Mathematics Online Class X On 12-07-2021

ARITHMETIC SEQUENCE

Question

Find the algebraic form of the sequence $5,9,13, \ldots$

Answer

Given sequence is $\mathbf{5 , 9 , 1 3 , \ldots}$ common difference $=4$

$$
5,9,13,17, \ldots
$$

Multiples of 4 4, 8, 12, 16, ..
Here we can see that all the terms of the sequence are 1 more than the multiples of 4 .
\therefore Algebraic form of the sequence is $4 n+1$

- Considering consecutive 3 natural numbers, we have

$$
\begin{aligned}
& 1+2+3=6=3 \times 2 \\
& 2+3+4=9=3 \times 3 \\
& 3+4+5=12=3 \times 4
\end{aligned}
$$

We noted that the sum of any three consecutive natural numbers is thrice the middle number.
using algebra: in three consecutive natural numbers, if we take the middle one as n, then the first number is $n-1$ and the last one is $n+1$, so that the sum is $(n-1)+n+(n+1)=3 n$

- Considering consecutive 5 natural numbers, we have $1+2+3+4+5=15=5 \times 3$
using algebra: in five consecutive natural numbers,
if we take the middle one as n
Numbers are taken as $(n-2),(n-1), n,(n+1),(n+2)$
\therefore Sum $=(n-2)+(n-1)+n+(n+1)+(n+2)=2 n+2 n+n=5 n$
- Considering consecutive 7 natural numbers, we have $1+2+3+4+5+6+7=28=7 \times 4$
using algebra: in seven consecutive natural numbers, if we take the middle one as n. Numbers are taken as ($\mathrm{n}-3$) , $(\mathrm{n}-2),(\mathrm{n}-1), \mathrm{n},(\mathrm{n}+1),(\mathrm{n}+2),(\mathrm{n}+3)$
$\begin{aligned} \therefore \text { Sum } & =(n-3)+(n-2)+(n-1)+n+(n+1)+(n+2)+(n+3) \\ & =2 n+2 n+2 n+n=7 n\end{aligned}$
- If we take 3 consecutive even numbers,
$2+4+6=12=3 \times 4$
$\mathbf{8 + 1 0 + 1 2 = 3 0 = 3 \times 1 0}$
using algebra: in three consecutive even natural numbers , if we take the middle one as x, then the first even number is $x-2$ and the last one is $x+2$, so that the sum is $(x-2)+x+(x+2)=3 x$
- If we take 3 consecutive odd numbers, $1+3+5=9=3 \times 3$
$7+9+11=27=3 \times 9$
using algebra: in three consecutive odd natural numbers, If we take the middle one as x, then the first odd number is $x-2$ and the last one is $x+2$, so that the sum is $(x-2)+x+(x+2)=3 x$
- If we take 3 consecutive multiples of 3 .That is $3,6,9$

$$
\text { Sum }=3+6+9=18=3 \times 6
$$

using algebra: in three consecutive multiples of 3 ,
If we take the middle one as x, then the first multiples of 3 is $x-3$ and the last one is $x+3$, so that the sum is $(x-3)+x+(x+3)=3 x$

- If we consider the sequence obtained by adding 1 to the multiples of 4 That is $5,9,13, \ldots$
If we take $\mathbf{3}$ consecutive terms $5,9,13$

$$
\text { Sum }=5+9+13=27=3 \times 9
$$

using algebra: if we take the middle term as x, then the first term is $x-4$ and the last term is $x+4$, so that the sum is $(x-4)+x+(x+4)=3 x$

- If we consider three consecutive terms of an arithmetic sequence and let the common difference be y and the the middle term as x
the first number is $x-y$ and the third one is $x+y$.
Sum $=x-y+x+x+y=3 x$
- If we consider five consecutive terms of an arithmetic sequence and let the common difference be y and the the middle term as x Then terms are $x-2 y, x-y, x, x+y, x+2 y$ Sum $=x-2 y+x-y+x+x+y+x+2 y=5 x$

From above we get,
If we consider some odd number of consecutive terms of an arithmetic sequence, Sum $=$ Number of terms \times Middle term

- If we take 11 consecutive terms of an arithmetic sequence $1,2,3,4,5,6,7,8,9,10,11$
Here the middle term is the $6^{\text {th }}$ term .
Now take the sum of terms equidistant from the middle terms we have the sum as

$$
1^{\text {st }}+11^{\text {th }}=2^{\text {nd }}+10^{\text {th }}=3^{\text {rd }}+9^{\text {th }}=4^{\text {th }}+8^{\text {th }}=5^{\text {th }}+7^{\text {th }}
$$

From above we get, If we consider some odd number of consecutive terms of an arithmetic sequence, there is a middle term and the sum of terms equidistant from the middle term will have equal sum.

Question

The sum of five consecutive terms of an arithmetic sequence is 500 . Can you write the sequence?

Answer

Given sum $=500$
Number of terms = $5 \quad$ (odd number of terms)
We have Sum $=$ Number of terms \times Middle term

$$
500=5 \times \text { Middle term }
$$

\therefore Middle term $=\frac{500}{5}=100$
If $d=0$ sequence is $100,100,100,100,100$
If $d=1$ sequence is $98,99,100,101,102$
If $\mathrm{d}=2$ sequence is $96,98,100,102,104$
If $d=5$ sequence is $90,95,100,105,110$

Question

The sum of five consecutive terms of an arithmetic sequence is 500 and first term is 10 . Can you write the sequence?
Answer
Given First term $=10$, sum $=500$ and Number of terms $=5$ (odd)
We have Sum $=$ Number of terms \times Middle term

$$
500=5 \times \text { Middle term }
$$

\therefore Middle term $=\frac{500}{5}=100$

$$
10,{ }_{_}, 100, \ldots,-
$$

Common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{100-10}{3-1}=\frac{90}{2}=45$
Sequence is $10,55,100,145,190$

Now consider even number of terms
Consider First four terms of the arithmetic sequence $1,3,5,7, \ldots$; 8 -
Sum of first four terms $=1+3+5+7=8+8=16$
Consider ,
Six consecutive terms of the arithmetic sequence $1,3,5,7, \ldots$
Sum of six consecutive terms $\quad=\mathbf{1}+\mathbf{3}+\mathbf{5}+\mathbf{7}+\mathbf{9}+\mathbf{1 1}$

$$
=12+12+12=36
$$

If the first term of an arithmetic sequence is x and common difference is y, then sequence is $x, x+y, x+2 y, x+3 y, \ldots$
Here $1^{\text {st }}$ term $+4^{\text {th }}$ term $=x+x+3 y=2 x+3 y$
$2^{\text {nd }}$ term $+3^{\text {rd }}$ term $=x+y+x+2 y=2 x+3 y$
$\therefore \quad 1^{\text {st }}$ term $+4^{\text {th }}$ term $=2^{\text {nd }}$ term $+3^{\text {rd }}$ term

We have the algebraic form of an arithmetic sequence is of the
form $x_{n}=\mathbf{a n}+\mathbf{b}$
$1^{\text {st }}$ term $+10^{\text {th }}$ term $=\mathbf{a}+\mathrm{b}+10 \mathrm{a}+\mathrm{b}=11 \mathrm{a}+2 \mathrm{~b}$
$2^{\text {nd }}$ term $+9^{\text {th }}$ term $=2 a+b+9 a+b=11 a+2 b$
$3^{\text {rd }}$ term $+8^{\text {th }}$ term $=3 a+b+8 a+b=11 a+2 b$
$4^{\text {th }}$ term $+7^{\text {th }}$ term $=4 a+b+7 a+b=11 a+2 b$
$5^{\text {th }}$ term $+6^{\text {th }}$ term $=5 a+b+6 a+b=11 a+2 b$

From this we get,
In an arithmetic sequence, if the sums of positions of two pairs of terms are equal, then the sums of pairs of the terms are also equal.

Question

The sum of fifth term and sixteenth term of an arithmetic sequence is 50 . Find the sum of first 20 terms?

Answer

Given $5^{\text {th }}$ term $+16^{\text {th }}$ term $=50$
We have to find the sum of first 20 terms. By pairing the terms we get 10 pairs with equal sums with equal sums of positions . $1^{\text {st }}$ term $+20^{\text {th }}$ term $=2^{\text {nd }}$ term $+19^{\text {th }}$ term $=3^{\text {rd }}$ term $+18^{\text {th }}$ term

$$
=4^{\text {th }} \text { term }+17^{\text {th }} \text { term }=5 \text { th term }+16 \text { th term }=\ldots
$$

Sum $=$ No.of pairs \times One pair sum $=10 \times 50=500$

Question

The sum of first 5 terms of an arithmetic sequence is 100 . The sum of first 10 terms of an arithmetic sequence is 250 . Find the sequence Answer

Given sum of first 5 terms $=\mathbf{1 0 0}$
We have Sum $=$ Number of terms \times Middle term
$100=5 \times$ Third term

$$
\therefore \text { Third term }=\frac{100}{5}=20
$$

Sum of first ten terms $=\mathbf{2 5 0}$
10 terms can be paired as 5 pairs with equal sums with equal sums of positions. They are $1^{\text {st }}$ term $+10^{\text {th }}$ term, $2^{\text {nd }}$ term $+9^{\text {th }}$ term, $3^{\text {rd }}$ term $+8^{\text {th }}$ term , $4^{\text {th }}$ term $+7^{\text {th }}$ term, $5^{\text {th }}$ term $+6^{\text {th }}$ term
We have Sum = No.of pairs \times One pair sum

$$
\begin{aligned}
& 250=5 \times\left(3^{\text {rd }} \text { term }+8^{\text {th }} \text { term }\right) \\
& 3^{\text {rd }} \text { term }+8^{\text {th }} \text { term }=\frac{250}{5}=50 \\
& \therefore 8^{\text {th }} \text { term }=50-20=30
\end{aligned}
$$

Common difference $=\frac{\text { Term difference }}{\text { Positiondifference }}=\frac{30-20}{8-3}=\frac{10}{5}=2$
$1^{\text {st }}$ term $=3^{\text {rd }}$ term - 2 Common difference $=20-2 \times 2=20-4=16$
\therefore Required sequence is $16,18,20,22,24,26,28,30,32,34$

