Mathematics Online Class X On 15-07-2021

ARITHMETIC SEQUENCE

Question on the previous class with answer
The common difference of an arithmetic sequence is 6 . The sum of first 20 terms is $\mathbf{1 2 0 0}$.Write the sequence?

Answer

Given common difference $=6 \quad \therefore$ Algebraic form $x_{n}=6 n+b$ sum of first n terms $=6 \times \frac{n(n+1)}{2}+b \times n$
sum of first 20 terms $=6 \times \frac{20(20+1)}{2}+b \times 20=1200$

$$
\begin{aligned}
6 \times 210+20 b & =1200 \\
1260+20 b & =1200 \\
20 b & =1200-1260=-60 \\
b & =\frac{-60}{20}=-3
\end{aligned}
$$

\therefore Algebraic form of the sequence is $6 \mathrm{n}-3$
Sequence is $3,9,15$,

Question

Find the algebraic form of the sum of first n even natural numbers?
Answer
We have $1+2+3+\ldots+n=\frac{n(n+1)}{2}$

$$
\begin{aligned}
2+4+6+\ldots+2 n=2(1+2+3+\ldots+n) & =2 \times \frac{n(n+1)}{2} \\
& =n(n+1) \\
& =n^{2}+n
\end{aligned}
$$

Question

Find the sum of first 10 even numbers and sum of first 25 even numbers?

Answer

Sum of first 10 even numbers $=10(10+1)=100+10=110$
Sum of first 25 even numbers $=25(25+1)=625+25=650$

Question

Find the sum of first 10 odd numbers?
Answer
Here number of terms $=10 \quad$ [even]
\therefore Sum $=$ No.of pairs \times One pair sum
$10^{\text {th }}$ odd number $=2 \times 10-1=20-1=19$
Sum of first 10 odd numbers

$$
=\frac{10}{2} \times(1+19)=5 \times 20=100
$$

Question

Find the sum of first 25 odd numbers?
Answer
Here number of terms $=25 \quad$ [odd]
Sum $=$ Number of terms \times Middle term
$25^{\text {th }}$ odd number $=2 \times \mathbf{2 5 - 1}=\mathbf{5 0 - 1}=\mathbf{4 9}$
Middle odd number $=\frac{(49+1)}{2}=25$
Sum of first 25 odd numbers

$$
=25 \times 25=625
$$

Question

Find the algebraic form of the sum of first n odd natural numbers?
Answer
Here number of terms $=n$
$\mathbf{n}^{\text {th }}$ odd number $=(2 n-1)$
$1+3+5+\cdots+(2 n-1)=\frac{n}{2} \times[1+(2 n-1)]=\frac{n}{2} \times 2 n=n^{2}$
Question
Find the sum of \mathbf{n} consecutive terms of the arithmetic sequence 3,6,9,12,...
Answer

$$
\begin{aligned}
3+6+9+\ldots+3 n & =3(1+2+3+\ldots+n) \\
& =3 \frac{n(n+1)}{2} \\
& =\frac{3}{2} n^{2}+\frac{3}{2} n
\end{aligned}
$$

Question

Find the sum of \mathbf{n} consecutive terms of the arithmetic sequence 4,8,12,16,...

Answer

$$
\begin{aligned}
4+8+12+\ldots+4 n & =4(1+2+3+\ldots+n) \\
& =4 \frac{n(n+1)}{2} \\
& =2 n^{2}+2 n
\end{aligned}
$$

Question

Find the sum of \mathbf{n} consecutive terms of the arithmetic sequence obtained by adding 1 to the multiples of 4 ?
Answer
Sequence 5, 9, 13, $\ldots,(4 n+1)$
Sum $=5+9+13+\ldots+(4 n+1)$

$$
=4 \times 1+1+4 \times 2+1+4 \times 3+1+\ldots+4 \times n+1
$$

$$
=4(1+2+3+\ldots+n)+(1+1+1+\ldots+1)
$$

$$
=4 \frac{n(n+1)}{2}+1 \times n
$$

$$
=2 n^{2}+2 n+n
$$

$$
=2 n+3 n
$$

Question

The algebraic form of an arithmetic sequence is an $+b$.
find the sum of first n terms?

Answer

Here $x_{n}=\mathbf{a n}+b$ where $\mathbf{a}=$ common difference \& $\mathbf{a + b}=$ first term
Sum of first n terms $=(\mathbf{a} \times 1+b)+(a \times 2+b)+(a \times 3+b)+\ldots+(a \times n+b)$

$$
\begin{aligned}
& =\mathbf{a}(1+2+3+\ldots+\mathbf{n})+(\mathbf{b}+\mathbf{b}+\mathbf{b}+\ldots+\mathbf{b}) \\
& =\mathbf{a} \times \frac{\mathbf{n}(\mathbf{n + 1})}{2}+\mathbf{b n} \\
& =\frac{\mathbf{a n}^{2}}{2}+\frac{\mathbf{a n}}{2}+\mathbf{b n} \\
& =\frac{\mathbf{a}}{2} \mathbf{n}^{2}+\left(\frac{\mathbf{a}}{2}+\mathbf{b}\right) \mathbf{n}
\end{aligned}
$$

From this we get,
Algebraic form of the sum of an arithmetic sequence is $\mathbf{p n}^{\mathbf{2}} \boldsymbol{+} \mathbf{q n}$ where $p=\frac{a}{2}=$ half of common difference and

$$
p+q=\frac{a}{2}+\frac{a}{2}+b=a+b=\text { first term }
$$

Question

The algebraic form of the sum of an arithmetic sequence is $\mathbf{3 n} \mathbf{n}^{\mathbf{2}} \mathbf{+ 4 n}$ Find the algebraic form of the sequence?

Answer

Given sum of first n terms $=3 n^{2}+\mathbf{4 n}$
when $n=1$, sum of first 1 term = first term $=3(1)^{2}+4(1)=3+4=7$
when $n=2$, sum of first 2 terms $=3(2)^{2}+4(2)=12+8=20$
first term + second term $=\mathbf{2 0}$
$7+$ second term $=20$
second term $=20-7=13$
\therefore Common difference $=13-7=6$
Sequence is $7,13,19, \ldots$
Algebraic form of the sequence is 6 n + 1

Question

1
23
$4 \quad 5 \quad 6$
$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$
(i) write the next two lines of the pattern above
(ii) write the first and last numbers of the tenth line
(iii) find the sum of all the numbers in the tenth line

Answer

(i) Next two lines of the above pattern are

$$
11,12,13,14,15
$$

$$
16,17,18,19,20,21
$$

(ii) First line contains 1 number

Second line contains 2 numbers

Third line contains 3 numbers
Continue like this tenth line contains 10 numbers
1
$2 \quad 3=1+2$
$45 \quad 6=1+2+3$
$7 \quad 8 \quad 9 \quad 10=1+2+3+4$
$11121314 \quad 15=1+2+3+4+5$
$\begin{array}{llllll}16 & 17 & 18 & 19 & 20 & 21=1+2+3+4+5+6\end{array}$
From this ,
we get last number in the $10^{\text {th }}$ line $=1+2+3+\ldots+10=55$
first number in the $10^{\text {th }}$ line $=55-9=46$
(iii) Numbers in tenth line are $46,47,48, \ldots, 55$

Sum of all numbers in the $10^{\text {th }}$ line $=$ No.of pairs \times One pair sum

$$
=\frac{10}{2}(46+55)
$$

$=5 \times 101$
$=505$

Question

3
711
$\begin{array}{lll}15 & 19 & 23\end{array}$
$\begin{array}{llll}27 & 31 & 35 & 39\end{array}$
(i) How many numbers will be there in the tenth line
(ii) Last number in the tenth line
(iii) First number in the tenth line
(iv) Sum of all numbers in the tenth line

Answer
(i) Tenth line contains 10 numbers
(ii) Terms triangle

Position triangle

$$
4 \times 2-1=
$$1

$4 \times 2-1=7 \quad 11=4 \times 3-1$ 23$4 \quad 5 \quad 6$

$$
\begin{array}{llll}
7 & 8 & 9 & 10
\end{array}
$$

From above we can see that each number of the given pyramid is obtained by subtracting 1 from the multiples of 4 . using position triangle last number in the tenth line is the $55^{\text {th }}$ term .
Last number in the tenth line $=4 \times 55-1=220-1=219$
(iii) using position triangle first number in the tenth line is the $\mathbf{4 6}^{\text {th }}$ term .
First number in the tenth line $=4 \times 46-1=184-1=183$
(iv) Sum of all numbers in the $10^{\text {th }}$ line $=$ No.of pairs \times One pair sum

$$
\begin{aligned}
& =\frac{10}{2}(183+219) \\
& =5 \times 402 \\
& =2010
\end{aligned}
$$

