

ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಲ್ಲಾ ಪಂಚಾಯತ್

ಸಾರ್ವಜನಿಕ ಶಿಕ್ಷಣ ಇಲಾಖೆ

ಉಪನಿರ್ದೇಶಕರ ಕಛೇಲಿ (ಅಡಆತ). ಬೆಂಗಳೂರು ಗ್ರಾಮಾಂತರ ಜಲ್ಲೆ

ಬಹುಆಯ್ಕೆ ಮಾದಲಿ ಪ್ರಶ್ನೆಗಳು

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ 2020-21

(ಆಂಗ್ಲ ಮಾಧ್ಯಮ)

Multiple choice questions

Arithmetic progressions

Points to remember

- ✤ Arithmetic progression is a sequence in which common difference is constant.
- General form of arithmetic progression is a, a+d, a+2d, a+3d,.....a+(n-1)d
- Common difference in an A.P $d = a_2 a_1$
- nth term of A.P is $a_n = a+(n-1)d$
- Sum of first n terms of an A.P, $S_n = \frac{n}{2} [2a+(n-1)d]$ or $s_n = \frac{n}{2} (a+a_n)$
- Sum of first n natural numbers , $s_n = \frac{n}{2}(n+1)$
- Sum of first n even natural numbers = n (n + 1)
- Sum of first n odd natural numbers = n^2

Multiple choice questions

The 4th term of an Arithmetic progression 5, 8, 11 ,..., is

 A) 15
 B) 13
 C) 14
 D) 16

 The common difference in an Arithmetic progression 8, 14, 20 is

 A) 8
 B) 6
 C) 5
 D) -6

 The preceeding term of 13 in an Arithmetic progression 13, 10, 7...... Is

 A) 16
 B) 15
 C) 17
 D) 10

4) The nth term in an Arithmetic progression with first term 'a 'and the common difference 'd' is A) an = an+1 B) an = a + (n-1)dC) an = a + (n+1)dD) an = a-1 5) In an Arithmetic progression $a_n=5n+2$, then 1st term is **C**) 5 D) 8 A) 7 **B**) 6 6) In an Arithmetic progression $a_n=3n+5$, then the 5th term is A) 30 B) 28 C) 20 D) 13 7) An Arithmetic progression among the following is A) 10,7,4,1,.... B) 5,8,12,..... C) 0,3,6,10,..... D) 16,8,4,2,.... 8) How many two digit numbers are divisible by 5 A) 17 B) 18 C) 19 D) 20 9) An Arithmetic progression with first term 2 and the common difference 3 is C) 3,5,7,.... D) 2,6,10,.... A) 2,5,9,.... B) 2,5,8,... 10) In an A.P, $a_n = 2n-1$ then the product of first three term is A) 10 B) 12 C) 15 D) 18 11)10th term of an Arithmetic progression 1, 4, 7, is A) 31 B) 27 **C**) 32 D) 28 12) The Sum of first 20 natural numbers is B) 200 C) 190 D) 205 A) 210 13) First term in the given Arithmetic progression 5, 8, 11, is is B) 8 A) 5 C) 11 D) 2 14) An Arithmetic progression among the following is C) 4,10,16,26 D) -5,-10,+10,+5 A) -37,-35,-33,-31 **B**) 2 ,4 , 8 , 16 15) The common difference in an Arithmetic progression 10, 14, 18..... is

A) 10	B) 4	C) 18	D) -4					
16)The next term of	16) The next term of an Arithmetic progression 13, 10, 7 Is							
A) 3	B) 7	C) 4	D) -4					
17) In an A.P,	$s_{n} = \frac{n}{2}(7n-1)$, then the common of	lifference is					
A) 3	B) 5	C) 7	D) 9					
18)In an Arithmeti	c progression a	$n=3n+5$, then 8^{th} term	is					
A) 29	B) 19	C) 43	D) 26					
19)In an Arithmeti	c progression a	n = 6n - 4, then the firs	t term is					
A) 4	B) 2	C) -4	D) -2					
20)In an Arithmeti	c progression a	n = 2n+3, then the com	mon difference is					
A) 5	B) 1	C) 3	D) 2					
21)In an Arithmeti	c progression a	n = 2n then the value o	f S3 is					
A) 12	B) 2	C) 14	D) 6					
22)The fourth term in	n an Arithmetic	progression if S4=	38 and S3= 24 is					
A) 5	B) 14	C) 3	D) 8					
23)The next four terr	ms of an Arithm	etic progression 6,	9, 12are					
A) 16 , 19 , 2	.2 , 25	B) 15 , 18 , 24	B) 15 , 18 , 24 , 30					
C) 15 , 18	, 21 , 24	D) 15 , 17 ,	19 , 21					
24)S10 in an Arithm terms is 27 is	etic progression	n if the sum of first 3	terms is 9 and sum of next 3					
A) 30	B) 38	C) 46 D) 36	5					
25)The Sum of first the common dif	25)The Sum of first nth terms of an Arithmetic progression with first term 'a' and the common difference 'd' is							
A) S _{n =} n[2a+(n-1)d]	B) $S_n = \frac{n}{2} [a+(n)]$	n-1)d]					

D) $S_{n=\frac{n}{2}}[2a+(n-1)d]$

C) $S_n = \frac{n}{2} [2a+(n+1)d]$

26) An Arithmetic progression with first term 3 and the common difference 4 is A) 4,7,11,15 B) 3, 7, 11,15						
C) 3 , 8 ,13 ,18	D) 3 ,	6 , 9 ,12				
27) The sum of first n positive A) $S_n = \frac{(n+2)n}{2}$	We integers is B) $S_n = \frac{n(n+1)}{2}$	C) Sn = $\frac{n(n-1)}{2}$	1) D) $S_n = \frac{n(n-2)}{2}$			
28) The common difference is A) $3\sqrt{3}$ B) 3 29) The 10 th term of an Arit	in An Arithmetic C) √3 hmetic progressi	progression $2\sqrt{3}$ D) $\sqrt{6}$ on 4, 7, 10	$3, 5\sqrt{3}, 8\sqrt{3}$ is			
A) 36	B) 31	C) 34	D) 40			
30)Sum of first 10 odd natu A) 120	ral numbers is B) 55	C) 110	D) 100			
31)In A.P if a=5, d=3, , an = A) 5	20 then find the va B) 6	lue of 'n' C) 3	D) 7			
32) The meaning of a_{10} in Ar A) a+10d 33) If 2, x,14 are in Arith A) 28 B) 16	Tithmetic progressic B) a+11d nmetic progression, the C) 7 D) 8	on is C) a+9d n the value of 'x'is	D) a-9d			
34) $\sqrt{7}$, $\sqrt{28}$, $\sqrt{63}$ A) $\sqrt{112}$ B)	$\sqrt{84}$ C $\sqrt{98}$	metic progression D) √122	n, then the next term is			
 A) n (n +1) The sum of first ' 1 	B) n ² C C10 ' even natural n	umbers is	D) n (n -1)			
A) 100 B	b) 90 C)	80 D)	110			
37) The sum of first 'n A) $2n$ 38) a b c and d are i	i 'odd natural nur B) n in A P, then c-h is e	nbers is C) n ²	D) n ³			
A) $(a-b)$, B)	(b-c)	C) (d-c)	D) (c-d)			

ANSWERS:

1	С	11	D	21	А	31	В
2	В	12	А	22	В	32	С
3	А	13	А	23	С	33	D
4	В	14	А	24	D	34	А
5	А	15	В	25	D	35	А
6	С	16	С	26	В	36	D
7	А	17	С	27	В	37	С
8	С	18	А	28	В	38	D
9	В	19	В	29	В		
10	С	20	D	30	D		

Triangles

Points to remember

- Two figures are similar if and only if they have same shape but not necessarily the same size.
- Two polygons of same number of sides are similar If
 - 1) All the corresponding angles are equal.
 - 2) All the corresponding sides are in the same ratio or in a proportion.
- Two triangles are said to be similar if there corresponding angles are equal or corresponding sides are proportional.

drawn parallel to one side of a triangle, then it divides the other two sides proportionally."

✤ AA – Similarity criterion

If two triangles if the corresponding angles are equal, then their corresponding sides will be in proportion and hence the two triangle are similar.

- The areas of similar triangles are proportional to square of the corresponding sides.
- Pythagoras theorem: In a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides.
- Baudhayana theorem: The diagonal of a rectangle. Produces both areas of which its length and breadth produce separately.
- Pythagorean triplets: The triplets of natural numbers are form a right angled triangle are called pythagorean triplets

Ex:- i) 3, 4, 5 ii) 6, 8, 10

Converse of pythagoras theorem:- "If the square on the longest side of a triangle is equal to the sum of the squares on the other two sides then those sides contain a right angle".

Multiple choice questions

In $\triangle ABC$, DE $\parallel AB$. If CD=3cm, EC=4cm, BE=6cm, then DA is equal to 1) (A) 7.5 cm (B) 3 cm (C) 4.5 cm (D) 6 cm In fig, if XY || BC, then $\frac{AX}{XB}$ = 2) (A) $\frac{AX}{AV}$ (B) $\frac{AX}{AB}$ (C) $\frac{AY}{VC}$ (D) $\frac{AC}{AV}$ 3) In a rectangle, length=8cm, breadth=6cm, then the length of its diagonal is equal to (A) 9 cm (B) 14 cm (C) 10 cm (D) 12 cm 4) $\triangle ABC \sim \triangle DEF$ and $\frac{BC}{EF} = \frac{3}{5}$ then, $\frac{Area \ of \triangle ABC}{Area \ of \ \triangle DEF} =$ (A) $\frac{3}{5}$ (B) $\frac{9}{25}$ (C) $\frac{27}{125}$ (D) $\frac{6}{10}$ 5) $\triangle ABC \sim \triangle PQR$ and $\frac{Area \text{ of } \triangle ABC}{Area \text{ of } \triangle PQR} = \frac{25}{81}$, then BC:PQ is (A) 9:5 (B) 5:3 (C) 25:81 (D) 5:9

6) The length of the altitude of an equilateral triangle of side 10cm is (A) $5\sqrt{3}$ cm (B) $10\sqrt{3}cm$ (C) $\sqrt{3}$ cm (D) 75cm (A) 16:81 (B) 4:9 (C) 2 : 3 (D) 8:18 8) In triangle PQR , \angle PQR = 90⁰. PQ=12cm & QR=5cm , the length of PR= (B) 14 cm (C) 10 cm (A) 17 cm (D) 13 cm 9) Pythagorean triplet among these (A) 4, 5, 6 (B) 2, 3, 5 (C) 8, 10, 6 (D) 9, 10, 12 In fig, D and E are the midpoints of AB and AC 10) Respectively. If DE=4 cm then the value BC is (A) 4 cm (B) 6 cm (C) 8 cm (D) 12 cm 11) In fig, if XY || BC, then the value of $\frac{AX}{AB}$ = (A) $\frac{AX}{AV}$ (B) $\frac{AX}{XB}$ (C) $\frac{AY}{AC}$ (D) $\frac{AC}{AV}$ 12) In trapezium ABCD , AB || CD and diagonals intersect at O then the value of $\frac{OD}{OC}$ = (A) $\frac{OB}{OA}$ (B) $\frac{AB}{CD}$ (C) $\frac{OC}{OD}$ (D) $\frac{AC}{BD}$ Sides of a triangle are of length 2 cm, 3 cm and 4 cm respectively. 13) the set of numbers which are similar to the above triangle is (A) 4, 5, 6 (B) 5, 6, 7 (C) 12, 13, 14 (D) 6, 9, 12 14) In fig $\angle ABC = \angle AQP = 90^\circ$, then $\frac{AQ}{AP}$

(A)
$$\frac{BC}{PQ}$$
 (B) $\frac{AC}{PQ}$ (C) $\frac{QP}{BC}$ (D) $\frac{AP}{AB}$
15) Corresponding sides in equiangular triangle are
(A) $\pi a m n d g g g$ (B) $\pi a m o g d g d g g g$
(C) $\pi a m n d g g g g g$ (D) $\pi a m o g d g d g g g$
(C) $\pi a m n d g g d g g g$ (D) $\pi a m n d g g d g g$
16) Sides of two similar triangles are in the ratio 2:3. Areas of these triangles are in the ratio
(A) 9:4 (B) 4:9 (C) 2:3 (D) 3:2
17) Areas of two similar triangles are in the ratio 25:49. Sides of these triangles are in the ratio
(A) 4:6 (B) 5:7 (C) 6:7 (D) 7:8
18) In triangle PQR, $\angle PQR = 90^{0}$. then the correct relation is
(A) $PR^{2} = PQ^{2} - QR^{2}$ (B) $PQ^{2} = QR^{2} - PR^{2}$
(C) $PR^{2} = PQ^{2} + QR^{2}$ (D) $QR^{2} = PQ^{2} - PR^{2}$
19) Pythagorean triplet among these
(A) 3, 4, 5 (B) 1, 2, 3 (C) 2, 3, 4 (D) 9, 10, 14

20)Among these which one forms the sides a right angle triangle(A) 3, 6, 9(B) 15, 8, 17(C) 5, 12, 17(D) 8, 5, 17

21) In the fig, $\angle ABC = 90^{\circ}$, $\angle ADCB = 90^{\circ}$, AD = 8 cm, and CD = 2 cm, then find lenth of BD

(A) 4 cm (B) 8 cm (C) 16 cm (D) 10 cm

8 cm ? D 2 cm

22. In the given figure, $\angle ABC \sim \angle AYX$, then the ratio of the corresponding sides is :

A)
$$\frac{AX}{AC} = \frac{AB}{AY} = \frac{CB}{XY}$$

B) $\frac{AB}{AY} = \frac{BC}{XY} = \frac{AX}{AC}$
C) $\frac{AB}{AX} = \frac{AC}{AY} = \frac{BC}{XY}$
D) $\frac{AX}{AC} = \frac{AY}{AB} = \frac{XY}{CB}$

23. In the figure, $DE \parallel BC$, AD : AB = 1 : 2, BC = 6 cm, then DE is

24. In the given figure $\triangle ABC \sim \triangle PQC$. The ratio of their corresponding sides is

A) $\frac{BC}{PQ}$ (b) $\frac{AC}{PQ}$ (c) $\frac{QP}{BC}$ (d) $\frac{AP}{AB}$

26. Sides of a triangle are of length 2 cm, 3 cm and 4 cm respectively. Which of the sets of numbers are the sides of a triangle, similar to the above triangle ?

(A) 4, 5, 6 (B) 5, 6, 7 (C) 12, 13, 14 (D) 6, 9, 12

27. Select the set of numbers from the following which can form similar triangles

(A) 9, 12, 18 and 3, 4, 6	(B) 3, 4, 6 and 9, 10, 12
(C) 8, 6, 12 and 2, 6, 3	(D) 3, 4, 5 and 2, 4, 10

28. In parallelogram ABCD, P is a point on BC. In \triangle DCP and \triangle BLP, DP : PL is equal to :

29. \triangle ABC has sides of length 5 cm, 6 cm and 7 cm. The perimeter of \triangle DEF is 360 cm. If \triangle ABC ~ \triangle DEF then the ratio of the perimeters of \triangle ABC and \triangle DEF is :

(A) **1:2** (B) **2:1** (C) **1:20** (D) **20:1**

30. $\triangle ABC \sim \triangle DEF$, $\angle A = \angle D$ and $\angle B = \angle E$, then $\frac{\text{Area of triangle ABC}}{\text{Area of triangle DEF}}$ is equal to :

(A) $\frac{AC^2}{DF^2}$ (B) $\frac{AB^2}{DF^2}$ (C) $\frac{AC^2}{EF^2}$ (D) $\frac{BC^2}{DE^2}$

^{31.} \triangle ABC ~ \triangle DEF, the area of \triangle ABC is 45 cm² and the area of \triangle DEF is 20 cm² one side of \triangle ABC is 3.6 cm, then the length of corresponding side of \triangle DEF is:

(A) 3.4 cm (B) 2.4 cm (C) 1.4 cm (D) 4.4 cm

32. If the perimeters of two similar triangles are in the ratio of 4 : 1, then the ratio between their areas will be :

(A) **16**:1 (B) **4**:1 (C) **2**:1 (D) **2**:1

33. Which of the following is a correct statement ?

- (A) All the rectangles are similar
- (B) All the right angled triangles are similar
- (C) All the rhombus are similar
- (D) All the equilateral triangles are similar

34. The area of $\triangle ABC = 144$ sq. cm and area of $\triangle PQR = 25$ sq. cm. Altitude of $\triangle ABC = 6$ cm. If $\triangle ABC \sim \triangle PQR$, then the corresponding altitude of $\triangle PQR$ is

(A) **2.5** cm (B) **5** cm (C) **12** cm (D) **6** cm

35. Two similar triangles have areas 120 sq. cm and 480sq. cm respectively. Then the ratio of any pair of corresponding sides is :

(A) **1:4** (B) **1:2** (C) **4:1** (D) **2:3**

36. In \triangle *ABC*, *D*, *E* and *F* are mid points of *AB*, *BC* and *CA* respectively. If area of \triangle *ABC* = 60 sq. cm, then area of \triangle *DEF* is :

(A) 15 sq. cm (B) 30 sq. cm

(C) 45 sq. cm (D) 60 sq. cm

37. In DPQR, $\cdot PQR = 90^{\circ}$. The correct relation with respect to (A) $PR^2 = PQ^2 - QR^2$ (B) $PQ^2 = QR^2 - PR^2$ (C) $PR^2 = PQ^2 + QR^2$ (D) $QR^2 = PQ^2 - PR^2$

38. "If the square of one side of a triangle is equal to the sum of the squares on the other two sides, then those two sides contain a right angle." This statement refers

(A) Pythagoras theorem (B) Thales theorem

(C) Converse of Thales theorem

(D) Converse of Pythagoras theorem.

39. The length of a diagonal of a square of side 5 cm is :

(A) $5\sqrt{2}$ cm (B) $2\sqrt{5}$ cm (C) 10 cm (D) $10\sqrt{2}$ cm 40. In a rhombus ABCD, diagonals intersect at O. The sum of AC² + BD² are :

(A) $4 AB^2$ (B) $4 AC^2$ (C) $4 BD^2$ (D) $4 AO^2$

41. A man goes 15 m due west and then 8 m due north. Calculate the distance from the starting point.

(A) 17m (B) 15m (C) 12m (D) 23m 42. A ladder 17 m long reaches a window of a building 15 m above the ground. The distance of the foot of the ladder from the building is

(A) 32m (B) 2m (C) 8m (D) 13m ANSWERS:

1	C	11	С	21	А	31	В	41	А
2	С	12	А	22	D	32	А	42	С
3	С	13	D	23	С	33	D		
4	В	14	С	24	D	34	А		
5	D	15	С	25	С	35	В		
6	А	16	В	26	D	36	А		
7	А	17	В	27	А	37	С		
8	D	18	С	28	А	38	D		
9	С	19	A	29	С	39	A		
10	С	20	В	30	A	40	A		

Points to remember

$a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$

Where a_1 , a_2 , b_1 , b_2 , c_1 , c_2 are real numbers

Conditions for solvability (or consistency):

Condition	Solution	Graphical	Consistency /
		representatio	Inconsistency
$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Unique solution		

A)
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 B) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ C) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ D) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

- A) 2x 3y+6 = 0, 2x+3y+6 = 0B) 3x - 4y - 6 = 0, 3x - 4y + 6 = 0C) x - y + 10 = 0, x - y + 10 = 0D) 5x - 10y + 20 = 0, 5x - 20y+30 = 0
- 6) The inconsistent pair of equations among the following A) x - y + 3 = 0, x-y+6=0 B) 2x- y+20=0, x- 2y+10=0
 - C) 3x 4 y+12 = 0, x-y+10 = 0 D) 5x-10y+20= 0, x-2y+4=0
 - A)unique solution B)infinitely many solutionsC) no solution D)have two solutions
 - A) Consistent pair B) Dependent pair
 - C) Inconsistent pair D) Straight pair
 - A)unique solutionB)infinitely many solutionsC)no solutionD)have two solutions
- 10) The value of x and y for two equations x+y=5 and 2x-y=4 is A) (2,3) B) (3,2) C) (1,4) D) (4,1)

ANSWERS:

1	С	7	С	13	С
2	D	8	А	14	В
3	А	9	С	15	А
4	В	10	В	16	В
5	С	11	D		
6	A	12	D		

Circles

Points to remember

- ✤ The point where a tangent touches the circles is called the point of contact.
- In any circle, the radius drawn at the point of contact is perpendicular to the tangent.
- Only one tangent can be drawn to a circle at any point on it.
- ✤ Tangents drawn at the ends of a diameter are parallel to each other.
- ✤ Length of tangents from an external point to a circle are equal.

Multiple choice questions

	A) Chor	:d	B)Seca	nt	C) DàiRgeditus		
	A)Tango	ent	B)Se	cant	C)Radius	D)arc o	fa
3)	The maximu	m number	of parallel t	angents t	hat can be drawn to a d	circle is	
	A)1	B)2	C)3	D)Ir	nfinitely many		
4)	The angle su	ubtended b	oetween tar	igent and	I radius of a circle is		
	A) 30°	B) 60°	C) 90°	D)	180°		
5)	The maximur point is	n number	of tangents	that can l	be drawn to a circle fro	m an external	
	A)1	B)2	C) 3	D) 4			
6)	The number	of tangent	s to a circle	passing t	hrough a point lying on	the circle is	

 A) 1 B) 2 C) 3 D)Infinitely many 7) Two concentric circles are of radii 5cm & 3cm with center 'O' and AB is the chord of larger circle which touches the smaller circle at P then the length of the chord AB = A) 24cm B) 12cm C) 18cm D) 8 cm 8) The length of a tangent drawn to a circle of radius 6cm from an external point which is 10cm away from the centre is A) 8cm B) 16cm C) 10cm D) 5cm 9) If the angle between two tangents of a circle with is 70° then angle between their radii is 	ne of the period
A) 110° B) 70° C) 60° D) 100°	
 10) If the angle between two radii of a circle is 90°, the angle between tang drawn at the ends of the radii is A) 0° B) 180° C) 60° D) 90° 	gents
 11) The tangents drawn at the ends of a diameter of a circle are A) parallel to each other B)Perpedicular to each other C)intersects to each other D) Coincides to each other 12) A quadrilateral ABCD is drawn to circumscribe a circle. AB+CD= A) AC+CD B) AD+BC C) AB+BC D) AB+AD 13) PO is a tangent to a circle with center 'O' touches the circle at point F 	C Q D then
$\angle OPQ =$	then
A) 30° B) 60° C) 90° D) 180° 14) In the figure BC, CE and EF are the tangents drawn to a circle. If BC = 5 cm, EF = 3cm, then the length of CE =	F
A) 3cm b) 5cm C) 8cm D) 2 cm	1
 15) "P" Is the external point at a distance of 5cm from the center 'O' of the circle with radius OQ = 3cm and PQ is the tangent touches circle at Q then the length of PQ = A) 4cm B) 7cm C) 8cm D) 7cm 	the
A) 40m B) 70m C) 80m D) 20m	

ANSWERS:

1	А	7	D	13	С	19	В
2	А	8	А	14	С	20	С
3	В	9	А	15	А		
4	С	10	D	16	В		
5	В	11	В	17	А		
6	А	12	В	18	А		

Constructions

 A) Em
 Em
 C) Em
 Em

 A) 3cm කා ತ್ತು 7cm
 B) 4cm කා ತ್ತು 6cm

 C) 4.6cm කා ತ್ತು 5.4cm
 D) 4.2cm කා ತ್ತು 5.8cm

3) Construct a triangle of with sides 6cm , 9cm and 7.5cm respectively. Then construct another triangle similar to the given triangle such that each of its sides are $\frac{2}{3}$ of the corresponding sides of given triangle . The lengths of the

new triangle respectively are

A) 4cm , 6cm , 8cm B) 4cm , 6cm , 10cm

C) 4cm , 7cm , 6cm D) 4cm , 6cm , 5cm

ASWERS:

1	2	3
C	В	D

Coordinate geometry

Points to remember

1. Distance between $P(x_1, y_1) \& Q(x_2, y_2)$ is given by

d =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2. Distance between origion and a point P(x, y) is given by

$$\mathsf{d} = \sqrt{x^2 + y^2}$$

$$(\mathbf{x}, \mathbf{y}) = \left[\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right]$$

$$= \left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right]$$

5. Area of a triangle with vertices (x_1, y_1) , (x_2, y_2) & (x_3, y_3) is

$$\Delta = \frac{1}{2} \{ \mathbf{x}_1 (\mathbf{y}_2 - \mathbf{y}_3) + \mathbf{x}_2 (\mathbf{y}_3 - \mathbf{y}_1) + \mathbf{x}_3 (\mathbf{y}_1 - \mathbf{y}_2) \}$$

Multiple questions

1) The distance between
$$(X_{1}, Y_{1}) & (X_{2}, Y_{2})$$
 is
A) $\sqrt{(X_{2} - X_{1})^{2} + (Y_{2} - Y_{1})^{2}}$ B) $(X_{2} \cdot X_{1})^{2} + (Y_{2} \cdot Y_{1})^{2}$
C) $\sqrt{(X_{2} - X_{1})} + (Y_{2} - Y_{1})$ D) $(X_{2} \cdot X_{1}) + (Y_{2} \cdot Y_{1})$
2) The distance of a point (X,Y) from the origin is
A) $X^{2} + Y^{2}$ B) $\sqrt{X^{2} + Y^{2}}$ C) $X^{2} - Y^{2}$ D) $\sqrt{X^{2} - Y^{2}}$

	$\left(\frac{X1+Y}{2}\right)$		B) $\left(\frac{X1-Y1}{2}\right)$	$\left(\frac{X^2-Y^2}{2}\right)$					
	C) $\left(\frac{x^2+x^1}{2}, \frac{y^2+y^1}{2}\right)$				D) $\left(\frac{x^2-x^1}{2}, \frac{y^2-y^1}{2}\right)$				
4)	The distar	ice betwe	en th	e coordina	ates (3,4) fr	rom its o	origin is		
	A) 6 uni	ts,	B) 5 เ	units	C) 10 un	its	D) 8 u	nits	
5)	The dista	nce betw	een tl	he coordii	nates (8,3) a	and (5 <i>,</i> 7) is		
	A) 5 unit	S	B) 11	units	C) 2√2 ur	nits	D) 4 u	nits	
	A) (5 <i>,</i> 3)	B) (-3, 7	7)	C) (8,1)	D) ((16,2)		
7)	The coord	dinates of	the e	nd points	of a diame	ter of a	circle ar	e (6,2) & (6,	4). Then
the c	coordinates	of the cer	nter o	f the circle	e are				
	A) (4,5)	B	6,3	3)	C) (5,4) D) (10, 8		10, 8)		
	A) ±7	B) ±4	ļ	C) 0	D) ±3				
9) T	he coordina	tes of the	point	t which di	vides the jo	oin of (3,	2) & (0,	5) in the rati	o 2:1
	are	A) (1,	4)	B)(4,1)) C)(3,7)[D) (7,3)			
	(X _{3,} Y ₃) is	;							
	A) 1 sq.ι	units	B) () sq.units	C) 1	00 sq.ur	nits	D) -1 sq.un	its
	A) 4	B) 5	C)	- 1	D) 3 √3				
			0			2			
	A) 3:4	B) 3	:2	C) 2:3	D) 4:	5			

15) The area of a triangle with vertices (1,-1)(-4,6) & (-3,-5) is A) 24 sq.units B) 40 sq.units C) 48 sq.units D) 32 sq.units The distance of the point P(2, 7) from the x – axis is _____ 16) C) 9 units A) 2 units B) 7 units D) 11 units The distance of the point Q(6, 2) from the Y – axis is 17) A) 2 units B) 4 units C) 6 units D) 8 units Co-ordinates of origin are. 18) A) (1, 1) B) (1, 0) C) (0, 1) D) (0, 0)

A
$$(\mathbf{x}_1, \mathbf{y}_1)$$
, B $(\mathbf{x}_2, \mathbf{y}_2)$ and C $(\mathbf{x}_3, \mathbf{y}_3)$ is ______
A) . $\frac{1}{2} [\mathbf{x}_1 (\mathbf{y}_2 + \mathbf{y}_3) + \mathbf{x}_2 (\mathbf{y}_3 + \mathbf{y}_1) + \mathbf{x}_3 (\mathbf{y}_1 + \mathbf{y}_2)$
B) . $\frac{1}{2} [\mathbf{x}_1 (\mathbf{y}_2 - \mathbf{y}_3) + \mathbf{x}_2 (\mathbf{y}_3 - \mathbf{y}_1) + \mathbf{x}_3 (\mathbf{y}_1 - \mathbf{y}_2)]$
C) . $\frac{1}{2} [\mathbf{x}_1 (\mathbf{y}_2 - \mathbf{y}_3) - \mathbf{x}_2 (\mathbf{y}_3 - \mathbf{y}_1) - \mathbf{x}_3 (\mathbf{y}_1 - \mathbf{y}_2)]$
D). $\frac{1}{2} [\mathbf{x}_1 (\mathbf{y}_2 + \mathbf{y}_3) - \mathbf{x}_2 (\mathbf{y}_3 + \mathbf{y}_1) - \mathbf{x}_3 (\mathbf{y}_1 + \mathbf{y}_2)]$

A).
$$\left[\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right]$$
 B). $\left[\frac{m_1x_2-m_2x_1}{m_1+m_2}, \frac{m_1y_2-m_2y_1}{m_1+m_2}\right]$

(\sum). $\left[\frac{m_1}{n}\right]$	$\frac{x_2+m_2x_1}{n_1-m_2}$, $\frac{m_1y_2+}{m_1-}$	$\left[\frac{m_2y_1}{m_2}\right]$	D). $\left[\frac{m_1}{r}\right]$	$\begin{array}{c} x_2 - m_2 x_1 \\ n_1 - m_2 \end{array}$	$, \frac{m_1y_2}{m_1}$	$\left[-\frac{m_2y_1}{m_2}\right]$
21) 7	.) The area of the triangle whose vertices are A (3, 3), B (3, 5) and C (2, 4) is A) O units B) 1 units C) 2 units D) 3 units						4) is		
22) axis is	22) The perpendicular distance of point A (6, 9) from the x-axis and y- axis is								
ŀ	A) 6 units, 9units				B) 9	9 units ,	6units		
(C) 6 unit	15 uni, 15	ts		D) :	15 units	, 9units		
23)	The coor	dinates	of the po	oint on th	he x- axi	s will be	e in the f	form	
	A) (0, y	y) I	B) (x, 0)		C) (0,	, 0)	D) (x, y)	
24)	The coordinates of the point on the y- axis will be in the form								
25)	Y - coor	dinate o	\mathbf{x}_{n}	is	C) (0,	, 0)	D) (x , y)	
23)	A)	0	B)	10	C)	2	Г)) 3	
26)	X-coord	dinate or	ı v-axis	is	0)	-	_	, ,	
,	A)	3	B) 2		C) 1		D) 0		
27)	The poi	nt amon	g the fol	llowing	which li	e on x-a	axis is		
	Ā)	(2, 0)	-	B) ((0, 2)	C) ((2, 3)	D)	(0, -2)
28)	The poi	nt amon	g the fol	llowing	which li	e on y-a	axis is		
	A)	(3, 0)		B) ((0, -4)	C) ((-2, 0)	D)	(4, 6)
ANS	SWERS:								
1	А	7	В	13	D	19	В	25	А
2	В	8	В	14	A	20	A	26	D
3	C	9	А	15	Α	21	В	27	Α
4	В	10	В	16	В	22	В	28	В
5	A	11	C	17	C	23	В		
6	C	12	C	18	D	24	A		

Quadratic equations

Points to remember

- **1. Standard form of a quadratic equation is** $ax^2 + bx + c=0$, $a \neq 0$
- 2. Quadratic formula to find roots of $ax^2+bx+c = 0$ are

 $\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- 3. Nature of roots of a quadratic equation
 - i. The discriminant to find nature of roots of a quadratic equation $ax^2+bx+c = 0$ is given by $\Delta = b^2 - 4ac$
 - ii. If $\Delta = b^2 4ac=0$ then roots are real and equal.
- iii. If $\Delta = b^2 4ac > 0$ (+ve) then roots are real and distinct.
- iv. If $\Delta = b^2 4ac < 0$ (-ve) No real roots.
 - 1. Which of the following is not a quadratic equation

A) $x^2+3x-5=0$ (B) $x^2+x^3+2=0$ (C) $3+x+x^2=0$ (D) $x^2-9=0$

2. The quadratic equation has degree

(A) 0 (B) 1 (C) 2 (D) 3

3. The standard form of a quadratic equation is

A) $ax^{2} + bx + c = 0$ B) ax + b = c C) $ax^{3} + bx^{2} + c = 0$ D) ax - b = 0

4. Pure quadratic equation among the following is

A) $x^{2} + 2x + 2 = 0$ B) $x^{2} + 5x + 6 = 0$ C) $x^{2} + 9 = x$ D) $x^{2} - 9 = 0$

5. Sridhara's quadratic formula for the quadratic equation $ax^2 + bx + c = 0$ is

A)
$$-b \pm \sqrt{b^2 - 4ac}$$

B) $\frac{-b}{2a} \pm \sqrt{b^2 - 4ac}$
C) $\frac{-b \pm \sqrt{b^2 - 2ac}}{4a}$
D) $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
6. Formula to find the discriminant of the quadratic equation $ax^2 + bx + c = 0$ is
A) $b^2 - 4ac$
B) $\frac{b}{2a}$
C) $\frac{-b}{2a}$
D) $\frac{-b}{4ac}$
7. The maximum number of roots of a quadratic equation is
A) one
B) two
C) three
(D) depends on the given equation
8. Sum of a number and its reciprocal is 17/4, the number is
A) 4
B) 3
C) 5
D) 2
9. The values of X in given Quadratic equation $X^2+1=101$ are
A) ± 1
B) ± 10
C) ± 11
D) $\pm \sqrt{10}$
10. The roots of the Quadratic equation $x^2=49$ are
A) 7 and -7
B) 24 and 5
C) 8 and -8
D) 7 and 0
11. If the roots of the equation $ax^2 + bx + c = 0$ are equal, then the value of C is
A) $b^2 - 4a$
B) $b^2 X 4a$
C) $\frac{b^2}{4a}$
D) $\frac{4a}{b^2}$
12. The discriminant of the given quadratic equation $2x^2-4x+3=0$ is
A)-8
B) 8
C) 0
D) 1
13. If the roots of the quadratic equation $x^2 + mx + 4=0$ are equal, then the value of m is
A) 2
B) 4
C) 6
D) 5
14. "The product of two consecutive positive integers is 30" this statement can be expressed as
A) $x(x+2) = 30$
B) $x(x-2) = 30$
C) $(x-3)x = 30$
D) $x(x+1)=30$

15. Which of the following is an example for quadratic equation

A)
$$x(x+3) + 5 = x^2$$
 B) $x(x-3) = 5$ C) $2x^2 + 2x = 2(x^2 - 5)$ D) $(x+1)x = x(x-3)$

16. The nature of roots of the equation $x^2 + 4x + 4 = 0$ is

A) Real and Equal B) Real and distinct C) No real D) Different roots

17. " The sum of squares of two consecutive odd positive integers is 34" this can expressed as

A)
$$x^{2} + (x+1)^{2} = 34$$

B) $x^{2} + (x+3)^{2} = 34$

C)
$$(x+1)^2 + (x+2)^2 = 34$$

D) $x^2 + (x+2)^2 = 34$

18. If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$, then the value of p is

(A) 3 (B) 5 (C) 7 (D) 1

19. The sum of the reciprocals of Rehman's ages 3 years ago and 5 years from now is 1/3. The present age of Rehman is:

```
(A)7 years(B)10 years(C)5 years(D)6 years20. What number should be added to x^2+6x to make it a perfect square?
```

A) 36 (B) 18 (C) 9 (D) 72

ASWERS:

1	В	6	А	11	С	16	А
2	С	7	В	12	А	17	D
3	А	8	А	13	В	18	С
4	D	9	В	14	D	19	А
5	D	10	А	15	В	20	А

UNIT : TRIGONOMETRY

Points to remember

TRIGONOMETRIC RATIOS :

Adjecent Hypotenuse B Opposite C							
SinA	CosA	TanA	CosecA	SecA	CotA		
Opposite Hypotenuse	Adjecent Hypotenuse	Opposite Adjecent	Hypotenuse Opposite	Hypotenuse Adjecent	Adjecent Opposite		
TRIGONOMETRI	CAL RATIOS TABL	E FOR STAND	ARD ANGLES				

$\angle A$	0 ⁰	30 ⁰	45 ⁰	60 ⁰	90 ⁰
SinA	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
CosA	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
TanA	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N.D
CosecA	N.D	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
SecA	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	N.D
CotA	N.D	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES

SinA	CosA	TanA	CosecA	SecA	CotA
Cos(90-A)	Sin(90-A)	Cot(90-A)	Sec(90-A)	Cosec(90-A)	Tan(90-A)

TRIGONOMETRIC IDENTITY

- > Sin²A + Cos²A = 1
- > $Tan^2A + 1 = Sec^2A$
- > 1 + Cot²A = Cosec²A

INVERSE OF TRIGONOMETRIC VALUES

$\frac{1}{SinA}$	CoSecA
$\frac{1}{CosA}$	SecA
$\frac{1}{TanA}$	CotA
1 CosecA	SinA
1 SecA	CosA
$\frac{1}{CotA}$	TanA

SOME IMPORTANT MULTIPLE CHOICE QUESTIONS

1.	The value of tan45 ⁰	is		
	A) √3	B) 0	C) 1	D) $\frac{1}{\sqrt{3}}$
2.	If $2\sin 2\theta = \sqrt{3}$ then	the value of θ	' is	V-
	A) 90 ⁰	B) 60 ⁰	C) 30 ⁰	D) 45 ⁰
3.	$sin(90-\theta)$ is equal t	0 B) tan	θ () sec θ	D cot θ
4.	tan θ - cot(90- θ) is	equal to		D) (0(0
	A) 0 B) 1		C) 2	D) 3
5.	If $\sin \theta = \frac{x}{y}$ then th	e value of $\cos \theta$	is	
	A) $\frac{y}{\sqrt{y^2 - r^2}}$	B) $\frac{y}{x}$	C) $\frac{x}{\sqrt{x^2 - x^2}}$	D) $\frac{\sqrt{y^2 - x^2}}{y}$
6.	If $13\sin\theta = 12$ the	en cosec θ =		9
	A) $\frac{5}{12}$ B) $\frac{1}{2}$	<u>.3</u> 5	C) $\frac{12}{13}$	D) $\frac{13}{12}$
		- -		
7.	The value of Sin30 ⁰	+ cos60 ⁰ is	- 1	2
	A) 1	B) $\frac{3}{2}$	C) $\frac{1}{4}$	D) $\frac{2}{3}$
8)	The value of sin60°.	$\cos 30^\circ + \sin 30^\circ$.	. cos60° is	
	A) 4	B) 3	C) 2	D) 1
9)	If tanA = $\frac{4}{3}$ then c	otA =		
	A) $\frac{4}{2}$	B) $\frac{3}{4}$	C) $\frac{4}{r}$	D) $\frac{5}{2}$
10)	The value of tan45 ^c	$+ \cot 45^{\circ} - \sin 90$	0 ⁰ is	3
	A) 3	B) 2	C) 1	D) 0
11)	The value of $\frac{sin18^{\circ}}{cos72^{\circ}}$	is		
	A) 0	B) 1	C) 2	D) 3
12)	The value of $\frac{tan266}{cot646}$	is		
	A) 0	B) 1	C)2	D)3

23) The value of
$$\sin^{2}30^{\circ} \cos^{2}30^{\circ}$$
 is ______
A) $-\frac{1}{2}$ B) $\frac{\sqrt{3}}{2}$ C) $\frac{3}{2}$ D) $-\frac{2}{3}$
24) The value of $\frac{1-\tan^{2}45^{\circ}}{1+\tan^{2}45^{\circ}}$ is ______
A) $\tan 90^{\circ}$ B) 1 C) $\sin 45^{\circ}$ D)0
25) If we express $\csc \theta$ in the form of $\cot \theta$, then $\csc \theta =$ ______
A) $\cot \theta$ B) $\cot^{2}\theta - 1$ C) $\sqrt{1 + \cot^{2}\theta}$ D) $1 + \cot^{2}\theta$
26) If $\sin A = \frac{1}{2}$ and $\cos B = \frac{1}{2}$ then $A + B =$ ______
A) 0° B) 30° C) 60° D) 90°
27) In a $\triangle ABC$ if $\hat{C}=90^{\circ}$, then $\sin(A + B)=$ _______
A)0 B) $\frac{1}{2}$ C) $\frac{\sqrt{2}}{3}$ D)1
28) If $\sin \theta = \frac{1}{2}$ and $\cos \theta = \frac{\sqrt{3}}{2}$, then $\tan \theta =$ ______
A) $\sqrt{3}$ B) $\frac{1}{2}$ C) $\frac{\sqrt{2}}{3}$ D) $\frac{1}{\sqrt{3}}$
29) In a $\triangle ABC$ $\hat{B}=90^{\circ}$ $\tan A=\frac{1}{\sqrt{3}}$, then $\sin A=$ _______
A)0 B) $\frac{1}{2}$ C) $\frac{\sqrt{3}}{2}$ D) $\frac{1}{\sqrt{2}}$
30) In $\sin A$, $0 \le A \le 90^{\circ}$ then the least value of $\sin A$ is _______
A)-1 B)0 C) $\frac{1}{\sqrt{2}}$ D) $\frac{1}{2}$
31) If $\sin 2A = 2\sin A$ then the value of A is _______
A) 30° B) 45° C) 0° D) 90°
32) In a $\triangle ABC$, $\hat{B}=90^{\circ}$ and $\hat{C}=30^{\circ}$ then AB : AC is _______
A) 1 : 2 B) 2 : 1 C) $\sqrt{3} : 2$ D) $2 : \sqrt{3}$

ANSWERS:

1	C	11	В	21	D	31	C
2	С	12	В	22	В	32	А
3	А	13	В	23	А	33	А
4	А	14	А	24	D	34	В
5	D	15	В	25	С	35	А
6	D	16	В	26	D	36	D
7	А	17	В	27	D	37	D
8	D	18	А	28	D	38	В
9	В	19	А	29	В		
10	С	20	В	30	В		

12. Applications of trigonometry

Multiple choice questions

- 1) The shadow of a tower is equal to its height at 10-45 a.m. The sun's altitude is (A)30° (B)45° (C)60° (D) 90°
- 3) The angle of elevation of the top of a tower from a point 20 metres away from its base is 45°. The height of the tower is
 (A) 10 m
 (B) 20 m
 (C) 30 m
 (D) 20V3 m
- 4) If the length of the shadow of a tower increases, then the angle of elevation of the sun
 - (A) is also increases (B) decreases
 - (C) remains unaffected (D) increases then decreases
- 5) The angle of elevation of the top of a tower is 30°. If the height of the tower is doubled, then the angle of elevation of its top will
 - (A) also get doubled (B) will get halved
 - (C) will be less than 60° (D) 30°
- 6) If a pole 6m high casts a shadow $2\sqrt{3}$ m long on the ground, then the sun's elevation is (A) 60° (B) 45° (C) 30° (D)90°

ANSWERS:

1	2	3	4	5	6	7
В	С	В	В	С	А	Α

⁷⁾

Statistics

Points to remember

1. Mean for groupd data

Direct method to find mean

- 2. Mode for grouped data
- 3. Median for grouped of

mean,
$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

L + $\left[\frac{f_{1-} f_0}{2f_{1-} f_0 - f_2}\right] X h$

of =
$$\left[L + \left[\frac{\frac{N}{2} - cf}{f} \right] X h \right]$$

Multiple choise questoins

1) If the mean value of 'x', 6, 8, 9 and 12 is 8, then the value of 'x' is A) 4 B) 5 C) 16 D) 10 2) The median of the scores 5,8,14,16,19 and 20 is A) 14 B) 15 C) 16 D) 17 3) The wickets taken by a bowler in 10 cricket matches are as follows : 2,6,4,5,0,2,1,3,2,3 then the mode of the data is A) 0 C) 2 B)1 D)3 4) The emperical relationship between the three measures of central tendency is A) 3 median = mode + 2 mean B) 2 median = mode + 3 mean C) median = mode + mean D) median = mode – mean 5) Class mark for the class 10 – 25 is

A) 10.5	B)12.5	C)15.5	D) 17.5

6) Size of the class interval 40-50 is

ಗಾತ್ರ A) 10 B) 15 C) 20 D) 25

7) Modal class for the given distribution is

	CI	1-3	3-5	5-7	7-9	9-11
	F	7	8	2	2	1
A) 1-3	B) 3-5		C) 5-7		D) 9-12	1

8) The frequency(f_0) of class preceding the modal class for the given distribution is

	CI	5-15	15-25	25-35	35-45	45-55	55-65	
	f	6	11	21	23	14	5	
A) 6		B) 11	C) 21	D) 2	23			

9) The frequency (f_2) of class succeeding the modal class for the given distribution is

	CI	1-3	3-5	5-7	7-9	9-11
	F	7	8	2	2	1
B)	8	C) 2		D) 1		I

10) The middle most score in an orderly arranged data is

A) 7

A) Mean B) Median C) Mode D) Range

11) The mean of first five odd natural positive integers is

A) 5 B) 7 C) 9 D) 25

12) The sum of the values of all the observations divided by the total number of observations is

A) Range B) Mean C) Median D) Mode

13) Cumulative frequency is useful in determining the

(A) mean (B) median (C) mode (D) range

14)	Which of the following is not a measure of central tendency								
	(A) mean	(B) media	in	(C) mode	(D) range			
15)	Classmark	of the class 1	.0 – 20 is	5					
	A) 10	B) 20	C	C) 15	D) 30				
16)	Size of the c	lass interval	25-35 is						
	A) 25	B) 10	C	C) 35	D) 15				
17)	Mode for th	e data 12,1	5,14,13,	12,15,1	8,25,16,15,20,18				
	A)15	B) 18	C) 12	D) 25					

18) Modal class for the distribution

C.I	0-10	10-20	20-30	30-40	40-50	50-60	60-70
f	3	5	8	12	10	6	4
	A) 20-	30	B) $30 - 4$	-0 C)	40 - 50	[50 - 60

19) Formula to find median is

A)
$$L \neq \left[\frac{\frac{N}{2} - cf}{f}\right] Xh$$

B) $L \neq \left[\frac{\frac{N}{2} + cf}{f}\right] Xh$
C) $L \neq \left[\frac{f_{1-}f_0}{2f_{1-}f_0 - f_2}\right] Xh$
D) $L \neq \left[\frac{f_{1-}f_0}{2f_{1-}f_0 + f_2}\right] Xh$

20) Median class for the distribution

	C.I	0-10	10-20	20-30	30-40	40-50	50-60	60-70	
	f	3	8	16	28	38	46	50	
-	A) 20 – 30 B) 30 – 40 C) 40 – 50 D) 50 – 60								
22	L) Me	an for the f	following so	cores 12,14	4,10,13,11	is			

A)10 B) 14 C) 12 D) 15

22) The formula used to find mode of the grouped data

A)	$l+\left[\frac{n/2-cf}{f}\right] \ge h$	B) $\frac{\Sigma fixi}{\Sigma fi}$	C) $l + [\frac{f_{1}-f_{2}}{2f_{1}-f_{2}}]$	$\frac{f0}{D-f2}$]x h	D) $l + \left[\frac{f1-f0}{2f1-f0-f2}\right]$
23)	If the median is a	36 and mean is	s 18, then the v	alue of the	mode is
	A) 36	B) 72	C) 18	D) 648	
24)	If the mean of 1	2 numbers is 2	20 then their al	gebraic sui	n is
	A) 200	B) 32	C) 240	D)180	
25)	If $\sum f_i = 20$, $\sum f_i$	$x_i = 140 + 5k$ and	d $\overline{\mathbf{X}} = 9$ find k	X	
	A) 2	B) 4	C) 8	D) 6	
26)	The Median of	13,12,5,8,11,9	is		
	A) 5	B) 6.5	C) 10	D) 9.5	

27) For the given frequency distribution table answer the following question

F
No of Students
11
9
8
12
10
10

i. The modal class is

A) 50-60 B) 30-40 C) 0-10 D) 20-30

ii. upper limit of the modal class is

A) 20 B) 30 C) 40 D) 50

iii. Value of 'h' (class mark of modal class) is

A) 10 B) 20 C) 30 D) 40

iv. The number of Students who scored more than 40 marks

A) 32 B) 12 C) 20 D) 17

ANSWERS:

1	В	7	В	13	В	19	А	25	C
2	В	8	С	14	D	20	В	26	С
3	С	9	С	15	С	21	С	27(i)	В
4	А	10	В	16	В	22	С	27(ii)	С
5	D	11	А	17	А	23	В	27(iii)	А
6	A	12	В	18	В	24	С	27(iv)	С

Surface area and volume

Points to remember

List of formulae

Sl. no	Solid	C.S.A	T.S.A	Volume
1	Cube	4 <i>a</i> ²	6a ²	a ³
2	Cuboid	2lb + 2lh	2lb + 2lh + 2bh	lbh
3	Cylinder	$2\pi rh$	$2\pi r^2 + 2\pi rh$	$\pi r^2 h$
4	Cone	πrl	$\pi r^2 + \pi r l$	$\frac{1}{3}\pi r^2h$
5	Frustum of cone	$\pi(r_1+r_2)l$	$\pi r_1^2 + \pi r_2^2 + \pi (r_1 + r_2)l$	$\frac{1}{3}\pi(r_1^2 + r_2^2 + r_1r_2)h$
6	Sphere	$4\pi r^2$	$4\pi r^2$	$\frac{4}{3}\pi r^3$
7	Hemisphere	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$

Important points

- Area of combination of solids is the sum of areas of visible faces.
- Volume of combination of solids is the sum of its constituent solids.
- A solid is converted from one shape in to another , their volumes remain same.

Multiple choice questions.

1) If the area of the circular base of a cylinder is 22 cm² and its height is 10 cm , then the volume of the cylinder is

A) 2200 cm² B) 2200 cm³ C) 220 cm³ D) 220 cm²

2) The formula used to find the curved surface area of the frustrum of a cone whose radii are r_1 and r_2 and slant height 'l' is

A) $\pi(r_1 + r_2) \mid B$ $\pi(r_1 - r_2) \mid C$ $\pi(r_1 \times r_2) \mid D$ $\pi(r_1 \div r_2) \mid C$ 3) 2 cubes each of volume 27cm³ are joined end to end . The volume of the resulting cuboid is A) 27cm³ B) 54cm³ C) 108cm³ D) 216cm³

4) The volume of a cylinder is 300m³ then the volume of a cone having the same radius and height as that of the cylinder is

A) 900 m³
B) 600 m³
C) 150 m³
D) 100 m³
5) If two solid hemisphere of same radius are joined together along with their bases
Then the surface area of their new solid is

A) $2 \pi r^2$ B) $3 \pi r^2$ C) $4 \pi r^2$ D) $6 \pi r^2$ 6) Volume of a sphere with radius 'r' is A) $\frac{3}{4} \pi r^3$ B) $\frac{3}{2} \pi r^3$ C) $\frac{2}{3} \pi r^3$ D) $\frac{4}{3} \pi r^3$

7) A cylinder and a cone are of same base , radius and of same height . The ratio of the volume of the cylinder to that of the cone is

A) 2:1 B) 3:1 C) 2:3 D) 3:2

8) The curved surface area of a right circular cylinder is 440 cm² and its radius is 7cm, its height is

A) 3.5 cm B) 7cm C) 10cm D)14cm

9) A cylindrical pencil sharpened at one edge is the combination ofA) Two cylinders

B) A hemisphere and a cylinder

C) Frustrum of a cone and a cylinder

D) a cone and a cylinder

10) A cone made of modelling clay whose height is 24cm and radius of base 6 cm is reshaped into sphere, then the radius of sphere is

A) 3 cm	B)6cm	C) 12cm	D)24 cm
11) The surface a	rea of a sphere of ra	dius 7 cm is	
A) 154cm ²	B)308cm ²	C) 616cm ²	D) 770cm ²
A) Cuboid	B) Cylinder	C) Sphere	D) Rightcircular cone

13) surf	A toy is in the fo	orm of a cone mou	inted on a hen	nisphere of sam	e radius . The tot	al
Surr	A) $\pi rl+2\pi r^2$	B) πrl+πr ²	C)2 πrl+πι	⁻² D) 2πι	·l+2πr ²	
14)	Formula to f	ind volume of a c	cylinder is			
	A] $\pi r^2 h$		B] $\frac{1}{3}\pi$	r^2h		
	C] <i>π rl</i>		D] 2π	rh		
15)	The solid which A] Sphere	is having only on B] Hemispl	e surface is here Cl Cy	linder D]	Cone	
16)	The ratio of ar A] 2:3	eas of two spheres B] 3:2 C] 4:	with the ratio \mathbf{D} D 16:9	of their radii 2	:3 is	
17)	Formula to A] πr^2	find total B] $3\pi r^2$ C]	surface area 2πr ²	of a D] $4\pi r^2$	hemisphere	is
18)	AConstituent so A]cylinder, co C] Cylinder, o	olids in the given o ne cone , sphere	combination of B] Cylind D] cube,	f solid figure ard ler , cone , hen cone , hemispł	e nisphere nere	
19)	The length of	each edge of a cu	be with its volu	ume 1331 cm ³ i	S	
	(A) 12cm	(B) 11cm	(C)	15cm (I)) 13cm	
20)	A solid formed	on revolving a sid	e of a rectangl	e is		
	A) Cuboid	B) Cylinder	C) Sphere	D) Rig	htcircular cone	

Answers:

1	С	6	D	11	С	16	С
2	А	7	В	12	D	17	В
3	В	8	С	13	А	18	В
4	D	9	D	14	А	19	В
5	С	10	В	15	А	20	В