

Dakshina Kannada Zilla Panchayat Department of Public Instruction

Office of Deputy Director of Public Instruction (Administration),

Mangalore, D.K.

and

District Institute of Education and Training, Kodialbail

Mangalore, Dakshina Kannada

For Achievement in Mathematics...

Mathematics MCQ Question Bank

(Resource material prepared based on the new Multiple-Choice Questions based Examination Pattern 2020-21)

ಸಂದೇಶ

ಮುಖ್ಯ ಕಾರ್ಯನಿರ್ವಹಣಾಧಿಕಾರಿಗಳ ಕಾರ್ಯಾಲಯ ಜಿಲ್ಲಾ ಪಂಚಾಯತ್ ಕಟ್ಟಡ ಅಶೋಕನಗರ ಮಂಗಳೂರು, ದಕ್ಷಿಣ ಕನ್ನಡ ಜಿಲ್ಲೆ 575006

ಡಾ. ಕುಮಾರ, ಐ.ಎ.ಎಸ್ ಮುಖ್ಯ ಕಾರ್ಯನಿರ್ವಹಣಾಧಿಕಾರಿಗಳು, ದಕ್ಷಿಣ ಕನ್ನಡ

ಕೋವಿಡ್-19 ಸಾಂಕ್ರಾಮಿಕ ರೋಗದಿಂದಾಗಿ ಕಳೆದ ಒಂದು ವರ್ಷದಿಂದ ಶೈಕ್ಷಣಿಕ ಪ್ರಗತಿ ಕುಂಠಿತವಾಗಿ ವ್ಯತಿರಿಕ್ತ ಪರಿಣಾಮ ಬೀರುತ್ತಿದೆ. ಆದಾಗ್ಯೂ ವಿದ್ಯಾರ್ಥಿಗಳ ಶೈಕ್ಷಣಿಕ ಪ್ರಗತಿಗೆ ಅನುಕೂಲವಾಗುವ ದೃಷ್ಠಿಯಿಂದ 10ನೇ ತರಗತಿ ಪಠ್ಯಕ್ರಮ ಹಾಗೂ ಪರೀಕ್ಷಾ ಪದ್ಧತಿಗೆ ಅನುಗುಣವಾಗಿ ಬಹುಅಂಶ ಆಯ್ಕೆ ಪ್ರಶ್ನಾಕೋಠಿ [Multiple Choice Question Bank] ನ್ನು ದಕ್ಷಿಣ ಕನ್ನಡ ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆಯ ಸಂಪನ್ಮೂಲ ಶಿಕ್ಷಕರ ತಂಡ ಹಾಗೂ ಅಧಿಕಾರಿ ವರ್ಗದವರು ಒಟ್ಟುಗೂಡಿ ರಚನೆ ಮಾಡಿರುತ್ತಾರೆ.

ಶೈಕ್ಷಣಿಕ ಹಿತದೃಷ್ಟಿಯಿಂದ ಇದರ ಸದುಪಯೋಗವನ್ನು ಜಿಲ್ಲೆಯ ಎಲ್ಲ ವಿದ್ಯಾರ್ಥಿಗಳು ಪಡೆದುಕೊಂಡು ಮುಂಬರುವ ಪರೀಕ್ಷೆಯಲ್ಲಿ ಉತ್ತಮ ಸಾಧನೆ ಮಾಡುವಂತಾಗಲಿ ಎಂದು ಹಾರೈಸುತ್ತೇನೆ. ಈ ಕಾರ್ಯದಲ್ಲಿ ತೊಡಗಿಕೊಂಡ ಎಲ್ಲರಿಗೂ ಅಭಿನಂದನೆಗಳು.

ಶುಭಾಶಯಗಳು

, బి.ఎ.ఎస్) (ಡಾ. ಕುಪಿ ರಾರ

ಮುಖ್ಯಕಾರ್ಯನಿರ್ಧಹಣಾಧಿಕಾರಿಗಳು ದಕ್ಷಿಣಕನ್ನಡಜಿಲ್ಲಾಪಂಚಾಯತ್

17-06-2021

ಮುನ್ನುಡಿ

ಉಪನಿರ್ದೇಶಕರು (ಆಡಳಿತ) ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆ ಮಂಗಳೂರು, ದಕ್ಷಿಣ ಕನ್ನಡ ಜಿಲ್ಲೆ-575001

ಕೋವಿಡ್-19ರ ಕಾರಣ ಬದಲಾದ ಸನ್ನಿವೇಶಕ್ಕೆ ಮತ್ತು ಬದಲಾದ ಪರೀಕ್ಷಾ ಪದ್ಧತಿಗೆ ಅನುಕೂಲವಾಗುವಂತೆ ಎಲ್ಲ ವಿಷಯಗಳ ಪ್ರಶ್ನಾಕೋಠಿಯನ್ನು ತಯಾರಿಸಲಾಗಿದ್ದು ಇದರಲ್ಲಿನ ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಲು ಅಭ್ಯಾಸ ಮಾಡುವ ಮೂಲಕ ಅಂತಿಮ ಪರೀಕ್ಷೆಯನ್ನು ಅತ್ಮವಿಶ್ವಾಸದಿಂದ ಎದುರಿಸಬಹುದಾಗಿದೆ. ಜಿಲ್ಲೆಯ ಎಲ್ಲಾ ಶಿಕ್ಷಕರು ಈ ಕೈಪಿಡಿಯನ್ನು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ತಲುಪಿಸಿ ಗರಿಷ್ಠ ಅಂಕಗಳನ್ನು ಪಡೆಯುವಂತೆ ಮಾರ್ಗದರ್ಶನ ಮಾಡಿದರೆ ವಿದ್ಯಾರ್ಥಿಗಳು ಯಶಸ್ಸನ್ನು ಗಳಿಸಬಹುದು.

ಪ್ರಶ್ನಾಕೋಠಿಯನ್ನು ಶ್ರಮವಹಿಸಿ ಸಿದ್ಧಗೊಳಿಸಿದ ಸಂಪನ್ಮೂಲ ವ್ಯಕ್ತಿಗಳಿಗೆ, ಮಾರ್ಗದರ್ಶನ ನೀಡಿದ ಇಲಾಖೆಯ ಅಧಿಕಾರಿಗಳಿಗೆ ಧನ್ಯವಾದಗಳನ್ನು ಸಮರ್ಪಿಸುತ್ತೇನೆ.

ಶುಭವಾಗಲಿ.

17-06-2021

(ಮಲೀಸಾ ಮ)

ಉಪನಿರ್ದೇಶಕರು(ಅಡಳಿತ) ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆ, ಮಂಗಳೂರು, ದಕ್ಷಿಣ ಕನ್ನಡ ಜಿಲ್ಲೆ-575001

<u>ನಿರ್ದೇಶನ</u>

ಸಿಪ್ರಿಯಾನ್ ಮೊಂತೆರೋ

ಸಹ ನಿರ್ದೇಶಕರು ಹಾಗೂ ಪ್ರಾಂಶುಪಾಲರು, ಶಿಕ್ಷಕರ ಶಿಕ್ಷಣ ಮಹಾವಿದ್ಯಾಲಯ, ಮಂಗಳೂರು ಪರಿಕಲ್ಪನೆ ಮತ್ತು ಮಾರ್ಗದರ್ಶನ

ಶ್ರೀ **ಮಲ್ಲೇಸ್ವಾಮಿ**, ಉಪನಿರ್ದೇಶಕರು (ಆಡಳಿತ ಮತ್ತು ಅಭಿವೃದ್ಧಿ)

ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆ, ದಕ್ಷಿಣ ಕನ್ನಡ, ಮಂಗಳೂರು. ದ.ಕ.

<u>ಮೇಲ್ವಿಚಾರಣೆ</u>

ಶ್ರೀ ವಿರೂಪಾಕ್ಷಪ್ಪ ಎಚ್.ಎಸ್ ಕ್ಷೇತ್ರ ಶಿಕ್ಷಣಾಧಿಕಾರಿಗಳು, ಬೆಳ್ತಂಗಡಿ ತಾಲೂಕು.

ಶ್ರೀಮತಿ ಬಬಿತ

ಹಿರಿಯ ಉಪನ್ಯಾಸಕರು, ಡಯಟ್ ಮಂಗಳೂರು

ಶ್ರೀ ಶಂಭು ಶಂಕರ್

ಕೇತ್ರ ಸಮನ್ವಯಾಧಿಕಾರಿಗಳು, ಬೆಳ್ತಂಗಡಿ ತಾಲೂಕು.

ಸಲಹೆಗಾರರರು :

ಶ್ರೀಮತಿ ದಯಾವತಿ

ಶಿಕ್ಷಣಾಧಿಕಾರಿಗಳು, ಉಪನಿರ್ದೇಶಕರ ಕಛೇರಿ, ಮಂಗಳೂರು.

ಶ್ರೀಮತಿ ಶೋಭಾ ಎನ್

ಗಣಿತ ವಿಷಯ ಪರಿವೀಕ್ಷಕರು, ಉಪನಿರ್ದೇಶಕರ ಕಛೇರಿ, ಮಂಗಳೂರು.

ಶ್ರೀಮತಿ ವೀಣಾ ಎಲ್

ಉಪನ್ಯಾಸಕರು, DIET ಮಂಗಳೂರು.

ಶ್ರೀ ಶ್ರೀನಿವಾಸ ಅಡಿಗ

ಉಪನ್ಯಾಸಕರು, DIET ಮಂಗಳೂರು.

ಶ್ರೀ ಗುರುರಾಜ ಎಂ.ಒ

ಉಪನ್ಯಾಸಕರು, DIET ಮಂಗಳೂರು.

ಶ್ರೀಮತಿ ವಿನೋದ ಬಿ

ಉಪನ್ಯಾಸಕರು, DIET ಮಂಗಳೂರು.

ಶ್ರೀಮತಿ ವೇದಾವತಿ

ಉಪನ್ಯಾಸಕರು, DIET ಮಂಗಳೂರು.

<u>ಸಹಕಾರ</u>

ಶ್ರೀಮತಿ ಜಯಶ್ರೀ

ಅಧ್ಯಕ್ಷರು, ಜಿಲ್ಲಾ ಪ್ರೌಢ ಶಾಲಾ ಮುಖ್ಯ ಶಿಕ್ಷಕರು ಹಾಗೂ ಪ.ಪೂ ಪ್ರಾಂಶುಪಾಲರ ಸಂಘ, ದಕ್ಷಿಣ ಕನ್ನಡ

ಸ್ಟ್ಯಾನಿ ತಾವ್ರೋ

ಅಧ್ಯಕ್ಷರು ಪ್ರೌಢ ಶಾಲಾ ಸಹ ಶಿಕ್ಷಕರ ಸಂಘ, ದಕ್ಷಿಣ ಕನ್ನಡ

Resource Persons involved in the preparation of the Resource Material

S. No.	Name	School
1.	Mr. Sadashiv Poojary	Shri Dharmastala Manjunatheshwara Secondary
		School, Ujire, Belthangady Taluk
2.	Mrs. Veena Ganapati Shanbhag	Government High School, Halepete, Ujire,
		Belthangady Taluk
3.	Dr. Annie Dimple Castelino	Government High School, Aliyooru,
		Moodubidre Taluk
4.	Mrs. Bindu C. Anthony	Ladyhill Victoria High School, Mangalore
		North
5.	Mr. Shyamprasad K.	Jain High School, Moodubidre, Moodubidre
		Taluk
6.	Mr. Parameshwar Hegde	Government High School, Kadumata, Bantwal
		Taluk
7.	Mrs. Umavathi N.	Netaji Subashchandra Bose Government High
		School, Kodange, Bantwal, Taluk
8.	Mrs. Veena Mallya	Government High School, Kalladi, Mangalore
		South
9.	Mr. Raghunath Bhat G.	Kittel Memorial High School, Gorigudde
		Mangalore South
10.	Mrs. Ramya K.	Government High School, Badaga Ekkaru,
		Mangalore North
11.	Mr. Harikiran K.	Government High School, Hirebandadi, Puttur
		Taluk
12.	Mr. Ramachandra Bhat N.	Karnataka Public School, Bellare, Sulya Taluk
13.	Mr. Shivakumar N. G.	Government High School, Edamangala,
		Kadaba Taluk, Sullya
14.	Mr. T.B. Basavalingappa H.M.	Government High School, Karaya, Belthangady
		Taluk
15.	Mr. Sharath Kumar Tulupule	Government High School, Venur, Belthangady
		Taluk
16.	Mr. Balakrishna Nayak	Government High School, Muttur, Mangalore
		South

Page | 5

CONTENT

Unit	Unit Name	Page
Number		Numbers
1.	Arithmetic Progression	6 - 7
2.	Triangles	8 - 10
3.	Pair of Linear Equations in Two Variables	11 - 13
4.	Circles	14 - 16
5.	Constructions	17 - 18
6.	Coordinate Geometry	19 - 21
7.	Quadratic Equations	22 - 23
8.	Introduction to Trigonometry	24 - 27
9.	Some Applications of Trigonometry	28 - 29
10.	Statistics	30 - 32
11.	Surface Areas and Volumes	33 - 36
12.	ANSWERS	37 - 63

Unit 1 : Arithmetic Progressions

1. If the n th term of an Arithmetic Progression is $a_n = 4n + 5$ then the third term is
a) 5 b) 9 c) 13 d) 17
2. The value of 'x' in the Arithmetic Progression 2, x, 14 is
a) 28 b) 16 c) 7 d) 8
3. In an Arithmetic Progression where $a_n = 3n - 2$, the 2^{nd} term is
a) 2 b) 4 c) 6 d) 8
4. The fourth term of an Arithmetic Progression where $a_n = 2n - 1$ is
a) 23 b) 9 c) 5 d) 7
5. The common difference of the Arithmetic Progression 3, 6, 9, 12 is
a) -3 b) 3 c) 6 d)9
6. The sum of the first 'n' Natural Numbers is
a) $\frac{n(n-1)}{2}$ b) $\frac{n(n+1)}{2}$ c) $\frac{n(n+1)}{3}$ d) $n(n+1)$
7. Which among the following is an Arithmetic Progression?
a) 1, 4, 6 b)12, 10, 14 c)35, 30, 25 d)8, 13, 19,
8. The formula to find the n th term of an Arithmetic Progression is
a) $a_n = a - (n - 1)d$ b) $a_n = a + (n + 1)d$ c) $a_n = a + (n - 1)d$ d) $a_n = 2a + (n - 1)d$
9. If in an Arithmetic Progression $a_n = 3n - 1$ then the common difference is
a) 1 b) 2 c) 3 d) 4
10. Sum of first 10 Natural Numbers is
a) 45 b)50 c)55 d)65
11. The common difference of the Arithmetic Progression 3, 1, -1, -3 is
a) 2 b) -2 c) 4 d) -4
12. The common difference of the Arithmetic Progression $\frac{1}{2}$, $\frac{1}{2}$
a) 0 b) 1 c) $\frac{1}{2}$ d) $-\frac{1}{2}$
13. The number to be entered into the in the Arithmetic Progression 2 , , 26 is
a)12 b)13 c)14 d) 16
14. If the first term is 'a' and the n th term is 'l' then the sum of n terms of an Arithmetic Progression is
a) $S_n = \frac{a}{2}(n+l)$ b) $S_n = \frac{n}{2}(a+l)$ c) $S_n = \frac{l}{2}(a+n)$ d) $S_n = \frac{1}{2}a(n+l)$
Department of Public Instruction, Mangalore. Dakshina Kannada District

15. If the first term is 'a' and the common difference is 'd' then the formula to calculate the sum of n terms						
of an Arithmetic Progression is						
a) $S_n = \frac{n}{2}(a + (n-1)d)$ b) $S_n = \frac{n}{2}(a + 2(n-1)d)$						
c) $S_n = \frac{n}{2}(2a + (n-1)d)$ d) $S_n = \frac{n}{2}(n+1)d)$						
16. The next four terms of the Arithmetic Progression 2, 5, 8, 11, 14 is						
a) 16, 18, 20, 22 b) 15, 16, 17, 18 c) 18, 22, 24, 26 d) 17, 20, 23, 26						
17. The third term of an Arithmetic Progression whose fourth term is 9 and common difference is 2 is						
a) 8 b) / c) 6 d) 5 10 If $d = \frac{1}{2}$ On them its formula terms is						
18. If the n th term of an Arithmetic Progression is $a_n = 1.5 - 2n$ then its fourth term is						
a) 9 b) / c) 3 d) 4 10 In an Arithmetic Progression of $a_2 = 10$ and $a_4 = 8$ then the common difference is						
a) -2 b) 2 c)1 d)-1						
20 The next terms of the Arithmetic Progression $4 - 1 - 6$ is						
a) -10, -15 b) -12, -15 c) 11, 16 d) -11, -16						
21. The value of S_3 in the Arithmetic Progression 7, 4, 1, -2						
a) 1 b)3 c) -3 d)12						
22. If the sum of an Arithmetic Progression whose first term and the last term are 1 and 11 respectively is 36						
then the number of its terms is						
a)5 b)6 c)7 d)8						
23. If the n th term of an Arithmetic Progression is $a_n = 2n - 1$ then the Arithmetic Progression is						
a)1, 5, 9 b)2, 6, 10 c)1, 3, 5 d)1, 2, 3						
24. The common difference of an Arithmetic Progression whose n^{th} term is $a_n = 5 - 2n$ is						
a) -3 b) -2 c) -1 d) 2						
25. In the Arithmetic Progression 6, x, y, 18 the value of x and y respectively are						
a) 8, 12 b) 10, 13 c) 10, 14 d) 14, 10						
26. The common difference of two Arithmetic Progressions is equal. If the first term of the first Arithmetic						
Progression is 6 and the first term of the second Arithmetic Progression is 10 then the difference of the						
5 th term of these Arithmetic Progressions is						
a) 2 b) 3 c) 4 d) 5						
27. If the sum of 'n' terms of an Arithmetic Progression is $S_n = 3n^2 + 5n$ then its 2 nd term is						
a) 22 b) 14 c) 12 d) 10						

Unit 2: Triangles

28. The mathematician who proposed that " A line drawn parallel to one side of the triangle divides the other
two sides in equal proportion" is
a) Pythagoras b) Thales c) Euclid d) Euler P
29. In the given figure if ST QR then $\frac{PS}{SQ}$ is equal to
a) $\frac{PT}{TR}$ b) $\frac{PS}{TR}$ c) $\frac{PT}{SQ}$ d) $\frac{PT}{SR}$
30. If the ratios of the sides of two similar triangles is $4:9$ then the ratios of the areas
of these triangles is
a) $2:3$ b) $4:9$ c) $81:16$ d) $16:81$ A
31. In the given figure if XY BC then $\frac{AX}{AB}$ is equal toY
a) $\frac{AX}{AY}$ b) $\frac{AX}{XB}$ c) $\frac{AY}{AC}$ d) $\frac{AC}{AY}$
32. The length of the sides of a triangle are given below. Which of the following forms
a right-angled triangle?
a) 7 cm, 24 cm, 25 cm b) 3 cm, 8 cm, 6 cm
b) 50 cm, 80 cm, 100 cm d) 130 cm, 12 cm, 5 cm \bigwedge^{A}
33. \triangle ABC and \triangle BDE are two similar triangles. If 'D' is the midpoint of BC then
Area of $\triangle ABC$: Areas of $\triangle BDE$ is equal to
a) 2:1 b) 1:2 c) 4:1 d) 1:4 $B \xrightarrow{\frown} D C$
34. The mathematician who proposed the theorem which states that "In a right-angled triangle, the square of
the hypotenuse is equal to the sum of the squares on the other two sides" is
a) Thales b) Pythagoras c) Brahma Gupta d) Euclid
35. The corresponding sides of two similar triangles are
a) Equal b) Parallel c) Not Equal d) Proportional
36. The areas of two similar triangles are 120 cm ² and 480 cm ² respectively, then the ratio of any pair of its corresponding sides is
a) 1:4 b) 1:2 c) 4:1 d) 2:3
37. In the given figure if $\angle B = 90^{\circ}$ then the correct relation among the following is
a) $BC^2 + AC^2 = AB^2$ b) $AB^2 + AC^2 = BC^2$
c) $AB^2 - AC^2 = BC^2$ d) $AC^2 - BC^2 = AB^2$ B C

Page

Unit 3: Pair of Linear Equations in Two Variables

52. If a pair of linear equations x + 2y = 3 and 2x + 4y = k are coincident then the value of 'k' is _____

a) 3 b) 6 c) -3 d) -6

53. If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are pair of linear equations which form intersecting lines then

the ratio of their co-efficient is _____

a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ d) $\frac{a_1}{a_2} = \frac{b_1}{b_2}$

54. Number of solutions for the pair of Linear Equations 2x + 3y - 9 = 0 and 4x + 6y - 18 = 0 is _____

a) 0 b) 1 c) 2 d) Infinity

55. In the equation x + y = 7 if x = 3 then the value of y is _____

56. If the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are coincident then the correct relation among the following is _____

a)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 b) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ c) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ d) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

57. If $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are pair of linear equations which have infinite solutions, then the correct relation among the following is _____

a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ b) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ c) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ d) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

58. For what value of k will the graphs of the linear equations 2x - y + 4 = 0 and 6x - ky + 12 = 0 coincide? a) $\frac{1}{3}$ b) $\frac{-1}{3}$ c) 3 d) -3

59. If the graphical representation of pair of linear equations
$$a_1x + b_1y + c_1 = 0$$
 and $a_2x + b_2y + c_2 = 0$ is coincident then they have _____

a) No solution b) Unique Solution c) Two solutions d) Infinitely many solutions

60. If the graphical representation of the pair of linear equations 4x + ky + 8 = 0 and 4x + 4y + 2 = 0 are parallel then the value of k is _____

a) -4 b) 2 c) 4 d) 8

61. Types of lines represented by the pair of linear equations 6x + 2y - 4 = 0 and 2x + 4y - 12 = 0 is _____

a) Intersecting b) Perpendicular c) Parallel d) Coincident

62. On solving the equation $x + y = 4$ and $x - y = 2$ the values of x and y will be
a) (3, 1) b) (2, 2) c) (1, 3) d) (10, 4)
63. In the given equations $2x + y = 5$ and $x - y = 1$ the values of x and y will be
a) (3,2) b) (2, 1) c) (1, 2) d) (2, 3)
64. In the equation $2x + y = 8$ if $x = 3$ then the value of y is
a) 4 b) 3 c) 2 d) 1
65. If the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are consistent then the number of
solutions is
a) 0 b) 1 c) 2 d) Infinite
66. The value of $\frac{c_1}{c_2}$ in the pair of linear equations $3x + 2y = 5$ and $2x - y - 6 = 0$ is
a) $\frac{-5}{6}$ b) $\frac{-6}{5}$ c) $\frac{5}{6}$ d) $\frac{3}{2}$
67. If $x + 2y - 3 = 0$ and $5x + ky + 7 = 0$ are a pair of linear equations which have no solution then the value
of k is
a) 10 b) 6 c) 3 d)1
68. If the pair of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are consistent then their graphical
representation is
a) Parallel b) Coincident c) Intersecting d) Intersecting or Coincident
69. Number of solutions for the pair of linear equations $x + y = 0$ and $x + y = 3$ is
a) One solution b) Two solutions c) No solutions d) Infinite Solutions
70. In the equation $3x + y = 10$ if $y = 4$ then the value of x is
71. 0 b) 1 c) 2 d) 3
Department of Public Instruction, Mangalore, Dakshina Kannada District

Unit 4: Circles

81. A straight line which intersects a circle at two points is called _____ a) Secant b) Tangent c) Radius d) Perpendicular Line 82. The number of points in which a tangent touches a circle are a) 0 b) 1 c) 2 d) Infinite 83. The number of tangents that a circle can have is _____ b) 2 d) Infinite a) 1 c) 3 84. The maximum number of parallel tangents that a circle can have are _____ b) 2 c) 4 d) Infinite a) 1 85. The common point between the circle and the tangent of a circle is _____ a) Centre b) Point of Contact c) External Point d) None of these 86. The length of the tangent drawn to a circle of radius 3 cm from a distance 5 cm from its centre is b) 4 cm c) 5 cm a) 3 cm d) 6 cm 87. If the length of the tangent drawn from an external point Q to a circle is 24 cm and the distance between the point Q and centre of the circle is 25 cm then the measure of the radius is _____ a) 7 cm b) 12 cm c) 15 cm d) 24.5 cm 88. In the figure $\angle POQ = 110^{\circ}$. If TP and TQ are the tangents to the circle with 'O', then the measure of $\angle PTQ$ is _____ c) 80° d) 90° L110. a) 60⁰ b) 70° 89. If the angle between the tangents PA and PB drawn from an external point 'P' to a circle with centre 'O' is 80^0 then measure of $\angle POA$ is _____ a) 40° b) 50° c) 80° d) 100⁰ 90. If the length of the tangent drawn from an external point 'A', 5 cm away from the centre of the circle is 4 cm, then the length of the radius is _____ b) 4.5 cm d) 3 cm a) 5 cm c) 4 cm 91. In the figure 'O' is the centre of the circle. If $\angle AOB = 100^{\circ}$ then $\angle OAB$ is equal to _ b) 50° c) 40° d) 30° a) 80° 92. The angle between the tangent and the radius drawn at the point of contact is _____ a) 45° b) 60° c) 80° d) 90° 93. The maximum number of tangents that can be drawn to a circle from an external point is _____ a) 0 b) 1 c) 2 d) Infinite Department of Public Instruction, Mangalore, Dakshina Kannada District

Page | 1

105. In the figure TQ and TF are the tangents to the bigger circle and TR and TF are the tangents to the smaller circle. If TQ = 8 cm the TR = _____

a) 10 cm b) 9 cm c) 8 cm d) 6 cm

106. In the figure if 'O' is the centre of the circle then the longest chord is

a) AB b) CD c) PQ d) RS

Unit 5: Constructions

106. In the figure the ratio in which the point 'P' divides the line segment AB is a) 3:2 b) 2:3 c) 2:1 d) 3:1 107. If a point 'P' divides a line segment AB such that $\frac{PB}{AB} = \frac{3}{7}$ then the ratio of AP : PB will be _____ b) 7 : 4 c) 7 : 3 d) 4 : 3 a) 4:7 108. To construct a triangle similar to $\triangle ABC$, given BC = 4.5 cm, $\angle B = 45^{\circ}$, $\angle C = 60^{\circ}$ and the ratio of the corresponding sides is $\frac{3}{7}$ then the given line segment BC should be divided in the ratio a) 3:4 b) 3 : 7 c) 3 : 10 d) 4 : 7 109. In the figure the ratio in which the point 'P' divides the line segment AB is _ b) 3: 4 c) 4: 3 d) 2: 3 a) 3:2 110. In order to divide a given line segment in the ratio 3 : 5, the number of arcs to be constructed on the line forming an acute angle with the given line segment is _____ a) 3 b) 5 c) 8 d) 10 111. In the given figure to construct $\triangle ABC$ similar to $\triangle ADE$, the ratio of the corresponding sides will be _____ b) $\frac{3}{4}$ c) $\frac{4}{3}$ d) $\frac{3}{7}$ a) $\frac{7}{2}$ 112. If two tangents with angles between them to be 60^0 are to be constructed from an external point, then the angle between the radii should be _____ a) 60° b) 75° c) 90° d) 120° 113. In the given figure the ratio in which the point 'P' divides the line segment AB is _____ a) 4:3 b) 3:4 c) 4:7 d) 7:4 114. To construct tangents to a circle from an external point such that the angle between the tangents is 100° then the angle between the radii should be _____ a) 100° b) 90° c) 80° d) 50°

115.Number of tangents that can be drawn to a circle from its non-centric end of a radii is								
a) 1 b) 2	a) 1 b) 2 c) 3 d) Infinite							
are $\frac{3}{5}$ times the c	116. On constructing $\triangle ABC \sim \triangle ADE$ the ratio of the corresponding sides of $\triangle ADE$ are $\frac{3}{5}$ times the corresponding sides of $\triangle ABC$. If AB=5cm, AC = 6cm and BC							
= 7cm then the l	ength of sides	BD and DE of $\triangle ADE$ (By Calc	ulations)	B ₃ B ₄ B ₅				
a) 2cm, 3cm		b) 3cm, 3.6cm						
c) 3cm, 4.6cm		d) 4cm, 3.6cm						
117.Number of tang	ents that can	be drawn to a circle from a poin	t inside it is					
a) 2	a) 2 b) 1 c) 0 d) Infinite							
118. $\triangle ABC$ is constr	ructed similar	to $\triangle BDE$. In $\triangle ABC \ \angle B = 90^{\circ}$,	AB=3cm					
and BC=4cm. If	the correspon	ding sides of $\triangle BDE$ is $\frac{5}{2}$ times	that of					
$\triangle ABC$ then the l	ength of BD a	nd BE respectively are	A. 3 cm					
(By Calculations)								
a) 10cm, 7.5cm	a) 10cm, 7.5cm b) 7.5cm, 10cm B ₂ B ₂							
c) 8cm, 12cm		d) 12cm, 8cm		B ₃ B ₄ B ₅ ×				

Page | 19

Unit 6: Coordinate Geometry

119. The distance of the point P(4,3) from the x – axis is _____

a) 2 units b) 3 units c) 4 units d) 5 units

120. In the given graph the coordinates of the point A is _____

a) (-1, 0) b) (1, -1) c) (0, 2) d) (2, 0)

121. The coordinates of the midpoint which divides the line joining A (x_1, y_1)

and $B(x_2, y_2)$ is _____

a)
$$\left(\frac{x_1+y_1}{2}, \frac{x_2+y_2}{2}\right)$$

b) $\left(\frac{x_1-x_2}{2}, \frac{y_1+y_2}{2}\right)$
c) $\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$

122. In the given figure if D is the midpoint of BC, then the coordinates of D are

a)
$$\left(\frac{x_2+x_3}{2}, \frac{y_2+y_3}{2}\right)$$

b) $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
c) $\left(\frac{x_1+x_3}{2}, \frac{y_1+y_3}{2}\right)$
d) $\left(\frac{x_2+y_3}{2}, \frac{y_2+x_3}{2}\right)$

123. The distance of the point P(5,2) from the y – axis is _____

a) 2 units b) 4 units c) 5 units d) 7 units

124. The co-ordinates of the origin are _____

a) (0,0) b) (0,1) c) (1,0) d) (1,1)

125. The formula to find out the distance between the points (x_1, y_1) and (x_2, y_2)

a) $\sqrt{(x_1 + x_2)^2 + (y_1 + y_2)^2}$ b) $\sqrt{(x_1 + x_2)^2 - (y_1 + y_2)^2}$ c) $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ d) $\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}$

126. The distance between the origin and the point (x, y) is _____

a)
$$\sqrt{x^2 + y^2}$$
 b) $\sqrt{x^2 - y^2}$ c) $\sqrt{(x + y)^2}$ d) $\sqrt{(x - y)^2}$

127. The formula to find out the area of the triangle whose vertices are A (x_1, y_1) , B (x_2, y_2) and

(x₃, y₃) is _____
a)
$$\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

b) $\frac{1}{2} [x_1(y_2 - y_3) - x_2(y_3 - y_1) - x_3(y_1 - y_2)]$
c) $\frac{1}{2} [x_1(y_2 + y_3) + x_2(y_3 + y_1) + x_3(y_1 + y_2)]$
d) $\frac{1}{2} [x_1(y_2 + y_3) - x_2(y_3 + y_1) - x_3(y_1 + y_2)]$

Department of Public Instruction, Mangalore, Dakshina Kannada District

С

128. The distance between the origin and the point (3, 4) is _____ a) 3 units b) 4 units c) 5 units d) 6 units 129. The co-ordinates of the midpoint of the line joining the points A (1, 4) and B (3, 6) is _____ b) (2,5) c) (4,10) d) (10, 4) a) (5,2) 130. The distance between the origin and the point (p, q) is _____ b) $\sqrt{p^2 - q^2}$ c) $\sqrt{(p+q)^2}$ d) $\sqrt{p^2 + q^2}$ a) $\sqrt{p^2 X q^2}$ 131. The distance between the origin and the point (4, -3) is _____ a) 5 units b) 4 units c) 3 units d) 1 unit 132. The distance between the origin and the point (12, 5) is _____ a) 13 units b) 12 units c) 7 units d) 5 units 133. The distance of the point P (5,3) from x axis and y axis is _____ 5 units, 3 units b) 3 units, 5 units a) c) 4 units, 3 units d) 5 units, 2 units 134. The distance between the origin and the point (0,4) is _____ 2 unitsb) 4 units a) c) 8 units d) 16 units 135. The distance of the point (-4, -7) from the y axis is _____ d) $\sqrt{65}$ units a) 4 unitsb) 7 units c)11 units 136. The distance between the points (2,3) and (6,6) is _____ 7 units b) 5 units c) 4 units d) 3 units a) 137. The coordinates of the point on the x axis will be in the form _____ b) (x,0)c) (0,0) a) (0, y)d) (x,y)138. The co-ordinates of the point of intersection of the x-axis and y-axis is _____ (1.0)b) (0,1) c) (0.0)d) (1,1) a) 139. Ordinate of all points on the x-axis is _____ a) 0 b) 1 c) 2 d) 3 140. Abscissa of all points on the y-axis is _____ d) 0 a) 3 b) 2 c) 1 141. The coordinates of the points which divides the line segment joining the points (x_1, y_1) and (x_2, y_2) internally in the ratio $m_1: m_2$ is _____ b) $\left(\frac{m_1x_2 - m_2x_1}{m_1 - m_2}, \frac{m_1y_2 - m_2y_1}{m_1 - m_2}\right)$ $\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$ a) c) $\left(\frac{m_1x_2+m_2x_1}{m_1-m_2}, \frac{m_1y_2+m_2y_1}{m_1-m_2}\right)$ d) $\left(\frac{m_1x_2 - m_2x_1}{m_1 + m_2}, \frac{m_1y_2 - m_2y_1}{m_1 + m_2}\right)$

142. Which of the following point is on the x-axis?

a) (2,0) b) (0,2) c) (2,3) d) (0, -2) Department of Public Instruction, Mangalore, Dakshina Kannada District

Unit 7 : Quadratic Equations

a) 9 b) -9 c) 8 d) 5 149. The standard form of quadratic equation is a) $ax^2-bx+c=0$ b) $ax^2+bx+c=0$ c) $ax^2-bx-c=0$ d) $ax^2+bx-c=0$ 150. If one root of the quadratic equation $(x-2)(x+1)=0$ is 2 then the other root is a) 0 b) -1 c) 1 d) 3 151. The roots of the quadratic equation $ax^2+bx+c=0$ are a) $\frac{-b\pm\sqrt{b^2-4ax}}{2a}$ b) $\frac{-b\pm\sqrt{a^2-4bc}}{2a}$ c) $\frac{-b\pm\sqrt{b^2+4ac}}{2a}$ d) $\frac{-b\pm\sqrt{a^2+4bc}}{2a}$ 152. If the roots of the quadratic equation $x^2 - kx + 4 = 0$ are equal then the value of 'k' is a) ± 2 b) ± 4 c) ± 8 d) ± 16 153. The discriminant of the quadratic equation $x^2 + 5x + 6 = 0$ is a) $(-2,3)$ b) $(-2,-3)$ c) $(2,3)$ d) $(2,-3)$ 155. The roots of the equadratic equation $ax^2+bx+c=0$ is a) $(-2,3)$ b) $(-2,-3)$ c) $(2,3)$ d) $(2,-3)$ 155. The roots of the equadratic equation $ax^2+bx+c=0$ is a) $-1,-2$ b) $1,2$ c) $-1,2$ d) $-2,1$ 156. The discriminant of the quadratic equation $ax^2+bx+c=0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $ax^2+bx+c=0$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the equatratic equation arc (a) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 160. If the roots of the equatratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equatratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	148. If the roots of the equ	uation $x^2 + 6x + k = 0$ a	are equal then the	ne value of 'k '	is equal to				
149. The standard form of quadratic equation is	a) 9	b) – 9	c) 8		d) 5				
a) $ax^2-bx+c=0$ b) $ax^2+bx+c=0$ c) $ax^2-bx-c=0$ d) $ax^2+bx-c=0$ 150. If one root of the quadratic equation $(x-2)(x+1)=0$ is 2 then the other root is	149. The standard form of quadratic equation is								
150. If one root of the quadratic equation $(x - 2)(x + 1) = 0$ is 2 then the other root is a) 0 b) -1 c) 1 d) 3 151. The roots of the quadratic equation $ax^2 + bx + c = 0$ are a) $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ b) $\frac{-b \pm \sqrt{a^2 - 4bc}}{2a}$ c) $\frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$ d) $\frac{-b \pm \sqrt{a^2 + 4bc}}{2a}$ 152. If the roots of the quadratic equation $x^2 - kx + 4 = 0$ are equal then the value of 'k' is a) ± 2 b) ± 4 c) ± 8 d) ± 16 153. The discriminant of the quadratic equation $x^2 + 5x + 6 = 0$ is a) 49 b) 25 c) 24 d) 1 154. The roots of the equation $x^2 - x - 6 = 0$ are a) $(-2,3)$ b) $(-2,-3)$ c) $(2,3)$ d) $(2,-3)$ 155. The roots of the equation $(x - 1)(x - 2) = 0$ are a) $(-2,3)$ b) $(-2,-3)$ c) $(-2,-3)$ d) $-2,1$ 156. The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2 + bx + c = 0$ are qual then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	a) $ax^2-bx+c=0$ b) $ax^2+bx+c=0$ c) $ax^2-bx-c=0$ d) $ax^2+bx-c=0$								
a) 0 b) -1 c) 1 d) 3 151. The roots of the quadratic equation $ax^2+bx+c=0$ are a) $\frac{-b \pm \sqrt{b^2-4ac}}{2a}$ b) $\frac{-b \pm \sqrt{a^2-4bc}}{2a}$ c) $\frac{-b \pm \sqrt{b^2+4ac}}{2a}$ d) $\frac{-b \pm \sqrt{a^2+4bc}}{2a}$ 152. If the roots of the quadratic equation $x^2 - kx + 4 = 0$ are equal then the value of 'k' is a) ± 2 b) ± 4 c) ± 8 d) ± 16 153. The discriminant of the quadratic equation $x^2 + 5x + 6 = 0$ is a) 49 b) 25 c) 24 d) 1 154. The roots of the equation $x^2 - x - 6 = 0$ are a) $(-2,3)$ b) $(-2,-3)$ c) $(2,3)$ d) $(2,-3)$ 155. The roots of the equation $(x - 1)(x-2)=0$ are a) $(-2,3)$ b) $(-2,-3)$ c) $(2,3)$ d) $(2,-3)$ 155. The roots of the equation $(x - 1)(x-2)=0$ are a) $-1,-2$ b) $1,2$ c) $-1,2$ d) $-2,1$ 156. The discriminant of the quadratic equation $ax^2+bx+c=0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equatratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is	150. If one root of the quadratic equation $(x - 2)(x+1) = 0$ is 2 then the other root is								
151. The roots of the quadratic equation $ax^2+bx+c=0$ are a) $\frac{-b \pm \sqrt{b^2-4ac}}{2a}$ b) $\frac{-b \pm \sqrt{a^2-4bc}}{2a}$ c) $\frac{-b \pm \sqrt{b^2+4ac}}{2a}$ d) $\frac{-b \pm \sqrt{a^2+4bc}}{2a}$ 152. If the roots of the quadratic equation $x^2 - kx + 4 = 0$ are equal then the value of 'k' is a) ± 2 b) ± 4 c) ± 8 d) ± 16 153. The discriminant of the quadratic equation $x^2 + 5x + 6 = 0$ is a) 49 b) 25 c) 24 d) 1 154. The roots of the equation $x^2 - x - 6 = 0$ are a) $(-2,3)$ b) $(-2,-3)$ c) $(2,3)$ d) $(2,-3)$ 155. The roots of the equation $(x-1)(x-2)=0$ are a) $-1,-2$ b) $1,2$ c) $-1,2$ d) $-2,1$ 156. The discriminant of the quadratic equation $ax^2+bx+c=0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	a) 0	b) -1	c) 1		d) 3				
a) $\frac{-b \pm \sqrt{b^2-4ac}}{2a}$ b) $\frac{-b \pm \sqrt{a^2-4bc}}{2a}$ c) $\frac{-b \pm \sqrt{b^2+4ac}}{2a}$ d) $\frac{-b \pm \sqrt{a^2+4bc}}{2a}$ 152. If the roots of the quadratic equation $x^2 - kx + 4 = 0$ are equal then the value of 'k' is	151. The roots of the quadratic equation $ax^2+bx+c=0$ are								
152. If the roots of the quadratic equation $x^2 - kx + 4 = 0$ are equal then the value of 'k' is a) ± 2 b) ± 4 c) ± 8 d) ± 16 153. The discriminant of the quadratic equation $x^2 + 5x + 6 = 0$ is a) 49 b) 25 c) 24 d) 1 154. The roots of the equation $x^2 - x - 6 = 0$ are a) (-2,3) b) (-2,-3) c) (2,3) d) (2,-3) 155. The roots of the equation $(x - 1)(x - 2) = 0$ are a) -1,-2 b) 1,2 c) -1,2 d) -2,1 156. The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2 + bx + c = 0$ are a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation $x^2 - 5x + 6 = 0$ are	a) $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	b) $\frac{-b \pm \sqrt{a^2 - 4bc}}{2a}$ c	$\frac{-b\pm\sqrt{b^2+4ac}}{2a}$	d) $\frac{-b \pm \sqrt{a^2}}{2a}$	+ 4bc				
a) ± 2 b) ± 4 c) ± 8 d) ± 16 153. The discriminant of the quadratic equation $x^2 + 5x + 6 = 0$ is a) 49 b) 25 c) 24 d) 1 154. The roots of the equation $x^2 - x - 6 = 0$ are a) (-2,3) b) (-2,-3) c) (2,3) d) (2,-3) 155. The roots of the equation $(x - 1)(x-2)=0$ are a) -1,-2 b) 1,2 c) -1,2 d) -2,1 156. The discriminant of the quadratic equation $ax^2+bx+c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equatratic equation $ax^2-5x+6=0$ are	152. If the roots of the qua	adratic equation $x^2 - kx$	x + 4 = 0 are eq	ual then the val	lue of 'k' is				
153. The discriminant of the quadratic equation $x^2 + 5x + 6 = 0$ is a) 49 b) 25 c) 24 d) 1 154. The roots of the equation $x^2 - x - 6 = 0$ are a) (-2,3) b) (-2,-3) c) (2,3) d) (2,-3) 155. The roots of the equation $(x - 1)(x - 2) = 0$ are a) -1,-2 b) 1,2 c) -1,2 d) -2,1 156. The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2 + bx + c = 0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation $x^2 - 5x + 6 = 0$ are	a) ± 2 b) ± 4	$1 c) \pm 8$	d) ± 1	6					
a) 49 b) 25 c) 24 d) 1 154. The roots of the equation $x^2 - x - 6 = 0$ are a) (-2,3) b) (-2,-3) c) (2,3) d) (2,-3) 155. The roots of the equation $(x - 1)(x - 2) = 0$ are a) -1,-2 b) 1,2 c) -1,2 d) -2,1 156. The discriminant of the quadratic equation $ax^2 + bx + c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2 + bx + c = 0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the equatratic equation $ax^2 + bx + c = 0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	153. The discriminant of t	he quadratic equation x	$x^2 + 5x + 6 = 0$	S					
154. The roots of the equation $x^2 - x - 6 = 0$ are a) (-2,3) b) (-2,-3) c) (2,3) d) (2,-3) 155. The roots of the equation $(x - 1)(x-2)=0$ are a) -1,-2 b) 1,2 c) -1,2 d) -2,1 156. The discriminant of the quadratic equation $ax^2+bx+c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation $x^2-5x + 6 = 0$ are	a) 49	b) 25	c) 24	d) 1					
a) $(-2,3)$ b) $(-2,-3)$ c) $(2,3)$ d) $(2,-3)$ 155. The roots of the equation $(x - 1)(x-2)=0$ are a) $-1,-2$ b) $1,2$ c) $-1,2$ d) $-2,1$ 156. The discriminant of the quadratic equation $ax^2+bx+c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the equatratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation $x^2-5x + 6 = 0$ are	154. The roots of the equa	ation $x^2 - x - 6 = 0$ are	e	-					
155. The roots of the equation $(x - 1)(x-2)=0$ are a) -1,-2 b) 1,2 c) -1,2 d) -2,1 156. The discriminant of the quadratic equation $ax^2+bx+c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	a) (-2,3)	b) (-2,-3)	c) (2,3)	d) (2,-3)					
a) -1,-2 b) 1,2 c) -1,2 d) -2,1 156. The discriminant of the quadratic equation $ax^2+bx+c = 0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	155. The roots of the equa	ation $(x-1)(x-2)=0$ are							
156. The discriminant of the quadratic equation $ax^2+bx+c=0$ is a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	a) -1,-2	b) 1,2	c) -1,2	d) -2,1					
a) $b^2 + 4ac$ b) $b^2 - 4ac$ c) $\sqrt{b^2 + 4ac}$ d) $\sqrt{b^2 - 4ac}$ 157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	156. The discriminant of t	he quadratic equation a	$ax^2+bx+c=0$ is	j					
157. The standard form of the quadratic equation $x(x+1) = 30$ is a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	a) $b^2 + 4ac$	b) $b^2 - 4ac$	c) $\sqrt{b^2 + 4a}$	d) $\sqrt{b^2}$	- 4 <i>ac</i>				
a) $x^2 + x = 30$ b) $x^2 + x - 30 = 0$ c) $x^2 - x - 30 = 0$ d) $x^2 - x = 30$ 158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	157. The standard form of	f the quadratic equation	x(x+1) = 30 is						
158. If the roots of the quadratic equation are real then the value of its discriminant is a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation $ax^2+bx+c=0$ does not have real roots then $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one	a) $x^2 + x = 30$	b) $x^2 + x - 30 = 0$	c) $x^2 - x - 30$	$= 0$ d) x^2	- x =30				
 a) Less than zero b) Greater than or equal to zero c) -1 d) None of the above 159. If the quadratic equation ax²+bx+c=0 does not have real roots then b² - 4ac is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation ax²+bx+c=0 are equal then the value of b² - 4ac is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation x²-5x + 6 = 0 are 	158. If the roots of the qua	adratic equation are rea	l then the value	e of its discrimi	nant is				
 159. If the quadratic equation ax²+bx+c=0 does not have real roots then b² – 4ac is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation ax²+bx+c=0 are equal then the value of b² – 4ac is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation x² – 5x + 6 = 0 are 	a) Less than zero	b) Greater than or equ	ual to zero	c) -1 d) Nor	ne of the above				
a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation $x^2-5x+6=0$ are	159. If the quadratic equation	tion $ax^2+bx+c=0$ does r	not have real ro	ots then $b^2 - 4a$	ac is				
160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation $x^2 - 5x + 6 = 0$ are	a) Less than zero	b) Greater than zero	c) Equal to z	tero d) Equ	al to one				
a) Less than zero b) Greater than zero c) Equal to zero d) Equal to one 161. The roots of the equation $x^2 - 5x + 6 = 0$ are	160. If the roots of the quadratic equation $ax^2+bx+c=0$ are equal then the value of $b^2 - 4ac$ is								
161. The roots of the equation $x^2 - 5x + 6 = 0$ are	a) Less than zero	b) Greater than zero	c) Equal to z	tero d) Equ	al to one				
	161. The roots of the equa	ation $x^2 - 5x + 6 = 0$ are							
a) 2,3 b) -2,3 c) 2,-3 d) -2,-3	a) 2,3	b) -2,3 c) 2,-3	d) -2,-	3					
162. The roots of the equation $x^2 - 6x = 0$ are	162. The roots of the equa	ation $x^2 - 6x = 0$ are							
a) $(0,-6)$ b) $(0,6)$ c) $(6,-6)$ d) $(-6,-6)$	a) (0,-6)	b) (0,6) c) (6,-	6) d) (-6,	-6)					

163. If (x+4)(x-4) = 9 then the value of x is _____ a) ± 5 b) $\pm \frac{1}{5}$ c) 5, 5 d) 4, -4 164. The quadratic equation whose roots are equal to 2 and -1 is _____ a) $x^{2}+2x-2=0$ b) $x^{2}+x+2=0$ c) $x^{2}-2x+2=0$ d) $x^{2}-x-2=0$ 165. If the roots of the equation $kx^2+2x+3=0$ are equal the value of 'k' is _____ b) $\frac{-1}{2}$ a) $\frac{1}{2}$ c) 3 d) -3 166. The discriminant of the equation $2x^2 - x - 8 = 0$ is _____ b) -65 a) -127 c) -15 d) 65 167. If the discriminant of a quadratic equation $ax^2+bx+c=0$ is -3 then the roots of the equation are _____ a) Real and distinct b) No real roots d) None of the above c) Roots are equal 168. The maximum number of roots that a quadratic equation can have is _____ a) 1 b) 2 c) 3 d) Infinite 169. If one root of the equation $2x^2+kx+4=0$ is 2 then the value of 'k' is b) -1 a) 6 c) -2 d) -6 170. The standard form of the quadratic equation $x^2=3x+2$ is _____ a) $x^2-3x+2=0$ b) $x^2+3x-2=0$ c) $x^2-3x-2=0$ d) $x^{2}+3x+2=0$ 171. If one root of the equation (3x - 2)(x+3) = 0 is -3 then the other root is _____ a) $\frac{2}{2}$ c) $\frac{-2}{2}$ b) $\frac{3}{2}$ d) $\frac{-3}{-3}$ 172. The standard form of the equation $2x^2 - 5(4x-1) = 0$ is _____ a) $2x^2-20x-5=0$ b) $2x^2-20x+5=0$ c) $2x^2+20x-5=0$ d) $2x^2+20x+5=0$ 173. The nature of the roots of the equation $2x^2 - x - 3 = 0$ is _____ b) Roots are real and distinct a) Roots are equal d) Roots are irrational c) No real roots 174. The sum of the squares of two consecutive even numbers is 164. Its mathematical representation is a) $x^{2}+(x+1)^{2}=164$ b) $x^{2}+(x+2)^{2}=164$ c) $[x+(x+2)]^{2}=164$ d) $x^{2}+(2x)^{2}=164$

Page | 2

175. The sum of the squares of two consecutive odd numbers is 130. Its mathematical representation is

a) $x^{2}+(x+1)^{2}=130$ b) $x^{2}+(2x)^{2}=130$ c) $x^{2}+(x+2)^{2}=130$ d) $(x+2x)^{2}=130$

Page | 2

189.(1+co	$(1-\cos\theta) =$				
a) sin	θ b) co	s²θ	c) $\sec^2\theta$	d) $tan^2\theta$	
190.In the	given figure if $\angle Y$	$= 90^{\circ}, \angle Z = 30^{\circ}$	and XY=5cm the	en the length of XZ is	X
	-				20
a) 50	m b) 10cm	c) 15cm	d) 20cm		Y Z
191.If sin	$18^0 = \cos A$ and A is	an acute angle	e then $\angle A = $		
a) 90 ⁰	b) 82 ⁰	c) 72 ⁰	d) 36 ⁰		
192.If 5 si	A = 3 then cosec A	· =			
a) $\frac{3}{5}$	b) $\frac{4}{5}$		c) $\frac{5}{4}$	d) $\frac{5}{3}$	
193.In tria	ngle ABC if $\angle B = 9$	0^0 then tan A =	=		c N
a) $\frac{13}{5}$	b) $\frac{5}{1}$	2	c) $\frac{12}{5}$	d) $\frac{5}{13}$	12 13
$194.\frac{1-\sin^2}{1-\cos^2}$	$\frac{A}{A} = $				B 5 A
a) cot	A b)ta	n ² A	c)sec ² A	d) $cosec^2 A$	
195.In tria	ngle ABC if $\angle A = 9$	0^0 then sin B =	=		
a) $\frac{AC}{AB}$	b) $\frac{B}{A}$	c c	c) $\frac{AC}{BC}$	d) $\frac{AB}{BC}$	
196.The v	alue of $\cos^2 17^0 - \sin^2 17^0 = \sin^2 17^0 - \sin^2 17^0 = \sin$	² 73 ⁰ is			
a) 1	b) $\frac{1}{3}$		c) 0	d) -1	
197.The v	alue of tan10 ⁰ x tan8	0 ⁰ is			
a) -1	b) 1		c) 0	d) $\sqrt{3}$	
$198.1-\tan^{1-\tan^{1-\tan^{1-\tan^{1-\tan^{1-\tan^{1-\tan^{1-\tan^$	$\frac{2}{2}\frac{45}{2}$ =				
a) 0	b) 1		c) -1	d) $\frac{1}{2}$	
199. tan 55 ⁰ cot 35 ⁰	=	-			
a) 0	b) 1		c) -1	d) $\frac{1}{\sqrt{3}}$	В
200. In the	figure if $\angle C = 90^0$ the	then $\cot A = $			
a) $\frac{12}{13}$	b) $\frac{5}{1}$	3	c) $\frac{13}{5}$	d) $\frac{5}{12}$	13/12
201.If sin	$\alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$ the second secon	then $\alpha + \beta = $			A 5 C
a) 0 ⁰	b)3() ⁰	c) 60 ⁰	d) 90 ⁰	
202. The tr	igonometric ratio eq	uivalent to $\frac{1}{\sqrt{3}}$	is		
a) sin	30 ⁰ b) c	os 60°	c) tan 30 ⁰	d) tan 60 ⁰	

Department of Public Instruction, Mangalore, Dakshina Kannada District

203.Th	e value of 10sin ² θ	+ $10\cos^2\theta$ is					
a)	10	b) 1		c) 0		d) $\frac{1}{10}$	
204.cos	$s48^0 - sin42^0 =$					10	
a)	6	b) 1		c) 0		d) -1	
205.sec	$c(90^{0}-A) = $						
a) (cos a	b) sin a	c) cot a	a d) c	osec a		
$206.\frac{cos}{se}$	$\frac{ec\ 31^0}{c\ 59^0} =$						
a)	0	b) $\frac{1}{2}$		c) 1		d) -1	
207.Th	e value of sin ² 60 ⁰ i	s					
a)	$\frac{\sqrt{3}}{2}$	b) $\frac{3}{4}$		c) $\frac{4}{3}$		d) $\frac{2}{\sqrt{3}}$	
208.1+	$\cot^2 A = $						
a) (cosec ² A	b) $\cos^2 A$		c) sec ² A		d) tan ² A	
209.sec	$c^2 A = $						
a)	$1 + \cot^2 A$	b) 1+ tan ² A		c) $1 + \csc^2 A$	A	d) $1 + \cos^2 A$	
210.sec	$c^2 A - tan^2 A = $						
a) (0	b) 1		c) -1		d) 2	
211.An	nong the following	the trigonometr	ric ratio	s the ratio wh	ose valu	e is 1 is	
a) :	sin 30 ⁰ b)	$\cos 30^{\circ}$	c) sin () ⁰	d) cos	0^{0}	
212.sin	$30^{0} + \cos 60^{0} = $						
a)	1	b) 0		$c)\frac{1}{4}$		d) $\frac{1}{2}$	
213.If 5	5 sec $A = 11$ then c	cosA =					
a)	<u>11</u> 5	b) $\frac{5}{11}$		c) $\frac{1}{2}$		d) 1	c N
214. In the figure if $\angle B = 90^{\circ} \angle A = \theta$ (θ is an acute angle) then $\cos(90^{\circ}-\theta) =$							
a)	12 13	b) $\frac{5}{13}$		c) $\frac{13}{5}$		d) $\frac{12}{13}$	12 13
215. If	$2\cos\theta = 1$ then θ	=					ĻÀ
a) (90 ⁰ b) 60^0	c) 45 ⁰		d) 30 ⁰)		в 5 А
216.If	$\sqrt{2}\cos\theta = 1$ then	$\theta =$					
a)	30^{0}	b) 45 ⁰	c) 60 ⁰		d) 90 ⁰		

Unit 9: Some Applications of Trigonometry 221. If a pole of height $4\sqrt{3}$ m from the ground casts a shadow of length 4m, then its angle of elevation towards the sun is _____ b) 45° c) 60° a) 30° d) 90° 222. From a point on the ground 30m away from the foot of the tower, if the angle of elevation of the top of the tower is 45° then the height of the tower is d) $30\sqrt{3}$ m a) 60m b) 45mc) 30m 30° (45° 223. The angle of depression from point A are $\angle DAC = 30^{\circ}$, $\angle DAE = 45^{\circ}$ then the angle of elevation from point C is d) 75⁰ a) 15⁰ b) 30⁰ c) 45° 224. A 10m long rope is tied from a pole of height 5m to the ground. The angle of elevation made by the rope with the ground is _____ d) 60° a) 15⁰ b) 30° c) 45° 225. If the angle of elevation of the sun is 45° then the length of the shadow cast by a 15m tall building is a) 25m b) 20m c) 15m d) 10m 226. If the height of the pole and the shadow cast by it are in the ratio $\frac{1}{\sqrt{3}}$ then the angle of elevation formed is a) 30⁰ b) 45° c) 60° d) 90^{0} 227. If the length of the shadow cast by a building is 20m and angle of elevation from the tip of the shadow to the top of the building is 60° then the height of the building is _____ b) $20\sqrt{3}$ m d) $30\sqrt{3}$ m c) 25m a) 20m 228. If a pole of height 2m casts a shadow of length $2\sqrt{3}m$, then the angle of elevation towards the tip of the pole from the tip of the shadow is _____ c) 60° b) 45⁰ d) 90^{0} a) 30° 229. If the height of a pillar is equal to the length of the shadow cast by it then the angle of elevation of the top of the pillar is _____ b) 45⁰ c) 60° d) 90^{0} a) 30° 230. The angle of elevation formed by the shadow of a pole to the top of the pole is 30° . If the height of the pole is 100m then the length of the shadow cast by it is _ c) $100(\sqrt{3}-1)m$ d) $\frac{100}{\sqrt{2}}m$ a) $100\sqrt{3}m$ b) 100m

231.From the poir	nt 15m away from the	e foot of the po	ole of height 3	50m the angle of elev	vation to the top of the			
pole is	·							
a) 15 ⁰	b) 30 ⁰	c) 45 ⁰	d) 60 ⁰					
232. A kite is flying at a height of 75m above the ground. If the inclination of the string of the kite with the								
ground is 60^0 t	hen the length of the	string is						
a) $50\sqrt{2}$ m	b) 50√3 m	c) $\frac{5}{2}$	$\frac{0}{2}$ m	d) $\frac{50}{\sqrt{3}}$ m	A a b			
233. If the angle of	f depression of a shir	as observed f	rom the top o	f a 75m high light	<u>л</u> Зо°			
house is 30^0 th	en the distance betw	een the ship ar	nd the light ho	ouse is	75m			
a) $25\sqrt{3}$ m	b) $75\sqrt{3}$ m c) $\frac{75}{\sqrt{2}}$	$\frac{5}{2}$ m d) 7	$75\sqrt{2}$ m					
234. A ladder place	ed along the wall ma	kes an angle o	f 60^0 with the	e the ground. If the	в			
foot of the lade	der is 8m away from	the wall then	the height of	the wall is				
a) 4m	b) 8m	c) 8	$\sqrt{2}m$	d) 16m				
235. The angle of a	depression of a car w	hich is at a dis	tance of 10	$\overline{3}$ m from the foot of	the building which is			
10m tall is								
a) 30 ⁰	b) 45 ⁰	c) 60 ⁰	d) 90 ⁰					
236. If the angle of	f depression of a boa	t from the top	of a bridge of	Theight 50m is 30° , the state of the s	hen the distance of the			
boat from the l	bridge is							

a) $50\sqrt{3}$ m b) 50m c) $25\sqrt{3}$ m d) 25m

Unit 10 : Statistics

007 TT		1 1			a a	C	. 1. 1
237. The empirical relationship between the three measures of c						central tendency is	
a) 2 Median = Mode + SMean			an	b) 3 Median = Mode		e + 2 Mean	
c) Median = Mode + Mean				d) M	edian = Mode	– Mean	
238. The	median	of the da	ata 5,3,1	4,16,19	and 20	18	_
a)	14		b) 14.	5	c) 15		d) 16
239.The	midpoir	nt of the	class int	terval (1	.0 – 25)	is	
a)	18		b) 17.	5	c) 17		d) 15
240.The	mean of	f the data	a 1, 2, 3,	4, 5 is		_	
a)	15		b) 7.5			c) 3.5	d) 3
241.The	mode of	f the foll	lowing f	requenc	y distrib	oution is	
	X	5	10	15	20	25	
	f	2	8	3	10	5	
a)	25		b) 20			c) 15	d) 10
242. In tl	ne freque	ency dist	tribution	of grou	uped dat	a if $\sum f_i x_i = 40$	0 and $\sum f_i = 20$ then its mean is
a)	20		b) 25			c) 40	d) 800
243.The	median	of the da	ata 15, 1	7, 19, 1	4, 12 is		
a)	17		b) 15			c) 14	d) 13
244.The	mean of	f the firs	t five pr	ime nun	nbers is		
a)	5.7		b) 5.6	c) 5.5		c) 5.5	d) 5
245.If fo	or certain	a data the	e mean i	s 16 and	d media	n is 15 then the	e mode is equal to
a)	10		b) 11			c) 12	d) 13
246.The	mode of	f the data	a 1, 0, 2	, 2, 3, 1,	, 4, 5, 1,	0 is	
a)	3		b) 2		c) 1		d) 0
247. If t	he point	of inters	section o	of 'less t	han ogiv	ve' and 'more	than ogive' of a given frequency distribution
is (30, 40) then the median will be							
a)	30		b) 35			c) 40	d) 70
248. The	e value tl	hat repea	ats most	often ir	n given s	set of data is	
a)	Mean	-	b) Me	dian	c) Mo	de d) None	of the above
249. The	e mean o	of 50 and	l 20 is				
a)	70		b) 35		_	c) 30	d) 20
,							

250. WI	nich among the fol	lowing is no	t a measur	e of centra	al tenden	cy?		
a) Mean b		b) Median	edian c		Mode d) Ra		nge	
251. If the mean of the data 11, 8, 9, 12 and x is 10 then the value of 'x 'is								
a)	8	b) 9		c) 10		d) 11		
252.In a	group of data, the	mode is						
a) Sc	ore which is repeat	ed less num	ber of tim	es b)	Middle	Score		
c) Most frequently repeated score				d) None of the above			e	
253.If tl	ne mode of 16, 15,	17, 16, 15, 2	x,19, 17, 1	4, 8 is 15	then x =			
a) 1	9	b) 15		c) 14		d) 8		
254.If a	certain group of d	ata has its m	ean as 24	and mode	as 12 the	en its med	ian is	
a)	25	b) 22		c) 20		d) 18		
255.The	e mean of first 5 od	d numbers i	s					
a) 4	Ļ	b) 5	5		6			
256.The	e size of the class in	nterval (40-5	50) is					
a) 1	0	b) 40		c) 45		d) 50		
257.The	e formula to calcula	ate the mode	is					
a)	$l + \bigg\lfloor \frac{f_1 - f_0}{f_1 - f_0 - 2f_2} \bigg\rfloor h$	b) $1 + \left \frac{2f_1}{f_1 - f_0} \right $	$\frac{-f_0}{-f_2} h c$) $1 + \left\lfloor \frac{f_1}{2f_1 - 1} \right\rfloor$	$\frac{-f_0}{f_0-f_2}$ h	d) 1 + $\left \frac{1}{2f_1} \right $	$\frac{f_1 - f_0}{f_1 - 2f_2} h$	
258.The	e class interval whi	ch contains	the mode i	in the follo	owing fre	quency di	stribution	
	Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	7
	Frequency	3	9	15	30	18	5	-
`	(20.20)	1) (20, 40)) (40,50	\	1) (5	0 (0)	
a)	(20-30)	b) (30-40)	4 1 1 6	c) (40-50)	a) (5	0-60) (20, 40) (1	1:1 64
259.In t	ne given frequency	distribution	i table if n	node lies ii	n the clas	s interval	(30-40) th	en which of the
IOIIC	owing is correct?							
	Class Interval	10-20	20-3	0 30-	-40	40-50	50-60	
	Frequency	5	8	Σ	K	4	2	
a) $x < 8$ b) $x < 4$ c) $x < 5$ d) $x > 8$								
260. In the following distribution table the class-interval which contains the mode is								
	Class Interval	10-15	15-20	20-25	25-3	30 3	0-35	
	Frequency	10	12	15	8		13	
a)	15	b) 13		c) 12	1	d) 8		

Class	Frequency	Cumulative	a)
Interval		Frequency	b)
10-20	7	7	c) d)
20-30	12	19	u)
30-40	11	30	
40-50	18	48	
50-60	12	60	

261. In the following distribution table the class-interval which contains the median is _____

262. The formula to calculate the median is _____

a)
$$1 + \left[\frac{\frac{n}{2} - C_f}{f}\right]h$$
 b) $1 + \left[\frac{\frac{n}{2} + C_f}{f}\right]h$ c) $1 + \left[\frac{\frac{n}{4} - C_f}{f}\right]h$ d) $1 + \left[\frac{\frac{n}{3} - C_f}{f}\right]h$

263. In the following frequency distribution table the value of '1' when calculating the mode is

Frequency 7 10 8 6 5	Class Interval	40-50	50-60	60-70	70-80	80-90
	Frequency	7	10	8	6	5

a) 40

b) 50

d) 70

264. The marks scored by a student in 6 subjects are 27, 30, 45, 60, 35 and x. If the mean of all scores is 42 then the value of x is _____

c) 60

a) 40 d) 52 b) 42 c) 55

Unit 11: Surface Areas and Volumes

265. Volume of a cylinder is 300 m³. Volume of the cone whose radius and height is equal to that of the cylinder is a) 900m³ b) 600m³ c) $150m^3$ d) 100m³ 266. Surface Area of a sphere whose radius is 7cm is _____ c) 616 cm^2 a) 154cm^2 b) 308 cm^2 d) 770 cm^2 267. The formula to calculate the Curved Surface Area of the frustum of a cone is _____ d) $\pi(r_1^2 - r_2^2)l$ a) $\pi(r_1^2 + r_2^2)l$ b) $\pi(r_1 - r_2)$ l c) $\pi(r_1 + r_2)$ l 268. Formula to calculate the Total Surface Area of a right circular cylinder is _____ d) $2\pi r^2(r+h)$ a) $\pi r^2 h$ b) $2 \pi r(r+h)$ c) $\pi r(r+h)$ 269. Formula to find the volume of a solid sphere _ a) $\frac{2}{3}\pi r^{3}$ b) $\frac{1}{2}\pi r^3$ c) $\frac{4}{2}\pi r^3$ d) $\frac{1}{2}\pi r^{2}$ 270. Mathematical relationship between slant height (l), height (h) and radius (r) of a cone _____ b) $l^2 = h^2 - r^2$ a) $l^2 = h^2 + r^2$ d) $l = \sqrt{h^2 - r^2}$ c) $l^2 = r^2 - h^2$ 271. If the radius of the cone is 'r', height is 'h' then the slant height is 1 =_____ b) $\sqrt{r^2 - h^2}$ c) $\sqrt{h^2 + r^2}$ d) $\sqrt{(r+h)^2}$ a) $\sqrt{\mathbf{h}^2 - \mathbf{r}^2}$ 272.Lateral Surface Area of a cube whose volume is 27 cm³ is _____ d) 108 cm^2 a) 36 cm^2 b) 54 cm^2 c) 63 cm^2 273. A sphere of radius 'r' cm is melted to form a cone 'R' cm and height 'h' cm then the correct relation is a) $\frac{4}{3}\pi r^3 = \frac{1}{3}\pi R^3 h$ b) $\frac{4}{3}\pi r^3 = \frac{1}{3}\pi R^2 h$ c) $\frac{2}{3}\pi r^3 = \frac{1}{3}\pi R^2 h$ d) $\frac{1}{3}\pi r^3 = \frac{4}{3}\pi R^2 h$ 274. Perimeter of a base of a cylinder is 24 cm, height is 8cm then the Curved Surface Areas will be ____ a) 136 cm^2 b) 160 cm^2 c) 190 cm^2 d) 192 cm^2 275. A cuboid of dimensions 12cm x 6cm x 3cm is melted to form a cube, then the edge of each face of the cube is _____. a) 21cm b) 12cm c) 6cm d) 3cm 276. Volume of the frustum of a cone whose height is 'h' and radii of two circular ends are r_1 and r_2 is a) $\frac{1}{3}\pi h(r_1 + r_2 + r_1r_2)$ b) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1^2 r_2^2)$ c) $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$ d) $\frac{1}{3}\pi h(r_1 + r_2 + r_1^2 r_2^2)$ 277. Curved Surface Areas of a cone whose radius of the base is 7cm, and slant height 10cm is _____ Department of Public Instruction, Mangalore, Dakshina Kannada District

289. Number of lead sheets each of radius 2 cm can made by melting a sphere of radius 4cm is a) 1 b) 2 c) 4 d) 8 290. The Combination of solids in the capsule is _____ a) 2 cylinders b) 2 hemispheres + cylinder c) 2 spheres + cylinder d) 1 cylinder + 1 hemisphere 291. The surface area of the capsule whose radius is 'r' is a) $2x2\pi r^2 + 2\pi rh$ b) $2x3\pi r^2 + 2\pi rh$ d) $\frac{4}{2}\pi r^{3} + \pi r^{2}h$ c) $2x2\pi r^2 + 2\pi r(r+h)$ 292. Total surface area of the cone whose radius is 'r', and slant height is 'l' is b) $\pi r(r+l)$ c) $\pi l(r+l)$ a) π (r+l) d) $2\pi r(r+l)$ 293. Volume of hemisphere whose radius 'r' units is b) $\frac{2}{3}\pi r^3$ c) $\frac{4}{3}\pi r^3$ d) $\frac{3}{3}\pi r^3$ a) $\frac{1}{2}\pi r^3$ 294. The volume of this toy _____ (b) $\frac{4}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$ a) $\frac{2}{3}\pi r^{3} + \frac{1}{3}\pi r^{2}h$ (c) $\frac{1}{2}\pi r^3 + \frac{1}{2}\pi r^2 h$ (d) $\frac{2}{2}\pi r^3 + \frac{2}{3}\pi r^2 h$ 295. The volume of the cuboid whose dimensions are (5 x 6 x 3) is _____ a)180 cubic units b) 120 cubic units c) 90 cubic units d) cubic units [-c x9] 296. Surface area of the sphere whose radius is 7cm is _____ a) 616 cm^2 b) 432 cm^2 c) 343 cm^2 d) 312 cm^2 297. Curved surface area of a hemisphere whose radius is 7cm is _____ a) 324cm² b) 316 cm² d) 308 cm^2 c) 312 cm^2 298. Total surface area of the hemisphere whose radius is 7cm is _____ a) 412cm^2 b) 432 cm^2 c) 462 cm^2 d) 484 cm^2 299. Curved Surface Area of the cylinder whose radius is 7cm and height is 10 cm is _____ b) 410 cm^2 c) 432 cm^2 a) 220 cm^2 d) 440 cm^2 300. Total Surface Area of the water pipe whose radius is 'r' units and length is 'h' units a) $2\pi r(r+h)$ b) $2\pi rh$ c) $\pi r^2 + 2\pi rh$ d) $\pi r(r+h)$ 301. If the perimeter of the base of the cylinder is 88cm and the height is 10cm, then the volume of the cylinder is _____

a) 1890π cm³ b) 1940π cm³ c) 1960π cm³ d) 1960 cm³

302. If the perimeter of the base of the cylinder is 22cm and height is 5cm then its Curved Surface Areas is

a) $45\pi \text{ cm}^2$ b) $35\pi \text{ cm}^2$ c) $35\pi \text{ cm}^2$ d) $25\pi \text{ cm}^2$

303. Taking some clay, a cone is formed. It is cut parallel to its base with a knife. When the smaller cone is separated the Total Surface Area of the solid that is remaining is _____

- a) $\pi(r_1 + r_2)$ l b) $\pi(r_1 + r_2)$ l+ $\pi r_1^2 + \pi r_2^2$
- c) $\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$ d) $\pi [(r_1 + r_2)l + \pi r_1^2 + \pi r_2^2]$

ANSWERS

Unit 1 : Arithmetic Progressions

1. d) 17 $(a_n = 4n + 5)$ $a_3 = 4(3) + 5 = 12 + 5 = 17$ **2.** d) 8 ($x = \frac{2+14}{2} = \frac{16}{2} = 8$) **3.** b) 4 $(a_n = 3n - 2)$ $a_2 = 3(2) - 2 = 6 - 2 = 4$) **4.** c) $7(a_n = 2n - 1)$ $a_4 = 2(4) - 1 = 8 - 1 = 7$) 5. b) 3 $[d=a_2-a_1=a_3-a_2=----]$ $[d=6-3=3 (2^{nd} \text{ term} - 1^{st} \text{ term}) \text{ OR } d=9-6=3 (3^{rd} \text{ term} - 2^{nd} \text{ term})]$ 6. b) $\frac{n(n+1)}{2}$ 7. c) 35,30,25... (Common difference, d=30-35=25-30=-5 is equal. In other options c.d is unequal) $[A] d= 4-1 \neq 6-4$ $B] d= 10-12 \neq 14-10$ $D] d= 13-8 \neq 19-13$ $3 \neq 2$ 2≠ 4 5≠ 61 8. c) $a_n = a + (n-1)d$ 9. c) 3 $[a_n = (3n-1) \Rightarrow a_1 = 3(1) - 1 = 3 - 1 = 2$ $a_2 = 3(2) - 1 = 6 - 1 = 5 \Rightarrow d = a_2 - a_1 = 5 - 2 = 3$ **10.** c) 55 $S_n = \frac{n(n+1)}{2} = S_{10} = \frac{10(10+1)}{2} = \frac{10X11}{X_1} = 55$ **11.** b) $-2 [d=a_2-a_1=a_3-a_2=----]$ $[d = 1-3 = -2 (2^{nd} \text{ term} - 1^{st} \text{ term}) \text{ OR } d = -1-1 = -2 (3^{rd} \text{ term} - 2^{nd} \text{ term})]$ **12.** a) 0 [$d=a_2-a_1=a_3-a_2=-----$] $\left[d = \frac{1}{2} - \frac{1}{2} = 0 (2^{nd} \text{ term} - 1^{st} \text{ term}) \text{ or } d = \frac{1}{2} - \frac{1}{2} = 0 (3^{rd} \text{ term} - 2^{nd} \text{ term})\right]$ **13.** c) 14 ($x = \frac{2+26}{2} = \frac{28}{2} = 14$) **14.** b) $S_n = \frac{n}{2}(a+l)$ **15.** c) $S_n = \frac{n}{2} [2a + (n-1)d]$ **16.** d) 17,20,23,26 (d= $a_2 - a_1 = 5 - 2 = 3$ Next 4 terms are = 14+3=17, 17+3=20, 20 = 3 = 23, 23+3=26)

Page | 38

17. b) 7 ($a_4=9$ and $d=2 \therefore a_3=a_4-d=9-2=7$ (To get previous term subtract d from that term) **18.** c) $5(a_n = 13 - 2n$ $a_4 = 13-2(4) = 13 - 8 = 5$ **19.** a) -2 (**a**₃ =10, a₄ =8: d = a₄- **a**₃= 8-10 =-2 **20.** d) -11,-16 (d= $a_2 - a_1 = -1 - 4 = -5$ Next 2 terms are = -6-5 = -11 and -11-5 = -16) **21.** d) $12 (= a_1 + a_2 + a_3 = 1 + 4 = 7 = 12)$ **22.** b) 6 (a=1 $a_n=11$ $S_n=36$ $S_n=\frac{n}{2}(a+a_n)$ $36 = \frac{n}{2}(1+11) = \frac{n}{2}(12)^{6}$ 6n =36 $n = \frac{36^{6}}{8} = 6$ **23.** c) 1,3,5.....(a_n=2n-1 $a_1 = 2(1) - 1 = 2 - 1 = 1$ $a_2 = 2(2) - 1 = 4 - 1 = 3$ $a_3 = 2(3) - 1 = 6 - 1 = 5$ **24.** b) -2 $(a_n = 5 - 2n)$ $a_1 = 5-2(1)=3$ and $a_2=5-2(2)=5-4=1$ \therefore $d = a_2 - a_1 = 1-3=-2$ **25.** c) 10, 14 (Answer by seeing the options) **26.** c) 4 (10-6 =4, same difference continues) **27.** b) 14 $S_n = 3n^2 + 5n$ $S_1 = 3(1)^2 + 5(1) = 3 + 5 = 8 = a_1$ $S_2 = 3(2)^2 + 5(2) = 12 + 10 = 22 = a_1 + a_2$ $\therefore a_2 = 22 - 8 = 14$

Unit 2 : Triangles

- **28.** b) Thales.
- **29.** a) $\frac{PT}{TR}$ (According to BPT or Thales theorem, $\frac{PS}{SQ} = \frac{PT}{TR}$)
- 30. d) 16:81(4²:9², According to Areas of Similar Triangles theorem, The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides)

31. c)
$$\frac{AY}{AC}$$
 (According to BPT or Thales theorem $\frac{AX}{AB} = \frac{AY}{AC}$)

- 32. a) 7cm, 24cm, 25cm (According to Pythagoras theorem $7^2 + 24^2 = 25^2$ $49 + 576 = 625 \Rightarrow 625 = 625$)
- **33.** c) 4:1 (Equilateral triangles are similar and D is midpoint of BC).

$$A:BD = \frac{1}{2}BC \implies 2BD = BC \therefore BC:BD = 2:1$$

Ratio of corresponding Sides = 2:1

: The ratio of the areas of two similar triangles = 2^2 : $1^2 = 4:1$

: The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding

sides.

OR

 $\frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{BDC}} = \frac{\text{BC}^2}{\text{BD}^2} = \frac{(2\text{BD})^2}{\text{BD}^2} = \frac{4\text{BD}^2}{\text{BD}^2} = \frac{4}{1}$ $\therefore \text{ Area of } \Delta \text{ ABC}: \text{ Area of } \Delta \text{ BDC} = \textbf{4:1}$

- **34.** b) Pythagoras
- **35.** d) In same ratio

36. b) 1:2 (According to Areas of Similar Triangles theorem, $\frac{\text{Area of } \triangle \text{ ABC}}{\text{Area of } \triangle \text{ DEF}} = \frac{\text{BC}^2}{\text{EF}^2} = (\frac{\text{BC}}{\text{EF}})^2$

$$\frac{\text{Area of } \Delta \text{ ABC}}{\text{Area of } \Delta \text{ DEF}} = \left(\frac{\text{BC}}{\text{EF}}\right)^2 = \frac{120}{480} = \frac{1}{4}$$
$$\therefore \quad \frac{BC}{FF} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

37. d) $AC^2 - BC^2 = AB^2$ (According to Pythagoras theorem $AC^2 = AB^2 + BC^2$ $\Rightarrow AC^2 - BC^2 = AB^2$)

- **38.** d) $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$ (Corresponding sides of similar triangles are in same ratio. Corresponding sides AB \rightarrow PQ, BC \rightarrow QR, and AC \rightarrow PR)
- **39.** c) $\frac{BC^2}{EF^2}$ (According to Areas of Similar Triangles theorem $\frac{Area \ of \ \Delta \ ABC}{Area \ of \ \Delta \ DEF} = \frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2}$

40. a) 3:4(According to Areas of Similar Triangles theorem, $\frac{Area \ of \ \Delta \ ABC}{Area \ of \ \Delta \ DEF} = \frac{BC^2}{EF^2} = (\frac{BC}{EF})^2 = \frac{9}{16}$

$$\Rightarrow \frac{BC}{EF} = \sqrt{\frac{9}{16}} = \frac{3}{4})$$

41. c) 12cm (According to Pythagoras theorem, $AB^2 + BC^2 = AC^2$ $5^2 + BC^2 = 13^2$ $\Rightarrow BC^2 = 13^2 - 5^2$ = 169 - 25 = 144

 \Rightarrow BC= $\sqrt{144}$ = 12)

42. d) 96cm²(According to Areas of Similar Triangles theorem, $\frac{Area \circ f \Delta ABC}{Area \circ f \Delta DEF} = \frac{BC^2}{EF^2}$

$$\Rightarrow \frac{54}{Area \ of \ \Delta DEF} = \frac{3^2}{4^2}$$
$$\Rightarrow \frac{54}{Area \ of \ \Delta DEF} = \frac{9}{16}$$

 $\therefore \text{Area of } \Delta \text{DEF} = \frac{54 \text{ X } 16}{9} = 96 \text{ cm}^2.$

43. b) 4.5cm (According to BPT or Thales theorem, $\frac{AD}{DB} = \frac{AE}{EC}$

$$\Rightarrow \frac{1}{3} = \frac{1}{EC} \Rightarrow EC = \frac{1}{2} = \frac{1}{2} = 4.5 \text{ cm}$$

44. b)
$$90^{\circ}$$
 (AB² + BC² = 6² + 8² = 36 + 64 = 100

 $AC^2 = 10^2 = 100$

 $\therefore AC^2 = AB^2 + BC^2$ \therefore According to Pythagoras converse theorem, $\angle B=90^0$)

45. a) $4 \text{cm} (BD^2 = AD \times CD \Rightarrow BD^2 = 8 \times 2 = 16 \Rightarrow BD = \sqrt{16} = 4 \text{cm})$

Simple Method: Height --Shadow

$$\begin{cases} 6m \rightarrow 4m \\ ? \rightarrow 28m \end{cases} = \frac{6 \times 28^{-7}}{4} = 42 m$$

OR

In Figure , According to Thales Theorem

Page | 4

Unit 3 : Pair Of Linear Equations in Two Variables

52. b) 6 (Lines are coincident then, $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{1}{2} = \frac{2}{4} = \frac{3}{k}$ $\Rightarrow \frac{1}{2} = \frac{3}{k} \Rightarrow k = 3 \ge 2 = 6$

OR

We can understood in this way,

$$1 \times 2 = 2 \begin{pmatrix} 1x + 2y = 3 \\ 0 \\ 2x + 4y = k \end{pmatrix} = 3 \\ 3 \times 2 = 6 \\ 3 \times 2 = 6$$

53. a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

54. d) Infinite

$$\left(\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Longrightarrow \frac{2}{4}\right) \times 2 = \frac{3}{6} \times 2 = \frac{-9}{-18} \times 2 = \frac{1}{2}$$

: Lines are coincident \Rightarrow Infinite many solutions.

55. c)
$$4(x + y = 7 \Rightarrow 3 + y = 7 \Rightarrow y = 7 - 3 = 4$$

 $x + \begin{pmatrix} y \\ 4 \end{pmatrix} = 7$
 $3 + \begin{pmatrix} y \\ 4 \end{pmatrix} = 7$
 $y = 4$

56. a)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

57. a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

58. c) 3 (Lines are coincident $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \bigotimes_{k=1}^{2} \frac{a_1}{k} = \frac{-1}{-k} = \frac{4}{12}$ Numerator x **3**= Denominator

2x3=6 4x3=12

$$\therefore (-1)\mathbf{x3} = -\mathbf{k} = -3)$$

59. d) Infinite many solutions.

60. c) 4 (Lines are parallel then, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Rightarrow \frac{4}{4} = \frac{k}{4} \Rightarrow k=4$

61. a) Intersecting (If lines are intersecting then, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ here $\frac{6}{2} \neq \frac{2}{4}$ after simplification $3 \neq \frac{1}{2}$ 62. a) (3,1) (Easily identify the answer 3+1 =4 and 3-1 =2) Method : x + y = 4 ----(1)

 $\underline{\mathbf{x}} - \underline{\mathbf{y}} = \underline{2} \text{----}(2)$

 $2x = 6 \Rightarrow x = \frac{6}{2} = 3$

Substitute x = 3 in equation (1), 3 + y = 4 $y = 4 - 3 \Rightarrow y = 1.$ **63.** b) (2,1) [2x+y=5 and x-y=1 Easily identify the answer]2(2)+1 = 52 - 1 = 1Method : 2x + y = 5 ----(1) x - y = 1 - - - (2) $3x = 6 \Rightarrow x = \frac{6}{3} = 2$ Substitute x = 2 in equation (1), $2x^2 + y = 5$ $4 + y = 5 \Rightarrow y = 5 - 4 \Rightarrow y = 1$ **64.** c) 2 (Substitute x = 3 in equation 2x + y = 8, we get 2(3) + y = 8 $6 + y = 8 \Rightarrow y = 8 - 6 = 2)$ 65. b) 1 (Consistent pair of equations are intersect in a single point and $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ exactly one solutions) **66.** c) $\frac{5}{6}$ (we write equations in standard form(3x + 2y - 5=0 and 2x - y - 6 = 0) c₁ = -5 c₂ = -6 Then, $\frac{c_1}{c_2} \Rightarrow \frac{-5}{-6} = \frac{5}{6}$) 67. a) 10 (Pair of equations has no solution only if lines are parallel and $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $\frac{1}{5} = \frac{2}{k} \Rightarrow k = 5 \text{ x} = 2 = 10$ **68.** c) Intersect each other $\left(\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ Unique solution) **69.** c) No solutions (Lines are Parallel $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ then, No solutions) **70.** c) 2 [Substitute y = 4in equation 3x + y = 10 we get, 3(x) + 4 = 10 $3x = 10 - 4 = 6 \implies x = \frac{6}{3} = 2$] **71.** a) (3.3) **72.** c) 4 (y = 2x - 3)5 = 2x - 3 $5+3=2x \Rightarrow 2x=8 \Rightarrow x=\frac{8}{2}=4$) $2x-y=2; x-y=0 \Rightarrow x=y$ **73.** c) (2,2) 2x - x = 2 \therefore x=2 and y=2 **74.** b) (2,0)

75. b) 1 2x-y=5[(3,a)] $2(3)-a = 5 \Rightarrow 6-a=5 \Rightarrow 6-5=a \Rightarrow a=1$ **76.** d) No Solution (Parallel lines $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Rightarrow \frac{1}{1} = \frac{1}{1} \neq \frac{3}{-7}$ $\Rightarrow 1=1 \neq \frac{-3}{7}$ **77.** c) 6 (Parallel lines $\frac{1_1}{3} = \frac{4}{2k} [\neq \frac{c_1}{c_2}]$ $\Rightarrow 2k = 4x3=12 \Rightarrow k = \frac{12}{2} = 6$ **78.** b) x=2, y=1 (4x - 3y = 5 go through wit options) 4(2)-3(1) = 5 8-3 = 5**79.** c) Infinitely many solutions ($\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{3}{9} = \frac{4}{12} = \frac{-5}{-15} \Rightarrow \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \Rightarrow$ lines are coincele)

Unit 4 :Circles

80. a) Secant (In this figure Secant of the Circle intersects Circle at A and B)

81. b) 1 (In this figure the tangent touching circle at one & only point P)

82. d) Infinite (There are infinite points on the circle. The tangent can be drawn at each point(In figure Some tangents have been drawn)

83. d) Infinite (Infinite diameter can be drawn in a Circle. The tangents drawn at the end points of each diameter are parallel)

84. b) Point of contact (In the figure point of contact P is on the circle and the tangent)

85. b) 4cm(This is application of Pythagoras theorem.3, 4, 5are Pythagorean triplets)

 $AB^{2} + OB^{2} = OA^{2}$ $AB^{2} + 3^{2} = 5^{2}$ $AB^{2} + 9 = 25 \Rightarrow AB^{2} = 25 - 9 = 16$ $AB = \sqrt{16} = 4$

86. a) 7cm (This is application of Pythagoras theorem.7, 24, 25 are Pythagorean triplets)

 $OP^{2} + PQ^{2} = OQ^{2}$ $OP^{2} + 24^{2} = 25^{2}$ $OP^{2} + 576 = 625 \Rightarrow OP^{2} = 625 - 576 = 49$ $OP = \sqrt{49} = 7$

$$\angle POQ + \angle PTQ = 180^{\circ}$$
$$110^{\circ} + \angle PTQ = 180^{\circ}$$
$$\therefore \angle PTQ = 180 - 110 = 70$$

88. b) 50⁰ (In figure

89. d) 3cm (This is application of Pythagoras theorem.3, 4, 5are Pythagorean triplets)

90. c)
$$40^{\circ}$$
 (180-100=80 $\angle OAB = \frac{80}{2} = 40^{\circ}$)
In the figure $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$
 $100 + 2\angle OAB = 180$
 $2\angle OAB = 180 - 100 = 80$
 $\angle OAB = \frac{80}{2} = 40^{\circ}$

91. d) 90⁰ (Theorem: The tangent at any point of a circle is perpendicular to the radius through the point of centres)
92. c) 2 (In figure PA and PB are tangents drawn from the external point P)

93. c) 180° (Angle between radii + Angle between tangents = 180°)

 \therefore QR = 9cm (Δ PQR equilateral triangle)

100. c) parallel (As showing the figure)

101. c) 90° (Angle in a semi circle is right angle)

Page | 48

102. c) $55^{0}($ In figure PQ= PR(The tangents drawn to a circle from an external point are equal) $PQR + \angle PRQ = 180 - 70 (\angle QPR = 70^{0})$ $2 \angle PQR = 110 (\angle PQR = \angle PRQ)$ $\angle PQR = \frac{110}{2} = 55^{0}$ 103. b) 7cm(In figure AD = AC + CD AC = AB add) CD = DEAD = AB + DEAD = 3+4 = 7cmAD = 3+4 = 7cman external point are equal)104. c) 8cm (TQ = 8 cm = TF (Tangents drawn from exterior point to the largest circle are equal)TF = TR (Tangents drawn from exterior point to the smallest circle are equal)∴ TR = 8cm

105. c) PQ (The largest chord of the circle is Diameter)

		Unit 6 : Coordinate Geometry
119.	b)	3 units (The distance from the x axis to its point is the Y Co-ordinate)
120.	d)	(2, 0)(The y-coordinate of the point on the x-axis is 0(Zero))
121.	c)	$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$
122.	a)	$\left(\frac{x_2+x_3}{2},\frac{y_2+y_3}{2}\right)$
123.	c)	5 Units (The distance from the y axis to its point is the xcoordinate)
124.	a)	(0,0)
125.	c)	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
126.	a)	$\sqrt{x^2 + y^2}$
127.	a)	$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$
128.	c)	5 Units ($\sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ (Application of Pythagoras Theorem)
		(We can also interpret that 3,4,5 are Pythagorian Triplets)
129.	b)	$(2,5) \left[\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = \left(\frac{1 + 3}{2}, \frac{4 + 6}{2} \right) = \left(\frac{4}{2}, \frac{10}{2} \right) = (2,5) \right]$
130.	d)	$\sqrt{p^2 + q^2}$
131.	a)	5 Units $(\sqrt{x^2 + y^2}) = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$
		(Application of Pythagoras Theorem)
		(We can also interpret that 3,4,5 are Pythagorean Triplets)
132.	a)	13 Units $(\sqrt{x^2 + y^2} = \sqrt{12^2 + 5^2} = \sqrt{144 + 25} = \sqrt{169} = 13$
		(We can also interpret that 5,12,13 are Pythagorean Triplets)
133.	b)	3 Units, 5 Units (The distance from the y-axis to the point is its x coordinate)
		1. (The distance from the x-axis to the point is its y coordinate)
134.	b)	4 Units $(\sqrt{x^2 + y^2}) = \sqrt{0^2 + 4^2} = \sqrt{0 + 16} = \sqrt{16} = 4$
		(The point along the y-axis is the distance from the origin to the y coordinate)
135.	a)	4 Units (The distance from the y-axis to the point is its x coordinate)
		(Distance is written positively though the coordinate is negative)
136.	b)	5 Units $(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		$d = \sqrt{(6-2)^2 + (6-3)^2}$
		$d=\sqrt{(4)^2+(3)^2} = \sqrt{16+9} = \sqrt{25} = 5$ Units)
137.	b)	(x,0)
138.	c)	(0,0) (The point where the x axis and y axis meet is the origin point)
		Department of Public Instruction, Mangalore, Dakshina Kannada District

139. a) 0 (Zero)
140. d) 0(Zero)
141. a)
$$\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$$

142. a) (2,0) (The y coordinate of each point on the x axis is 0(zero))
143. b) (0,-4) (The x coordinate of each point on the y axis is 0(zero))
144. b) (-5,2) $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} = (x,y)\right)$
 $\frac{5+a}{2} = 0$ and $\frac{-2+ab}{2} = 0$
 $\Rightarrow 5+a = 0$ and $-2+b = 0$
 $\Rightarrow a = -5$ and $b = 2$
145. b) 0 $\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$ (A(2,3) B(4,k) C(6,-3))
 $\frac{1}{2}[2(k - (-3)) + 4(-3 - 3) + 6(3 - k)] = 0$
 $\frac{1}{2}[2(k + 3)) + 4(-6) + 6(3 - k)] = 0$
 $\frac{1}{2}[2k + 6 - 24 + 18 - 6k] = 0$
 $\frac{1}{2}[-4k] = 0 \Rightarrow 4k = 0 \Rightarrow k = 0$
146. b) a=b $\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] = 0$ [A(1,1) B(0,0) C(a,b)]
 $\frac{1}{2}[1(0 - b) + 0(b - 1) + a(1 - 0)]$
 $\frac{1}{2}[-b + 0 + a] = 0$
 $-b + a = 0 \Rightarrow a = b$
147. c) 5 units (Pythagoras Theorem in triangle PTQ)

162. b)
$$(0,6)(x^2 - 6x = 0$$

 $x(x-6)=0$
 $x=0 \text{ or } x-6=0 \Rightarrow x=6$)
163. a) ± 5 $(x+4)(x-4) = 9$ $((a+b)(a-b)=a^2-b^2$
 $x^2 - (4)^2 = 9$
 $x^2 - 16 = 9$
 $x^2 - 16 + 9 = 25$
 $x = \sqrt{25} \pm 5$
164. d) $x^2 - x - 2 = 0$ (Quadratic Equation = x^2 -(sum of the roots) x + product of the roots = 0
 $x^2 - [2+(-1)]x + 2(-1) = 0$
 $x^2 - (2-1)x - 2 = 0$
 $(2)^2 - 4(k)(3)=0$
 $4 - 12k = 0 \Rightarrow 4 = 12k \Rightarrow k = \frac{4}{12} - \frac{1}{3}$
166. d) $65 (2x^2 - x - 8 = 0$ Here $a=2, b=-1, c=-8$)
Discriminant $= b^2 - 4ac = (-1)^2 - 4(2)(-8)$
 $= 1 + 64 = 65$
167. b) No real roots
168. b) 2
169. d) $-6(2x^2 - kx + 4 = 0$ (Substituting $x=2$)
 $2(2)^2 + k(2) + 4 = 0$
 $2(4) + 2k + 4 = 0$
 $8 + 2k + \frac{4}{2} = 0$
 $2(k + 12 = 0 \Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}$)
170. c) $x^2 - 3x - 2 = 0$
171. a) $\frac{2}{3} (3x - 2) = 0 \Rightarrow 3x = 2 \Rightarrow x = \frac{2}{3}$)
172. b) $2x^2 - 20x + 5 = 0$
173. b) Distinct real roots (Discriminant = b^2 4ac $[2x^2 - x - 3 = 0$ here $a=2, b=-1, c=-3]$
 $= (-1)^2 - 4(2)(-3)$
 $= 1 + 24 = 25 > 0$

- 174. b) $x^2+(x+2)^2=164$ (x and (x+2) are two consecutive even numbers)
- 175. c) $x^2+(x+2)^2=130$ (x and (x+2) are two consecutive odd numbers)

Unit 8 : Introduction to Trigonometry

176. c) $\frac{3}{4}(\sin 60^{\circ} \text{ X} \cos 30^{\circ})$ $\frac{\sqrt{3}}{2} X \frac{\sqrt{3}}{2} = \frac{\sqrt{3}^2}{4} = \frac{3}{4}$ **177.** a) $\cos\theta$ (Complementary angle) **178.** c) 1 **179.** b) 0 $(\tan\theta - \cot(90^{\circ}-\theta) [\cot(90^{\circ}-\theta) = \tan\theta (\text{Complementary angle})]$ $\Rightarrow \tan\theta - \tan\theta = 0$) **180.** b) 1 $(\angle A = \angle C \& \bot B = 90^{\circ} \Rightarrow \angle A = \angle C = 45^{\circ} \Rightarrow, BC = AB = 10 \text{ cm}$ $\tan A = \frac{BC}{AB} = \frac{10}{10} = 1$ or $\tan 45^0 = 1$ **181.** d) $\frac{15}{8}$ (15 cot A = 8 $\cot A = \frac{8}{15} \Rightarrow \tan A = \frac{15}{8}$ (reciprocal ratio) **182.** a) $30^{0} (\sqrt{3} \tan \theta = 1 \Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{0})$ **183.** c) 2 $(\tan 45^0 + \cot 45^0 = 1 + 1 = 2)$ **184.** a) $\frac{1}{\sqrt{3}} (\cot (90^{\circ}-30^{\circ}) = \tan 30^{\circ} = \frac{1}{\sqrt{3}} \operatorname{orcot} (90^{\circ}-30^{\circ}) = \cot 60^{\circ} = \frac{1}{\tan 60} = \frac{1}{\sqrt{3}})$ **185.** b) $\frac{8}{5}$ (sin α + cos θ = $\frac{4}{5} + \frac{4}{5} = \frac{8}{5}$) **186.** c) 1 ($\frac{\sin 80^{\circ}}{\cos 10^{\circ}} = \frac{\sin 80^{\circ}}{\sin (90-10)^{\circ}} = \frac{\sin 80^{\circ}}{\sin 80^{\circ}} = 1$) **187.** c) $45^{\circ}(3 \tan \theta = 3 \Rightarrow \tan \theta = \frac{3}{3} \Rightarrow \tan \theta = 1 \Rightarrow \theta = 45^{\circ})$ **188.** b) 1 $(\cos^2\theta + \cos^2(90^0 - \theta))$ $=\cos^2\theta + \sin^2\theta = 1$) **189.** a) $\sin^2\theta [(1+\cos\theta)(1-\cos\theta) = (1)^2 - \cos^2\theta = 1 - \cos^2\theta = \sin^2\theta]$ **190.** b) $10 \text{cm} (\bot Y = 90^{\circ}, \angle Z = 30^{\circ} \text{ and } XY = 5 \text{ cm } \sin Z = \frac{Opposite \ side}{hypotenuse} = \frac{XY}{XZ}$ Sin 30° = $\frac{5}{xz}$ $\frac{1}{2} = \frac{5}{\sqrt{2}} \Rightarrow xz = 5X2 = 10cm$ **191.** c) 72° (sin $18^{\circ} = \cos A$, $=\cos(90^{\circ}-18^{\circ})=\cos A$ $=\cos 72^{\circ} \equiv \cos A \Rightarrow \angle A = 72^{\circ}$

192. d)
$$\frac{5}{3}$$
 (5 sin A = 3
sin A = $\frac{3}{5}$ \Rightarrow cosec A = $\frac{5}{3}$)
193. c) $\frac{12}{5}$ (tan A = $\frac{0pposite side}{Adjacent side} = \frac{BC}{BA} = \frac{12}{5}$
194. a) cot²A ($\frac{1-\sin^2 A}{1-\cos^2 A} = \frac{\cos^2 A}{\sin^2 A} =$ cot²A)
195. c) $\frac{AC}{BC}$ (SinB = $\frac{0pposite side}{hypotenuse} = \frac{AC}{BC}$) $\frac{0}{9}$
196. c) 0 (cos²17⁰ - sin²73⁰
cos²17⁰ - cos²(90⁰-73⁰)
cos²17⁰ - cos²(90⁰-73⁰)
cos²17⁰ - cos²17⁰ = 0)
197. b) 1 (tan10⁰ X tan80⁰
tan10⁰ X Cot(90⁰-80⁰)
tan10⁰ X Cot(90⁰-80⁰)
tan10⁰ X Cot(90⁰-35⁰) = $\frac{\tan 55^{9}}{\tan 55^{9}} = 1$)
198. a) 0 ($\frac{1-\tan^2 45}{1+\tan^2 45} = \frac{1-(1)^2}{1+(1)^2} = \frac{1-1}{1+1} = \frac{0}{1} = 0$)
199. b) 1 ($\frac{\tan 55^{9}}{\tan 55^{9}} = \frac{\tan 55^{9}}{(\tan (90^{9}-35^{9}))} = \frac{\tan 55^{9}}{\tan 55^{9}} = 1$)
200. d) $\frac{5}{12}$ (Cot A = $\frac{Adjacent side}{0pposite side} = \frac{5}{12}$ seques tan A = $\frac{0pposite side}{Adjacent side} = \frac{12}{5} \therefore$ Cot A = $\frac{5}{12}$)
201. d) 90⁰ (sin $\alpha = \frac{1}{2} \Rightarrow \alpha = 30^{0} & \cos \beta = \frac{1}{2} \Rightarrow \beta = 60^{0} \therefore \alpha + \beta = 30^{0} + 60^{0} = 90^{0}$)
202. c) tan 30⁰
203. a) 10 (10sin²\theta + 10cos²\theta = 10(sin²\theta + cos²\theta 0 = 10(1) = 10
204. c) 0 (cos48⁰ - sin42⁰
cos48⁰ - cos(90⁰-42⁰)
cos48⁰ - cos(90⁰-42⁰)
cos48⁰ - cos(90⁰-42⁰)
cos48⁰ = cos(48⁰ = 0)
205. d) cosec A
206. c) 1 ($\frac{cosec A}{206} = \frac{\sec (90^{0}-31^{0}}{\sec 59^{0}} = \frac{\sec 59^{0}}{\sec 59^{0}} = 1$)
207. b) $\frac{3}{4}$ (sin²60 = (\frac{53}{2})^{-\frac{2}{4}})
Department of Public Instruction, Mangalore, Dakshina Kannada District

Page | 57

208. a)
$$\csc^{2}A$$

209. b) $1 + \tan^{2}A$
210. b) 1
211. d) $\cos 0^{0}$
212. a) $1 (\sin 30^{0} + \cos 60^{0} = \frac{1}{2} + \frac{1}{2} = 1)$
213. b) $\frac{5}{11}$ (5 sec A = 11
Sec A = $\frac{11}{5} \Rightarrow \cos A = \frac{5}{11}$
214. a) $\frac{12}{13}$ ($\cos (90^{0} - \theta) = \sin \theta = \frac{Opposite.side}{hypotenues} = \frac{12}{13}$
215. b) 60^{0} 2 $\cos \theta = 1 \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{0}$
216. b) 45^{0} $\sqrt{2} \cos \theta = 1 \Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45$
217. d) 30^{0} $\sqrt{3} \tan \theta = 1 \Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{0}$
218. b) $\frac{4}{5}$ $\sin (90^{0} - A) = \cos A = \frac{adjacent}{hypotenues} = \frac{4}{5}$
219. c) 1 $\cos A + \cos^{2}A = 1$
 $\Rightarrow \cos A = 1 - \cos^{2}A = \sin^{2}A - \cdots - (1)$
 $\operatorname{now} \sin^{2}A + \sin^{4}A = \sin^{2}A + (\sin^{2}A)^{2}$
 $= \cos A + \cos^{2}A = 1$

220. b)
$$5\sqrt{3}$$
 cm $\angle A = 90^{0}$
 $\operatorname{Sin60^{0}} = \frac{opposite}{hypotenues} = \frac{OA}{10}$
 $\Rightarrow \frac{\sqrt{3}}{2} = \frac{OA}{10} \Rightarrow OA = \frac{\sqrt{3}}{2} X \ 10 = 5\sqrt{3}$

Department of Public Instruction, Mangalore, Dakshina Kannada District

)

Page | 58

 $\frac{1}{\sqrt{3}} = \frac{50}{BC} \Rightarrow BC = 50\sqrt{3}$)

Unit 10: Statistics

237. b) 3Median =Mode +2Mean **238.** c) 15 (Ascending order: 3,5,**14,16**, 19, 20) (Middle number of 14 and 16 is Median) Median = $\frac{14+16}{2} = \frac{30}{2} = 15$) **239.** b) 17.5 (Mid point= $\frac{10+25}{2} = \frac{35}{2} = 17.5$) **240.** d) 3(Mean= $\frac{1+2+3+4+5}{5} = \frac{15}{5} = 3$) **241.** b) 20(10 has highest frequency)**242.** a) 20 (Mean $\bar{X} = \frac{\sum f_i x_i}{\sum f_i} = \frac{400}{20} = 20$) 243. b) 15 (Ascendin order: <u>12, 14, 15, 17, 19</u>, Middle number is median) **244.** b) 5.6(Mean= $\frac{\text{Sum of first five prime numbers}}{5} = \frac{2+3+5+7+11}{5} = \frac{28}{5} = 5.6$) **245.** d) 13 (Mode= 3median-2Mean Mode = 3(15) - 2(16) = 45 - 32 = 13)**246.** c) 1 (Most frequent(3 times) repitition) 247. a) 30 (Median is the x coordinate of the intersection point of graph) 248. c) Mode **249.** b) 35 (Mean $=\frac{50+20}{2} =\frac{70}{2} =35$) 250. d) Range **251.** c) 1 (Mean = $10 = \frac{11+8+9+12+x}{5}$ 10x5 = 40 + x \Rightarrow 50= 40+x \Rightarrow x = 50-40 =10 252. c) More frequent repeat value **253.** b) 15 (x=15:repeating 3times.16 or 17 could have been, but had no options) **254.** c) 20 (Mode= 3Median-2Mean) 12=3(Median) - 2(24)12 = 3(Median) -48 12 + 48 = 3(Median) 60 = 3(Median) \Rightarrow Median $= \frac{60}{3} = 20$ **255.** b) 5 (Mean= $\frac{1+3+5+7+9}{5} = \frac{25}{5} = 5$) 256. a) 10

257. c)
$$1 + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right]h$$

258. b) (30-40)(This class interval has maximum frequency(30))
259. d) $x > 8$ (The class interval which has maximum frequency is modal class)
260. a) 15(Modal class is 20-25. It has maximum frequency)
261. b) (30-40)($\frac{n}{2} - \frac{60}{2} =$ Class interval which has 30thvalue)
262. a) $1 + \left[\frac{\frac{n}{2} - C_f}{f}\right]h$
263. b) 50(Modal class is 50-60. Its lower limit l=50)
264. c) 55 (Mean =42 = $\frac{27+30+45+60+35+x}{6}$

42x6 = 197 + x

 \Rightarrow 252=197+x \Rightarrow x = 252-197 =55

281. b) 2r Units (Volume of Cone = Volume of Cylinder)
i.
$$\frac{1}{3}\pi R^2 h = \frac{4}{3}\pi r^3 (h=r)$$

ii. $\frac{1}{3}\pi R^2 r = \frac{4}{3}\pi r^2$
iv. $R^2 = 4r^2 \Rightarrow r = \sqrt{4r^2} = 2r$
282. b) $3\pi r^2$
283. b) Cone and Cylinder
284. c) $2\pi r^2 + \pi r!$ (Total Surface Area of Toy
v. =LSA of Hemisphere + LSA of Cone)
285. c) 16:25 $\frac{4\pi}{7}r^2$: $\frac{4\pi}{7}R^2$
 r^2 : $R^2 = 4^2$: $5^2 = 16:25$
286. b) Frustum of Cone And Cylinder
287. b) 3:2
 $\frac{4}{3}\pi (R^3 : \frac{4}{3}\pi r^3 = 27:8)$
 $R^3 : r^3 = 27:8$
 $R : r = \sqrt[3]{27} : \sqrt[3]{8} = 3:2$
288. b) $\frac{1}{3}\pi H(R^2 + r^2 + Rr) + \pi r^2 h$
289. d) 8(No. of balls= $\frac{Volume of 4cm radius}{Volume of 2cm radius}$
 $= \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi r^3} = \frac{R^3}{r^3} = \frac{4^3}{2} = \frac{64}{8} = 8$)
290. b) 2 Hemispheres + Cylinder
291. a) $2X2\pi^2 + 2\pi rh$
293. b) $\frac{2}{3}\pi r^3$
294. a) $\frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2h$
295. c) 90 Cubic units
296. d) 77cm²($4\pi r^2 = 154 \Rightarrow 2\pi r^2 = \frac{154}{2} = 77$)

Page | 64

297. d) $308 \text{ cm}^2 (2\pi r^2 = 2x \frac{22}{7} \times 7x7 = 308)$ 298. c) $462 \text{ cm}^2 (3\pi r^2 = 3x \frac{22}{7} \times 7x7 = 462)$ 299. d) 440 cm^2 $(2\pi rh = 2x \frac{22}{7} \times 7x10 = 440)$ 300. b) $2\pi rh$ (Pipe means lateral surface area) 301. c) $1960\pi \text{ cm}^3 (2\pi r = 88)$ $\Rightarrow 2x \frac{22}{7} \times r = 88 \Rightarrow r = \frac{88 \times 7}{2 \times 22} = 14$ $\therefore \text{ Volume} = \pi r^2 h = \pi \times 14 \times 14 \times 10 = 1960\pi$ 302. b) $35\pi \text{ cm}^2 (2\pi r = 22 \Rightarrow 2x \frac{22}{7} \times r = 22 \Rightarrow r = \frac{7}{2}$ $\therefore 2\pi rh = 22\pi \times \frac{7}{2} \times 5 = 35\pi$ $110 \times \frac{\pi}{\pi} = 110 \times \pi \times \frac{7}{22} = 35\pi$

303. b) $\pi(r_1 + r_2) l + \pi r_1^2 + \pi r_2^2$ (lateral surface area of frustum of cone)