Mathematics Online Class X On 08-07-2021

ARITHMETIC SEQUENCE Click

In the previous class we studied

arithmetic sequence.

The algebraic form of an arithmetic sequence is of

the form $\mathbf{X}_n = \mathbf{an} + \mathbf{b}$, where a and b are fixed numbers and a is the common difference; conversely, any sequence of this form is an

The algebraic form of an arithmetic sequence can also be written in the form $x_n = dn + (f-d)$

where f is the first term and d is the common difference.

Question

The algebraic form an arithmetic sequence is 5n + 3. Find the fist term and common difference.

Answer

Algebraic form = $\alpha_n = 5n + 3$

First term = $\chi_1 = 5 \times 1 + 3 = 8$

Second term = $X_2 = 5 \times 2 + 3 = 13$

Third term = $X_3 = 5 \times 3 + 3 = 18$

: Arithmetic sequence is 8, 13, 18, ...

Common difference $d = \begin{bmatrix} 13 - 8 \\ 18 - 13 \\ \cdots \end{bmatrix} = 5$

Question

In the arithmetic sequence $\frac{1}{2}$, $\frac{5}{6}$, $\frac{7}{6}$, $\frac{9}{6}$,...

- i) Find the algebraic form of the sequence.
- ii)Prove that this sequence contains no natural numbers.

Answer

Common difference d =
$$x_3 - x_2 = \frac{7}{6} - \frac{5}{6} = \frac{2}{6} = \frac{1}{3}$$

Algebraic form = $x_n = an + b$ Where a = d and b = f - d

$$\mathbf{a} = \mathbf{d} = \frac{1}{3}$$
 $\mathbf{b} = \mathbf{f} - \mathbf{d} = \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6}$

Algebraic form =
$$x_n = \frac{1}{3} n + \frac{1}{6} = \frac{2}{6} n + \frac{1}{6} = \frac{(2n+1)}{6}$$

In this sequence each term contains numerator as an odd number and denominator as an even number.

Since odd numbers cannot have 2 as a factor,

$$\frac{Numerator}{Denominator} = \frac{Odd number}{Even number} cannot be a natural number.$$

∴ we get, the sequence contains no natural numbers.

Question

In the arithmetic sequence $\frac{1}{7}$, $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$,...

- i) Find the algebraic form of the sequence.
- ii)Prove that this sequence contains all natural numbers.

Answer

Common difference
$$d = x_2 - x_1 = \frac{2}{7} - \frac{1}{7} = \frac{1}{7}$$

Algebraic form = $I_n = an + b$ Where a = d and b = f - d

$$a = d = \frac{1}{7}$$
 $b = f - d = \frac{1}{7} - \frac{1}{7} = 0$

Algebraic form =
$$x_n = \frac{1}{7} n + 0 = \frac{1}{7} n$$

When n = 7, 14, 21, 28, 35, ... we get all natural numbers as terms of this sequence.

Question

The 8^{th} term of an arithmetic sequence is 12 and 12^{th} term is 8. What is the algebraic expression for this sequence? Find the 20^{th} term?

Answer

$$8^{th}$$
 term = X_{R} = 12

$$12^{th} term = \mathfrak{X}_{12} = 8$$

We have Common difference =
$$\frac{Term difference}{Position difference}$$
$$d = \frac{x_{12} - x_8}{12 - 8} = \frac{8 - 12}{12 - 8} = \frac{4}{4}$$

$$f = X_1 = X_2 - 7d = 12 - 7 \times -1 = 12 + 7 = 19$$

Algebraic form = I_n = an + b Where a = d and b = f - d

$$a = d = -1$$

$$b = f - d = 19 - (-1) = 19 + 1 = 20$$

Algebraic form = $\chi_n = -1n + 20 = 20$

$$20^{\text{th}} \text{ term} = 20 - 20 = 0$$

NOTE

If mth term of an arithmetic sequence is n and nth term is m. Then

- i) Common difference d = -1
- ii) $(\mathbf{m} + \mathbf{n})^{\text{th}} \mathbf{term} = \mathbf{x}_{(\mathbf{m} + \mathbf{n})} = 0$

Question

Prove that the squares of all the terms of the arithmetic sequence 4, 7, 10, ...belong to the sequence.

Answer

Given arithmetic sequence is 4, 7, 10, ...

Common difference $d = X_2 - X_1 = 7 - 4 = 3$

Here d = 3 and each term divided by 3 gives remainder 1.

Now squares of the terms are $4^2 = 16$, $7^2 = 49$, $10^2 = 100$, ...

Here the squares of the terms of the sequence will also give remainder 1 when divided by 3.

From this we get the squares of all the terms of the arithmetic sequence $4, 7, 10, \ldots$ belongs to the sequence.

OR

Algebraic form =
$$x_n$$
 = an + b Where a = d and b = f - d
a = d = 3
b = f - d = 4 - 3 = 1

Algebraic form = $I_n = 3n + 1$

That is each term of the sequence is 1 added to a multiple of 3.

Now $\chi_n^2 = (3n+1)^2 = 9n^2 + 6n + 1 = 3(3n^2 + 2n) + 1$ is also 1 added to a multiple of 3.

From this we get the squares of all the terms of the arithmetic sequence 4, 7, 10, ...belongs to the sequence.