Mathematics Online Class X On 14-07-2021

ARITHMETIC SEQUENCE

When we consider some consecutive terms of an arithmetic sequence, if the number of terms is odd, Sum of all terms $=$ Number of terms \times Middle term Also the sum of terms equidistant from the middle term will have equal sum.

SUMS

$1+2=3$
$1+2+3=3 \times 2=6$
$1+2+3+4=2 \times(1+4)=2 \times 5=10$ If number of terms is even,
$1+2+3+4=2 \times(1+4)=2 \times 5={ }^{10}$ Sum $=$ No.of pairs \times One pair sum
$1+2+3+4+5=5 \times 3=15$
$1+2+3+4+5+6=3 \times(1+6)=3 \times 7=21$
$1+2+3+4+5+6+7=7 \times 4=28$
$1+2+3+4+5+6+7+8=4 \times(1+8)=4 \times 9=36$
$1+2+3+4+5+6+7+8+9=9 \times 5=45$
$1+2+3+4+5+6+7+8+9+10=5 \times(1+10)=5 \times 11=55$

Question

Find the sum of first 20 natural numbers

Answer

$1+2+3+4+\ldots+19+20$
Here the number of terms is even,

$$
\begin{aligned}
\text { Sum } & =\text { No.of pairs } \times \text { One pair sum } \\
& =10 \times(1+20)=10 \times 21 \\
& =210
\end{aligned}
$$

Question

Find the sum of first 25 natural numbers
Answer
$1+2+3+4+\ldots+24+25$

Here the number of terms is odd,

$$
\begin{aligned}
\text { Sum } & =\text { Number of terms } \times \text { Middle term } \\
& =25 \times 13 \\
& =325
\end{aligned}
$$

Question

Find the sum of first 50 natural numbers
Answer
$1+2+3+4+\ldots+49+50$
Here the number of terms is even,

$$
\begin{aligned}
\text { Sum } & =\text { No.of pairs } \times \text { One pair sum } \\
& =25 \times(1+50)=25 \times 51 \\
& =1275
\end{aligned}
$$

When we consider first n natural numbers

- If n is even, there are $\frac{n}{2}$ pairs

$$
\therefore \text { sum }=\frac{\mathbf{n}}{2} \times(\mathbf{n}+\mathbf{1})
$$

- If \mathbf{n} is odd, there is a middle term and middle term $=\frac{\mathbf{n + 1}}{2}$

$$
\therefore \operatorname{sum}=n \times \frac{(n+1)}{2}
$$

That is,
The sum of any number of consecutive natural numbers, starting with one, is half the product of the last number and the next natural number.

Question

Find the sum of first $\mathbf{1 0 0}$ natural numbers
Answer

$$
\begin{aligned}
1+2+3+4+\ldots+ & 99+100 \\
= & 100 \times \frac{(100+1)}{2}=50 \times 101=5050
\end{aligned}
$$

Question

Find the sum of first 100 even natural numbers

Answer

$2+4+6+8+\ldots+198+200$

$$
\begin{aligned}
& =2(1+2+3+4+\ldots+99+100) \\
& =2 \times 5050 \\
& =10100
\end{aligned}
$$

Question

Find the sum of first 100 multiples of 3
Answer

$$
\begin{aligned}
3+6+9+12+\ldots & +300 \\
& =3(1+2+3+4+\ldots+99+100) \\
& =3 \times 5050 \\
& =15150
\end{aligned}
$$

Question

Find the sum of first 100 multiples of 5
Answer

$$
\begin{aligned}
5+10+15+20 & +\ldots+500 \\
& =5(1+2+3+4+\ldots+99+100) \\
& =5 \times 5050 \\
& =25250
\end{aligned}
$$

Question

Find the sum of first 100 terms of the arithmetic sequence $6+11+16+\ldots$

Answer

Common difference $=5$
Algebraic form =5 n+1
We have $5+10+15+20+\ldots+500=25250$

$$
\begin{aligned}
6+11+ & 16+21+\ldots+501=(5+1)+(10+1)+(15+1)+\ldots+(500+1) \\
& =(5+10+15+20+\ldots+500)+(1+1+1+\ldots+1) \\
& =25250+100=25350
\end{aligned}
$$

Question

Find the sum of first 100 terms of the arithmetic sequence $4+9+14+\ldots$

Answer

Common difference $=5$
Algebraic form =5 n-1
We have $5+10+15+20+\ldots+500=25250$
$4+9+14+\ldots+499$

$$
\begin{aligned}
& =(5-1)+(10-1)+(15-1)+\ldots+(500-1) \\
& =(5+10+15+20+\ldots+500)-(1+1+1+\ldots+1) \\
& =5 \times \frac{100(100+1)}{2}-100 \\
& =5 \times 5050-100 \\
& =25250-100=25150
\end{aligned}
$$

Question

The algebraic form of an arithmetic sequence is $10 \mathrm{n}-4$.
find the sum of first 20 terms?

Answer

Here $x_{n}=10 n-4$
Sum of first 20 terms $=(10 \times 1-4)+(10 \times 2-4)+(10 \times 3-4)+\ldots+(10 \times 20-4)$

$$
\begin{aligned}
& =10(1+2+3+\ldots+20)-(4+4+4+\ldots+4) \\
& =10 \times \frac{20(20+1)}{2}-4 \times 20 \\
& =10 \times 210-80=2100-80=2020
\end{aligned}
$$

Question

The algebraic form of an arithmetic sequence is an $+\mathbf{b}$.
find the sum of first n terms?

Answer

Here $x_{n}=\mathbf{a n}+\mathbf{b}$
Sum of first n terms $=(\mathbf{a} \times 1+b)+(\mathbf{a} \times 2+b)+(a \times 3+b)+\ldots+(a \times n+b)$

$$
\begin{aligned}
& =\mathbf{a}(\mathbf{1 + 2 + 3 + \ldots + n) + (b + b + b + \ldots + b)} \\
& =\mathbf{a} \times \frac{\mathbf{n}(\mathbf{n + 1})}{2}+\mathbf{b n}
\end{aligned}
$$

Question

Calculate the difference between the sums of the first 20 terms of the arithmetic sequences $2,9,16, \ldots$ and $5,12,19, \ldots$

Answer

Difference between the sums of first 20 terms

$$
\begin{aligned}
& 5+12+19+\ldots 20 \text { terms }- \\
& 2+9+16+\ldots 20 \text { terms }
\end{aligned}
$$

$$
3+3+3+\ldots 20 \text { terms }=3 \times 20=60
$$

Question

What is the difference between the sum of the first 10 terms and the next 10 terms of the arithmetic sequence $7,11,15, \ldots$?
Answer
Given sequence is $7,11,15, \ldots$
common difference $=\mathbf{d}=4$
Difference between the sums of the first 10 terms and the next 10 terms

$$
\frac{1^{11^{\text {th }}+12^{\text {th }}+13^{\text {th }}+\ldots+20^{\text {th }}}-}{1^{\text {st }}+2^{\text {nd }}+3^{\text {rd }}+\cdots+10^{\text {th }}}+10 \mathrm{Cl}+10 \mathrm{~d}+10 \mathrm{~d}+\ldots+10 \mathrm{~d} \quad=10 \times 10 \mathrm{~d}=\mathbf{1 0}^{2} \mathrm{~d}=100 \times 4=400
$$

Question

The common difference of an arithmetic sequence is 6 . The sum of first 20 terms is $\mathbf{1 3 0 0}$.Write the sequence?

Answer

Given common difference $=6$
\therefore Algebraic form $x_{\mathbf{n}}=\mathbf{6 n + b}$
sum of first n terms $=6 \times \frac{n(n+1)}{2}+b \times n$
sum of first 20 terms $=6 \times \frac{20(20+1)}{2}+b \times 20=1300$

$$
\begin{aligned}
6 \times 210+20 b & =1300 \\
1260+20 b & =1300 \\
20 b & =1300-1260=40 \\
b & =\frac{40}{20}=2
\end{aligned}
$$

\therefore Algebraic form of the sequence is $\mathbf{6 n}+2$
Sequence is $8,14,20, \ldots$

ASSIGNMENT

The common difference of an arithmetic sequence is 6 . The sum of first $\mathbf{2 0}$ terms is $\mathbf{1 2 0 0}$.Write the sequence?

