (Consistent pair of equations are intersect in a single point and $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ exactly one solutions)
66. c) $\frac{5}{6}$ (we write equations in standard form $(3 x+2 y-5=0$ and $2 x-y-6=0) \quad c_{1}=-5 \quad c_{2}=-6$ Then, $\frac{c_{1}}{c_{2}} \Rightarrow \frac{-5}{-6}=\frac{5}{6}$)
67. a) 10 (Pair of equations has no solution only if lines are parallel and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ $\frac{1}{5}=\frac{2}{k} \Rightarrow \mathrm{k}=5 \times 2=10$
68. c) Intersect each other $\left(\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}\right.$ Unique solution $)$
69. c) No solutions (Lines are Parallel $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ then, No solutions)
70. c) 2 [Substitute $y=4$ in equation $3 x+y=10$ we get, $3(x)+4=10$
$3 x=10-4=6 \Rightarrow x=\frac{6}{3}=2$]
71. a) $(3,3)$
72. c) $4 \quad(y=2 x-3$
$5=2 \mathrm{x}-3$
$5+3=2 x \Rightarrow 2 x=8 \Rightarrow x=\frac{8}{2}=4$)
73. c) $(2,2) \quad 2 x-y=2 ; x-y=0 \Rightarrow x=y$
$2 x-x=2$
$\therefore \mathrm{x}=2$ and $\mathrm{y}=2$
74. b) $(2,0)$
75. b) $12 x-y=5[(3, a)]$

2(3) $-\mathrm{a}=5 \Rightarrow 6-\mathrm{a}=5 \Rightarrow 6-5=a \Rightarrow a=1$
76. d) No Solution (Parallel lines $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow \frac{1}{1}=\frac{1}{1} \neq \frac{3}{-7}$
$\Rightarrow 1=1 \neq \frac{-3}{7}$
77. c) 6 (Parallel lines $\frac{1_{1}}{3}=\frac{4}{2 k}\left[\neq \frac{c_{1}}{c_{2}}\right]$
$\Rightarrow 2 \mathrm{k}=4 \mathrm{x} 3=12 \Rightarrow \mathrm{k}=\frac{12}{2}=6$
78. b) $x=2, y=1(4 x-3 y=5$ go through wit options)

4(2)-3(1) $=5$
$8-3=5$
79. c) Infinitely many solutions $\left(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow \frac{3}{9}=\frac{4}{12}=\frac{-5}{-15} \Rightarrow \frac{1}{3}=\frac{1}{3}=\frac{1}{3} \Rightarrow\right.$ lines are coincde)

Unit 4 :Circles

80. a) Secant (In this figure Secant of the Circle intersects Circle at A and B)

81. b) 1 (In this figure the tangent touching circle at one $\&$ only point P)

82. d) Infinite (There are infinite points on the circle. The tangent can be drawn at each point

(In figure Some tangents have been drawn)
83. d) Infinite (Infinite diameter can be drawn in a Circle. The tangents drawn at the end points of each diameter are parallel)

84. b) Point of contact (In the figure point of contact P is on the circle and the tangent)
85. b) 4 cm (This is application of Pythagoras theorem.3, 4, 5are Pythagorean triplets)

$$
\begin{aligned}
& A B^{2}+O B^{2}=O A^{2} \\
& A B^{2}+3^{2}=5^{2} \\
& A B^{2}+9=25 \Rightarrow A B^{2}=25-9=16 \\
& A B=\sqrt{16}=4
\end{aligned}
$$

86. a) 7 cm (This is application of Pythagoras theorem.7, 24, 25are Pythagorean triplets)

$$
\begin{aligned}
& O P^{2}+\mathrm{PQ}^{2}=O Q^{2} \\
& O P^{2}+24^{2}=25^{2} \\
& O P^{2}+576=625 \Rightarrow O P^{2}=625-576=49 \\
& O P=\sqrt{49}=7
\end{aligned}
$$

87. b) 70° (Angle between radii + Angle between tangents $\left.=180^{\circ}\right)$
\therefore Angle between tangents $=180-110=70$)

$$
\begin{aligned}
& \angle P O Q+\angle P T Q=180^{\circ} \\
& 110^{\circ}+\angle P T Q=180^{\circ} \\
& \therefore \angle P T Q=180-110=70
\end{aligned}
$$

88. b) 50° (In figure

$$
\begin{aligned}
& \angle A O B+\angle A P B=180^{\circ} \\
& \angle A O B+80=180^{\circ} \\
& \angle A O B=180-80=100 \\
& \text { Now } \angle P O A=\frac{100}{2}=50^{\circ}
\end{aligned}
$$

89. d) 3 cm (This is application of Pythagoras theorem. 3, 4, 5are Pythagorean triplets)

90. c) $40^{\circ}\left(180-100=80 \angle O A B=\frac{80}{2}=40^{\circ}\right)$

$$
\begin{array}{c|l}
\text { In the figure } \quad \angle A O B+\angle O A B+\angle O B A=180^{\circ} & O A=O B \text { (Radii) } \\
100+\angle \angle O A B=180 & \therefore \angle O A B=\angle O B A \\
2 \angle O A B=180-100=80 & \\
\angle O A B=\frac{80}{2}=40^{\circ} &
\end{array}
$$

91. d) 90° (Theorem: The tangent at any point of a circle is perpendicular to the radius through the point of centres)
92. c) 2 (In figure PA and PB are tangents drawn from the external point P)

93. c) 180° (Angle between radii + Angle between tangents $=180^{\circ}$)
94. d) 40^{0}

In figure

$$
\begin{gathered}
\angle A P B=180^{\circ} \\
100+\angle A P B=180^{\circ} \\
\angle A P B=180-100=80 \\
\therefore \quad \angle A P O=\frac{80}{2}=40^{\circ}
\end{gathered}
$$

95. c) $40^{\circ}(90-50=40 \because \angle \mathrm{PAO})=90^{\circ}$ (Theorem $)$

In figure $\angle \mathrm{POA}=50^{\circ}$

$$
\begin{gathered}
\text { i. } \angle \mathrm{PAO})=90^{\circ}(\text { Theorem }) \\
\angle \mathrm{POA}+\angle \mathrm{PAO})+\angle A \mathrm{PO}=180^{\circ} \\
50^{\circ}+90^{\circ}+\angle A P O=180^{\circ} \\
140+\angle A \mathrm{PO}=180^{\circ} \Rightarrow \angle A \mathrm{PO}=180-140=40
\end{gathered}
$$

96. b) 1 (In figure Only one tangent can be drawn at the point)
97. b) 45° (In figure $\angle O A P=90^{\circ}$

$$
\begin{aligned}
& \angle A O P=\angle A P O(\mathrm{OA}=\mathrm{PA}) \\
& \angle O A P+\angle A O P+\angle A \mathrm{PO}=180^{\circ} \\
& 90+2 \angle A O P=180 \\
& 2 \angle A O P=180-90=90 \Rightarrow \angle A O P=\frac{90}{2}=45^{\circ}
\end{aligned}
$$

98. b) Equilateral triangle (The tangents drawn to a circle from an external point are equal and $\angle A P B=60^{\circ}$
99. d) $9 \mathrm{~cm}[\mathrm{PQ}=9 \mathrm{~cm} \Rightarrow \mathrm{PR}=9 \mathrm{~cm}$ (The tangents drawn to a circle from an external point are equal)
$\angle \mathrm{PQR}=60^{\circ} \Rightarrow \angle \mathrm{PRQ}=60^{\circ}$ (base angles) $\Rightarrow \angle \mathrm{QPR}=60^{\circ}\left(3^{\text {rd }}\right.$ angle of triangle)
$\therefore \mathrm{QR}=9 \mathrm{~cm}$ ($\triangle \mathrm{PQR}$ equilateral triangle)
100. c) parallel (As showing the figure)

101. c) 90° (Angle in a semi circle is right angle)
102. c) 55° (In figure $P Q=P R($ The tangents drawn to a circle from an external point are equal)

$$
\underline{\mathrm{PQR}+\angle \mathrm{PRQ}=180-70\left(\angle Q P R=70^{\circ}\right), ~(\angle)}
$$

$2 \angle \mathrm{PQR}=110(\angle \mathrm{PQR}=\angle \mathrm{PRQ})$
$\angle \mathrm{PQR}=\frac{110}{2}=55^{\circ}$
103. b) 7 cm (In figure $\mathrm{AD}=\mathrm{A}+\mathrm{CD} \quad \mathrm{AC}=\mathrm{AB}$ దుత్తు $\mathrm{CD}=\mathrm{DE}$
$\mathrm{AD}=\mathrm{AB}+\mathrm{DE}$
$\mathrm{AD}=3+4=7 \mathrm{~cm}$
(The tangents drawn to a circle from
an external point are equal)

104. c) 8 cm ($\mathrm{TQ}=8 \mathrm{~cm}=\mathrm{TF}$ (Tangents drawn from exterior point to the largest circle are equal)
$\mathrm{TF}=\mathrm{TR}$ (Tangents drawn from exterior point to the smallest circle are equal)
$\therefore \mathrm{TR}=8 \mathrm{~cm}$
105. c) PQ (The largest chord of the circle is Diameter)

Unit 5 : Constructions

106. a) 3:2 (3 points on AD and 2 points on $\mathbf{B C}$)
107. d) 4:3(Draw a figure and locate the point)

108. a) $3: 4$
109. b) 3:4 (3 points on ACand 4 points on BD)
110. c) $8(3+5=8)$
111. b) $\frac{3}{4}$ (Joined $\mathrm{A}_{4} \& B \therefore$ Denominator $=4$ parallel line drawn from $\mathrm{A}_{3} \therefore$ Numerator $=3 \therefore \frac{3}{4}$)
112. d) 120° (Angle between the radii + Angle between tangents $=180^{\circ}$
\therefore Angle between the radii $=180-60=120$)
113. b) 3:4 (Total 7 points on AX. Parallel line drawn from $3^{\text {rd }}$ point to $A_{7} B$ and there are 4 points after A3.)
114. c) 80° (Angle between the radii + Angle between tangents $=180^{\circ}$
\therefore Angle between the radii $=180-100=80$)
115. a) 1 (In figure, We can draw only onetangent PQ through A)
116.

b) $3 \mathrm{~cm}, 3.6 \mathrm{~cm}$

$$
\mathrm{BD}=\frac{3}{5} \mathrm{AB}=\frac{3}{5} \times 5=3 \mathrm{~cm}
$$

$$
\mathrm{DE}=\frac{3}{5} \mathrm{AC}=\frac{3}{5} \times 6=\frac{18}{5}=3.6 \mathrm{~cm}
$$

117. c) 0 (Observe the figure,we annot draw any tangents from S)
118. a) $10 \mathrm{~cm}, 7.5 \mathrm{~cm} \quad \mathrm{BD}=\frac{5}{2} \mathrm{BC}=\frac{5}{2} \times 4=10 \mathrm{~cm}$

$$
\mathrm{BE}=\frac{5}{2} \mathrm{AB}=\frac{5}{2} \times 3=\frac{15}{2}=7.5 \mathrm{~cm}
$$

Unit 6 : Coordinate Geometry

119. b) 3 units (The distance from the x axis to its point is the Y Co-ordinate)
120. d) $(2,0)$ (The y -coordinate of the point on the x -axis is 0 (Zero))
121. c) $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
122.

a) $\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$
123.
c) 5 Units (The distance from the y axis to its point is the xcoordinate)
124.
a) $(0,0)$
125.
c) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
126.
a) $\sqrt{x^{2}+y^{2}}$
127.
a) $\frac{1}{2}\left\lfloor x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\rfloor$
128. c) 5 Units $\left(\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5\right.$ (Application of Pythagoras Theorem)
(We can also interpret that 3,4,5 are Pythagorian Triplets)
129.
b) $(2,5)\left[\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{1+3}{2}, \frac{4+6}{2}\right)=\left(\frac{4}{2}, \frac{10}{2}\right)=(2,5)\right]$
130.
d) $\sqrt{p^{2}+q^{2}}$
131.
a) 5 Units $\left(\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=\sqrt{4^{2}+(-3)^{2}}=\sqrt{16+9}=\sqrt{25}=5\right.$
(Application of Pythagoras Theorem)
(We can also interpret that 3,4,5 are Pythagorean Triplets)
132.
a) 13 Units $\left(\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13\right.$
(We can also interpret that 5,12,13 are Pythagorean Triplets)
133.
b) 3 Units, 5 Units (The distance from the y -axis to the point is its x coordinate)

1. (The distance from the x -axis to the point is its y coordinate)
2.

b) 4 Units $\left(\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=\sqrt{0^{2}+4^{2}}=\sqrt{0+16}=\sqrt{16}=4\right.$
(The point along the y-axis is the distance from the origin to the y coordinate)
135. a) 4 Units (The distance from the y -axis to the point is its x coordinate)
(Distance is written positively though the coordinate is negative)
136.
b) 5 Units $\left(d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right.$
$d=\sqrt{(6-2)^{2}+(6-3)^{2}}$
$\mathrm{d}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{16+9}=\sqrt{25}=5$ Units)
137. b) $(x, 0)$
138. c) $(0,0)$ (The point where the x axis and y axis meet is the origin point)
139. a) 0 (Zero)
140. d) 0 (Zero)
141.
a) $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
142. a) $(2,0)$ (The y coordinate of each point on the x axis is 0 (zero))
143. b) $(0,-4)$ (The x coordinate of each point on the y axis is 0 (zero))
144.
b) $(-5,2) \quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}=(\mathrm{x}, \mathrm{y})\right.$

$$
\begin{aligned}
& \frac{5+a}{2}=0 \text { and } \frac{-2+w b}{2}=0 \\
& \Rightarrow \quad 5+a=0 \text { and }-2+b=0 \\
& \Rightarrow \quad a=-5 \text { and } b=2
\end{aligned}
$$

145.

$$
\begin{aligned}
& \text { b) } 0 \quad \frac{1}{2}\left\lfloor x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \quad(\mathrm{~A}(2,3) \mathrm{B}(4, \mathrm{k}) \mathrm{C}(6,-3)) \\
& \frac{1}{2}[2(k-(-3))+4(-3-3)+6(3-k)\rfloor=0 \\
& \left.\frac{1}{2}[2(k+3))+4(-6)+6(3-k)\right\rfloor=0 \\
& \frac{1}{2}[2 k+6-24+18-6 k\rfloor=0 \\
& \frac{1}{2}[-4 k\rfloor=0 \Rightarrow 4 \mathrm{k}=0 \Rightarrow \mathrm{k}=0
\end{aligned}
$$

146.

b) $\mathrm{a}=\mathrm{b} \quad \frac{1}{2}\left\lfloor x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\rfloor=0 \quad[\mathrm{~A}(1,1) \quad \mathrm{B}(0,0) \quad \mathrm{C}(\mathrm{a}, \mathrm{b})]$

$$
\frac{1}{2}\lfloor 1(0-b)+0(b-1)+a(1-0)\rfloor
$$

$$
\begin{aligned}
& \frac{1}{2}\lfloor-b+0+a\rfloor=0 \\
& -b+a=0 \Rightarrow a=b
\end{aligned}
$$

147.

c) 5 units (Pythagoras Theorem in triangle PTQ)

Unit 7 : Quadratic Equations

148. a) 9 (If roots are equal $b^{2}-4 a c=0$ Here $a=1, b=6, c=k$

$$
\begin{aligned}
& 6^{2}-4(1)(\mathrm{k})=0 \\
& \left.36-4 \mathrm{k}=0 \Rightarrow 36=4 \mathrm{k} \Rightarrow \mathrm{k}=\frac{36}{4}=9\right)
\end{aligned}
$$

149. b) $a x^{2}+b x+c=0$
150. b) $-1(\mathrm{x}-2=0 \Rightarrow x=2$ Similarly $\mathrm{x}+1=0 \Rightarrow x=-1)$
151. a) $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
152. b) ± 4 [If roots are equal $b^{2}-4 a c=0\left(x^{2}-k x+4=0\right.$ ఇల్లి $\left.a=1, b=-k, c=4\right)$

$$
\begin{aligned}
& (-k)^{2}-4(1)(4)=0 \\
& \left.k^{2}-16=0 \Rightarrow k^{2}=16 \Rightarrow k=\sqrt{16} \pm 4\right]
\end{aligned}
$$

153. d) $1\left[x^{2}+5 x+6=0\right.$ ఇల్లి $a=1, b=5, c=8$

Discriminant $=b^{2}-4 a c=5^{2}-4(1)(6)$

$$
=25-24=1
$$

154. a) $(-2,3)$

155. b) $1,2 \quad((x-1)(x-2)=0 \Rightarrow x-1=0$ or $x-2=0$

$$
x=1 \text { or } x=2)
$$

156. b) $b^{2}-4 a c$
157. b) $\mathrm{x}^{2}+\mathrm{x}-30=0(\mathrm{x}(\mathrm{x}+1)=30$
$x^{2}+x=30 \Rightarrow x^{2}+x-30=0$
158. b) Greater than Zero or equal to Zero
159. a) less than Zero
160. c) equal to zero
161. a) 2,3

162. b) $(0,6)\left(x^{2}-6 x=0\right.$

$$
x(x-6)=0
$$

$$
x=0 \text { or } x-6=0 \Rightarrow x=6)
$$

163. a) $\pm 5 \quad(x+4)(x-4)=9\left((a+b)(a-b)=a^{2}-b^{2}\right.$

$$
\begin{aligned}
& x^{2}-(4)^{2}=9 \\
& x^{2}-16=9 \\
& x^{2}=16+9=25 \\
& x=\sqrt{25} \pm 5
\end{aligned}
$$

164. d) $x^{2}-x-2=0$ (Quadratic Equation $=x^{2}-($ sum of the roots $) x+$ product of the roots $=0$

$$
\begin{aligned}
& x^{2}-[2+(-1)] x+2(-1)=0 \\
& x^{2}-(2-1) x-2=0 \\
& x^{2}-1 x-2=0 \Rightarrow x^{2}-x-2=0
\end{aligned}
$$

165. a) $\frac{1}{3}$ [If roots are equal, $b^{2}-4 a c=0\left(k^{2}+2 x+3=0\right.$ Here $\left.a=k, b=2, c=3\right)$

$$
(2)^{2}-4(\mathrm{k})(3)=0
$$

$$
4-12 \mathrm{k}=0 \Rightarrow 4=12 \mathrm{k} \Rightarrow \mathrm{k}=\frac{4}{12}=\frac{1}{3}
$$

166. d) $65\left(2 x^{2}-x-8=0\right.$ Here $\left.a=2, b=-1, c=-8\right)$

Discriminant $=b^{2}-4 \mathrm{ac}=(-1)^{2}-4(2)(-8)$

$$
=1+64=65
$$

167. b) No real roots
168. b) 2
169. d) $-6\left(2 x^{2}+k x+4=0\right.$ (Substituting $\left.x=2\right)$

$$
\begin{aligned}
& 2(2)^{2}+\mathrm{k}(2)+4=0 \\
& 2(4)+2 \mathrm{k}+4=0 \\
& 8+2 \mathrm{k}+\underline{4}=0 \\
& \left.2 \mathrm{k}+12=0 \Rightarrow 2 \mathrm{k}=-12 \Rightarrow \mathrm{k}=\frac{-12}{2}=-6\right)
\end{aligned}
$$

170. c) $x^{2}-3 x-2=0$
171. a) $\left.\frac{2}{3}(3 x-2)=0 \Rightarrow 3 x=2 \Rightarrow x=\frac{2}{3}\right)$
172. b) $2 x^{2}-20 x+5=0 \quad\left(2 x^{2}-5(4 x-1)=0\right.$

$$
\left.2 x^{2}-20 x+5=0\right)
$$

173. b) Distinct real roots (Discriminant $=b^{2}-4 a c \quad\left[2 x^{2}-x-3=0\right.$ here $\left.a=2, b=-1, c=-3\right]$

$$
\begin{aligned}
& =(-1)^{2}-4(2)(-3) \\
& =1+24=25>0
\end{aligned}
$$

174. b) $x^{2}+(x+2)^{2}=164$ (x and ($\left.x+2\right)$ are two consecutive even numbers)
175. c) $x^{2}+(x+2)^{2}=130$ (x and ($\left.x+2\right)$ are two consecutive odd numbers)

Unit 8 : Introduction to Trigonometry

176. c) $\frac{3}{4}\left(\sin 60^{\circ} X \cos 30^{\circ}\right)$

$$
\left.\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}=\frac{\sqrt{3}^{2}}{4}=\frac{3}{4}\right)
$$

177. a) $\cos \theta$ (Complementary angle)
178. c) 1
179. b) $0 \quad\left(\tan \theta-\cot \left(90^{\circ}-\theta\right) \quad\left[\cot \left(90^{\circ}-\theta\right)=\tan \theta\right.\right.$ (Complimentary angle)]

$$
\Rightarrow \tan \theta-\tan \theta=0)
$$

180. b) $1\left(\angle \mathrm{~A}=\angle \mathrm{C} \& L \mathrm{~B}=90^{\circ} \Rightarrow \angle \mathrm{A}=\angle \mathrm{C}=45^{\circ} \Rightarrow, \mathrm{BC}=\mathrm{AB}=10 \mathrm{~cm}\right.$

$$
\tan \mathrm{A}=\frac{B C}{A B}=\frac{10}{10}=1 \quad \text { or } \tan 45^{\circ}=1
$$

181. d) $\frac{15}{8} \quad(15 \cot A=8$

$$
\cot \mathrm{A}=\frac{8}{15} \Rightarrow \tan \mathrm{~A}=\frac{15}{8}(\text { reciprocal ratio })
$$

182. a) $30^{\circ}\left(\sqrt{3} \tan \theta=1 \Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{\circ}\right)$
183. c) $2\left(\tan 45^{\circ}+\cot 45^{\circ}=1+1=2\right)$
184. a) $\frac{1}{\sqrt{3}}\left(\cot \left(90^{0}-30^{\circ}\right)=\tan 30^{\circ}=\frac{1}{\sqrt{3}} \operatorname{orcot}\left(90^{0}-30^{\circ}\right)=\cot 60^{\circ}=\frac{1}{\tan 60}=\frac{1}{\sqrt{3}}\right)$
185. b) $\frac{8}{5}\left(\sin \alpha+\cos \theta=\frac{4}{5}+\frac{4}{5}=\frac{8}{5}\right)$
186. c) $1 \quad\left(\frac{\sin 80^{\circ}}{\cos 10^{\circ}}=\frac{\sin 80^{\circ}}{\sin (90-10)^{\circ}}=\frac{\sin 80^{\circ}}{\sin 80^{\circ}}=1\right)$
187. c) $45^{\circ}\left(3 \tan \theta=3 \Rightarrow \tan \theta=\frac{3}{3} \Rightarrow \tan \theta=1 \Rightarrow \theta=45^{\circ}\right)$
188. b) $1\left(\cos ^{2} \theta+\cos ^{2}\left(90^{0}-\theta\right)\right.$

$$
\left.=\cos ^{2} \theta+\sin ^{2} \theta=1\right)
$$

189. a) $\sin ^{2} \theta\left[(1+\cos \theta)(1-\cos \theta)=(1)^{2}-\cos ^{2} \theta=1-\cos ^{2} \theta=\sin ^{2} \theta\right]$
190. b) $10 \mathrm{~cm}\left(L Y=90^{\circ}, \angle Z=30^{\circ}\right.$ and $X Y=5 \mathrm{~cm} \sin Z=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{X Y}{X Z}$

$$
\begin{aligned}
& \operatorname{Sin} 30^{0}=\frac{5}{X Z} \\
& \frac{1}{2}=\frac{5}{X Z} \Rightarrow x Z=5 X 2=10 \mathrm{~cm}
\end{aligned}
$$

191. c) $72^{\circ}\left(\sin 18^{0}=\cos \mathrm{A}\right.$,

$$
\begin{aligned}
& =\cos \left(90^{\circ}-18^{\circ}\right)=\cos \mathrm{A} \\
& \left.=\cos 72^{\circ}=\cos \mathrm{A} \Rightarrow \angle \mathrm{~A}=72^{\circ}\right)
\end{aligned}
$$

192. d) $\frac{5}{3} \quad(5 \sin \mathrm{~A}=3$

$$
\left.\sin A=\frac{3}{5} \Rightarrow \operatorname{cosec} A=\frac{5}{3}\right)
$$

193. c) $\frac{12}{5} \quad\left(\tan \mathrm{~A}=\frac{\text { opposite side }}{\text { Adjacent side }}=\frac{B C}{B A}=\frac{12}{5}\right.$
194. a) $\cot ^{2} \mathrm{~A} \quad\left(\frac{1-\sin ^{2} \mathrm{~A}}{1-\cos ^{2} \mathrm{~A}}=\frac{\cos ^{2} \mathrm{~A}}{\operatorname{Sin}^{2} \mathrm{~A}}=\right.$ $\left.\cot ^{2} \mathrm{~A}\right)$
195. c) $\quad \frac{\mathrm{AC}}{\mathrm{BC}} \quad\left(\operatorname{Sin} \mathrm{B}=\frac{\text { Opposite side }}{\text { hypotenuse }}=\frac{A C}{B C}\right)$

196. c) $0 \quad\left(\cos ^{2} 17^{0}-\sin ^{2} 73^{0}\right.$

$$
\begin{aligned}
& \cos ^{2} 17^{0}-\cos ^{2}\left(90^{0}-73^{0}\right) \\
& \left.\cos ^{2} 17^{0}-\cos ^{2} 17^{0}=0\right)
\end{aligned}
$$

197. b) $1 \quad\left(\tan 10^{0} \mathrm{X} \tan 80^{\circ}\right.$
$\tan 10^{\circ} \mathrm{X} \operatorname{Cot}\left(90^{\circ}-80^{\circ}\right)$
$\tan 10^{0} \mathrm{X} \operatorname{Cot} 10^{0}$

$$
\left.\tan 10^{\circ} \times \frac{1}{\tan 10^{\circ}}=1\right)
$$

198. a) $0\left(\frac{1-\tan ^{2} 45}{1+\tan ^{2} 45}=\frac{1-(1)^{2}}{1+(1)^{2}}=\frac{1-1}{1+1}=\frac{0}{1}=0\right)$
199. b) $1\left(\frac{\tan 55^{\circ}}{\cot 35^{\circ}}=\frac{\tan 55^{\circ}}{\left(\tan \left(90^{\circ}-35^{\circ}\right)\right.}=\frac{\tan 55^{\circ}}{\tan 55^{\circ}}=1\right)$
200. d) $\frac{5}{12} \quad\left(\operatorname{Cot} \mathrm{~A}=\frac{\text { Adjacent side }}{\text { Opposite side }}=\frac{5}{12} అ థ \varnothing \rho \tan \mathrm{~A}=\frac{\text { Opposite side }}{\text { Adjacent side }}=\frac{12}{5} . \quad \operatorname{Cot} \mathrm{A}=\frac{5}{12}\right)$
201. d) $90^{\circ} \quad\left(\sin \alpha=\frac{1}{2} \Rightarrow \alpha=30^{\circ} \& \cos \beta=\frac{1}{2} \Rightarrow \beta=60^{\circ} \therefore \alpha+\beta=30^{\circ}+60^{\circ}=90^{\circ}\right)$
202. c) $\tan 30^{\circ}$
203. a) $10\left(10 \sin ^{2} \theta+10 \cos ^{2} \theta=10\left(\sin ^{2} \theta+\cos ^{2} \theta 0=10(1)=10\right.\right.$
204. c) $0\left(\cos 48^{\circ}-\sin 42^{0}\right.$

$$
\begin{aligned}
& \cos 48^{0}-\cos \left(90^{0}-42^{0}\right) \\
& \left.\cos 48^{\circ}-\cos 48^{0}=0\right)
\end{aligned}
$$

205. d) $\operatorname{cosec} \mathrm{A}$
206. c) $1\left(\frac{\operatorname{cosec} 31^{0}}{\sec 59^{0}}=\frac{\sec \left(90^{0}-31^{0}\right)}{\sec 59^{0}}=\frac{\sec 59^{0}}{\sec 59^{0}}=1\right)$
207. b) $\frac{3}{4}\left(\sin ^{2} 60^{\circ}=\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4}\right)$
208. a) $\operatorname{cosec}^{2} \mathrm{~A}$
209. b) $1+\tan ^{2} \mathrm{~A}$
210. b) 1
211. d) $\cos 0^{0}$
212. a) $1\left(\sin 30^{\circ}+\cos 60^{\circ}=\frac{1}{2}+\frac{1}{2}=1\right)$
213. b) $\frac{5}{11}(5 \sec \mathrm{~A}=11$

$$
\operatorname{Sec} \mathrm{A}=\frac{11}{5} \Rightarrow \operatorname{Cos} \mathrm{~A}=\frac{5}{11}
$$

214. a) $\frac{12}{13}\left(\cos \left(90^{\circ}-\theta\right)=\operatorname{Sin} \theta=\frac{\text { opposite.side }}{\text { hypotenues }}=\frac{12}{13} \quad\right)$
215. b) $60^{\circ} \quad 2 \cos \theta=1 \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
216. b) $45^{\circ} \quad \sqrt{2} \cos \theta=1 \Rightarrow \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=45$
217. d) $30^{\circ} \quad \sqrt{3} \tan \theta=1 \Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{\circ}$
218. b) $\frac{4}{5} \quad \sin \left(90^{\circ}-\mathrm{A}\right)=\cos \mathrm{A}=\frac{\text { adjacent }}{\text { hypotenues }}=\frac{4}{5}$
219. c) $1 \quad \cos \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$

$$
\begin{align*}
\Rightarrow \cos \mathrm{A}=1-\cos ^{2} \mathrm{~A} & =\sin ^{2} \mathrm{~A}----(1) \tag{1}\\
\text { now } \sin ^{2} \mathrm{~A}+\sin ^{4} \mathrm{~A} & =\sin ^{2} \mathrm{~A}+\left(\sin ^{2} \mathrm{~A}\right)^{2} \\
& =\cos \mathrm{A}+\cos ^{2} \mathrm{~A}=1
\end{align*}
$$

220. b) $5 \sqrt{3} \mathrm{~cm}$

$$
\begin{gathered}
\angle A=90^{\circ} \\
\text { Sin } 60^{\circ}=\frac{\text { opposite }}{\text { hypotenues }}=\frac{O A}{10} \\
\Rightarrow \frac{\sqrt{3}}{2}=\frac{\text { OA }}{10} \Rightarrow \mathrm{OA}=\frac{\sqrt{3}}{2} X 10=5 \sqrt{3}
\end{gathered}
$$

Unit 9 : Some applications of Trigonometry
221. c) $60^{\circ} \quad\left(\tan \theta=\frac{\text { opp.side }}{\text { Adj.side }}=\frac{4 \sqrt{3}}{4}=\sqrt{3} \Rightarrow \theta=60^{\circ}\right.$

222. c) $30 \mathrm{~m}\left(\tan 45^{\circ}=\frac{\text { Opp.side }}{\text { Adj.side }}=\frac{A C}{B C}\right.$
$1=\frac{A C}{30} \Rightarrow \mathrm{AC}=30 \mathrm{~m}$
(Note :If angle is 45^{0} then opposite side and adjacent sides are equal)
223. b) 30° (Alternate angles)

224. b) $30^{\circ}\left(\operatorname{Sin} \mathrm{C}=\frac{\text { Opp.side }}{\text { Hypo. }}=\frac{A B}{A C}=\frac{5}{10}=\frac{1}{2}\right.$
$\operatorname{Sin} \mathrm{C}==\frac{1}{2} \Rightarrow \angle C=30^{0}$

225. c) 15 m (If angle is 45° then opposite side and adjacent sides are equal)
$\tan 45^{\circ}=\frac{\text { Opp.side }}{\text { Adj.side }}=\frac{A C}{B C}$
$1=\frac{15}{B C} \Rightarrow \mathrm{BC}=15 \mathrm{~m}$

226. a) $30^{\circ}\left(\frac{\text { Height of the pole }}{\text { length of the shadow }}=\frac{\text { Opp.side }}{\text { Adj.side }}=\frac{1}{\sqrt{3}}=\tan \theta \Rightarrow \theta=30^{\circ}\right.$
227. b) $20 \sqrt{3} \mathrm{~m}\left(\tan 60^{\circ}=\frac{\text { Opp.side }}{\text { Adj. .side }}=\frac{A B}{B C}\right.$

$$
\begin{aligned}
& \sqrt{3}=\frac{A B}{20} \\
& \Rightarrow 20 \sqrt{3}=\mathrm{AB}
\end{aligned}
$$

228. a) $30^{\circ}\left(\frac{\text { Height of the pole }}{\text { length of the shadow }}=\frac{\text { opp.side }}{\text { Adj.side }}=\frac{2}{2 \sqrt{3}} \Rightarrow \theta=30^{0}\right.$

$$
\Rightarrow \tan \theta=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{0}
$$

229. b) 45° (If opposite side and adjacent sides are equalthenangle is 45°)

$$
\left(\tan \theta=\frac{\text { opp.side }}{\text { Adj.side }}=1=\Rightarrow \theta=45^{\circ}\right.
$$

230. d) $\frac{100}{\sqrt{3}} \mathrm{~m}\left(\tan 30^{\circ}=\frac{\text { Opp.side }}{\text { Adj.side }}=\frac{A B}{B C}\right.$
$\frac{1}{\sqrt{3}}=\frac{A B}{100}$

$\Rightarrow \frac{100}{\sqrt{3}}=\mathrm{AB}\left(\frac{100 X \sqrt{3}}{\sqrt{3} X \sqrt{3}}=\frac{100 \sqrt{3}}{3}\right.$
231. c) 45^{0} (If opposite side and adjacent sides are equalthen angle is 45°)

$$
\left(\tan \theta=\frac{\text { opp.side }}{\text { Adj.side }}=\frac{15}{15}=1 \Rightarrow \theta=45^{\circ}\right)
$$

232. b) $50 \sqrt{3} \quad \operatorname{Sin} 60^{\circ}=\frac{\text { Opp.side }}{\text { Hypo. }}$ m

$$
\frac{\sqrt{3}}{2}=\frac{75}{A C} \Rightarrow \mathrm{AC}=\frac{75 X 2}{\sqrt{3}}=\frac{150}{\sqrt{3}}=\frac{150 X \sqrt{3}}{\sqrt{3} X \sqrt{3}}=\frac{\begin{array}{c}
50 \\
1 \not \phi_{0} X \sqrt{3} \\
\not ㇒
\end{array}=50 \sqrt{3} .}{2}
$$

$$
\left.\frac{1}{2}=\frac{8}{A C} \Rightarrow \mathrm{AC}=8 \times 2=16 \mathrm{~m}\right)
$$

236. a) $50 \sqrt{3} \mathrm{~m}\left(\tan 30^{\circ}=\frac{\text { Opp.side }}{\text { Adj.side }}=\frac{A B}{B C}=\frac{50}{B C}\right.$

$$
\left.\frac{1}{\sqrt{3}}=\frac{50}{B C} \Rightarrow \mathrm{BC}=50 \sqrt{3}\right)
$$

Unit 10: Statistics

237. b) 3 Median $=$ Mode +2 Mean
238. c) 15 (Ascending order: $\underline{3,5,14,16}, \underline{19,20)}$
(Middle number of 14 and 16 is Median)
Median $=\frac{14+16}{2}=\frac{30}{2}=15$)
239. b) $17.5\left(\operatorname{Mid}\right.$ point $\left.=\frac{10+25}{2}=\frac{35}{2}=17.5\right)$
240. d) 3 (Mean $=\frac{1+2+3+4+5}{5}=\frac{15}{5}=3$)
241. b) 20 (10 has highest frequency)
242. a) 20 (Mean $\bar{X}=\frac{\sum f_{\mathrm{f}_{\mathrm{X}}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{400}{20}=20$)
243. b) 15 (Ascendin order: $12,14,15,17,19$, Middle number is median)
244. b) 5.6 (Mean $=\frac{\text { Sum of first five prime numbers }}{5}=\frac{2+3+5+7+11}{5}=\frac{28}{5}=5.6$)
245. d) 13 (Mode $=3$ median -2 Mean

$$
\text { Mode }=3(15)-2(16)=45-32=13)
$$

246. c) 1 (Most frequent(3 times) repitition)
247. a) 30 (Median is the x coordinate of the intersection point of graph)
248. c) Mode
249. b) 35 (Mean $=\frac{50+20}{2}=\frac{70}{2}=35$)
250. d) Range
251. c) 1 (Mean $=10=\frac{11+8+9+12+x}{5}$
$10 \times 5=40+\mathrm{x}$
$\Rightarrow 50=40+x \Rightarrow x=50-40=10$
252. c) More frequent repeat value
253. b) 15 ($x=15$:repeating 3 times. 16 or 17 could have been, but had no options)
254. c) 20 (Mode $=3$ Median -2 Mean)
$12=3$ (Median) $-2(24)$
$12=3$ (Median) -48
$12+48=3$ (Median)
$60=3$ (Median) \Rightarrow Median $=\frac{60}{3}=20$
255. b) 5 (Mean $=\frac{1+3+5+7+9}{5}=\frac{25}{5}=5$)
256. a) 10
257. c) $1+\left\lfloor\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right\rfloor h$
258. b) (30-40)(This class interval has maximum frequency(30))
259. d) $x>8$ (The class interval which has maximum frequency is modal class)
260. a) 15 (Modal class is $20-25$. It has maximum frequency)
261. b) $(30-40)\left(\frac{n}{2}=\frac{60}{2}=\right.$ Class interval which has 30thvalue)
262. a) $1+\left[\frac{\frac{n}{2}-C_{f}}{f}\right] h$
263. b) 50 (Modal class is $50-60$.Its lower limit $\mathrm{l}=50$)
264. c) 55 (Mean $=42=\frac{27+30+45+60+35+x}{6}$
$42 \times 6=197+x$
$\Rightarrow 252=197+x \Rightarrow x=252-197=55$

Unit 11 : Surface area and Volumes

265. d) $100 \mathrm{~m}^{3}$ (Volume of cone $=\frac{1}{3}$ Volume of Cylinder $=\frac{1}{3} \mathrm{X} 300=100$)
266. c) $616 \mathrm{~cm}^{2}$ (Surface area of $=4 \pi \mathrm{r}^{2}$

$$
=4 \times \frac{22}{7} \times 7 \times 7=4 \times 22 \times 7=616
$$

267. c) $\pi\left(r_{1}+r_{2}\right) 1$
268. b) $2 \pi r(r+h)$
269. c) $\frac{4}{3} \pi r^{3}$
270. a) $l^{2}=h^{2}+r^{2}$
271. c) $\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}$
272. a) $36 \mathrm{~cm}^{2}$ (Volume of Cube $\mathrm{a}^{3}=27 \Rightarrow a=3$

$$
\therefore \text { Lateral Surface Area of Cube }=4 \mathrm{a}^{2}=4 \times 3 \times 3=36 \text {) }
$$

273. b) $\frac{4}{3} \pi r^{3}=\frac{1}{3} \pi R^{2} h$
274. d) $192 \mathrm{~cm}^{2}$ (Curved Surface Area of Cylinder $=\underline{2 \pi \mathrm{rh}}=\underline{24} \times 8=192$)
275. c) $6 \mathrm{~cm}\left(12 \times 6 \times 3=216=\mathrm{a}^{3} \Rightarrow \mathrm{a}=\sqrt[3]{216}=6\right)$
276. c) ${ }_{3}^{1} \pi \mathrm{~h}\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
277. c) $220 \mathrm{~cm}^{2}$ (Curved Surface Area of Cone $=\pi \mathrm{rl}$

$$
\left.=\frac{22}{\not h^{\prime}} \times \not \subset \times 10=220\right)
$$

278. b) ${ }_{3}^{4} \pi R^{3}=\pi r^{2} h$
279. b) $15 \mathrm{~cm}($ Volume of Cone $=$ Volume of Cylinder $)$

$$
\begin{aligned}
& \frac{1}{3} \ddot{y} p^{2} h_{1}=p p^{2} h_{2} \quad \text { (radii are equal) } \\
& \frac{1}{3} x h_{1}=5 \Rightarrow h_{1}=15
\end{aligned}
$$

280. b) $4: 3$

$$
\begin{aligned}
& 4_{3}^{4} \pi R^{3}: \frac{4}{3} \pi r^{3}=64: 27 \\
& R^{3}: r^{3}=64: 27 \\
& R: r=\sqrt[3]{64}: \sqrt[8]{27}=4: 3
\end{aligned}
$$

281. b) $2 r$ Units (Volume of Cone $=$ Volume of Cylinder)
i. $\frac{1}{3} \pi R^{2} h=\frac{4}{3} \pi r^{3}(\mathrm{~h}=\mathrm{r})$
ii. $\frac{1}{3} \pi R^{2} r=\frac{4}{3} \pi r^{3}\left(\right.$ Cancellation of $\frac{1}{3} \pi$ and r of LHS and RHS)
iii. $\frac{1}{3} \pi \mathrm{R}^{2}=\frac{4}{3} \pi \mathrm{r}^{2}$
iv. $R^{2}=4 r^{2} \Rightarrow r=\sqrt{4 r^{2}}=2 r$
282. b) $3 \pi r^{2}$
283. b) Cone and Cylinder
284. c) $2 \pi r^{2}+\pi r l($ Total Surface Area of Toy
v. =LSA of Hemisphere + LSA of Cone)
285. c) $16: 25$

$$
\begin{aligned}
& 4 \pi r^{2}: 4 / \pi R^{2} \\
& r^{2}: R^{2}=4^{2}: 5^{2}=16: 25
\end{aligned}
$$

286. b) Frustum of Cone And Cylinder
287. b) 3:2

$$
\begin{aligned}
\frac{4}{3} \pi R^{3} & : \frac{4}{7} \pi r^{3}=27: 8 \\
R^{3} & : r^{3}=27: 8 \\
R & : r=\sqrt[8]{27}: \sqrt[3]{8}=3: 2
\end{aligned}
$$

288. b) $\quad \frac{1}{3} \pi H\left(R^{2}+r^{2}+R r\right)+\pi r^{2} h$
289. d) 8 (No. of balls $=\frac{\text { Volume of } 4 \mathrm{~cm} \text { radius }}{\text { Volume of } 2 \mathrm{~cm} \text { radius }}$

$$
\left.=\frac{\frac{4}{3} \pi R^{3}}{\frac{4}{3} \pi r^{3}}=\frac{R^{3}}{r^{3}}=\frac{4^{3}}{2^{3}}=\frac{64}{8}=8\right)
$$

290. b) 2 Hemispheres + Cylinder
291. a) $2 \mathrm{X} 2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh}$
292. b) $\pi \mathrm{r}(\mathrm{r}+\mathrm{l})$
293. b) $\frac{2}{3} \pi r^{3}$
294. a) $\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
295. c) 90 Cubic units
296. d) $77 \mathrm{~cm}^{2}\left(4 \pi \mathrm{r}^{2}=154 \Rightarrow 2 \pi \mathrm{r}^{2}=\frac{154}{2}=77\right)$
297. d) $308 \mathrm{~cm}^{2}\left(2 \pi \mathrm{r}^{2}=2 \mathrm{x} \frac{22}{7} \times 7 \mathrm{x} 7=308\right)$
298. c) $462 \mathrm{~cm}^{2}\left(3 \pi \mathrm{r}^{2}=3 \mathrm{x} \frac{22}{7} \times 7 \mathrm{x} 7=462\right)$
299. d) $440 \mathrm{~cm}^{2} \quad\left(2 \pi \mathrm{rh}=2 \mathrm{x} \frac{22}{7} \times 7 \times 10=440\right)$
300. b) 2π rh (Pipe means lateral surface area)
301. c) $1960 \pi \mathrm{~cm}^{3}(2 \pi \mathrm{r}=88$

$$
\begin{aligned}
& \Rightarrow 2 \times \frac{22}{7} \times r=88 \Rightarrow r=\frac{88 \times 7}{2 \times 22}=14 \\
& \therefore \text { Volume }=\pi r^{2} h=\pi \times 14 \times 14 \times 10=1960 \pi
\end{aligned}
$$

302. b) $35 \pi \mathrm{~cm}^{2}\left(2 \pi \mathrm{r}=22 \Rightarrow 2 \times \frac{22}{7} \times \mathrm{r}=22 \Rightarrow \mathrm{r}=\frac{7}{2}\right.$ vi. $2 \pi \mathrm{rh}=2 \mathrm{x} \pi \times \frac{7}{2} \times 5=35 \pi$

$$
\begin{aligned}
& 2 \pi \mathrm{rxh}=22 \times 5=110 \\
& 110 \times \frac{\pi}{\pi}=110 \times \pi \times \frac{7}{22}=35 \pi
\end{aligned}
$$

303. b) $\pi\left(r_{1}+r_{2}\right) 1+\pi r_{1}^{2}+\pi r_{2}^{2}$ (lateral surface area of frustum of cone)
