Notes of Online class

Worksheet 12

- 1) Complete the addition :
 - a) Calculate the sum of counting numbers from $1 \mbox{ to } 10$
 - b) Calculate the sum of counting numbers from $1 {\rm to} \ 100$
 - c) Calculate the sum of the 48 terms of the sequence $3, 4, 5 \cdots$ obtained by adding 1 repeatedly
 - d) Calcualte the sum of counting numbers from $10 {\rm to} \ 20$
- 2) If a = a + 1, a = a 1
 - a) Find 1'-'1
 - b) Find 2'-'2
 - c) Find $(1'-1) + (2'-2) + (3'-3) + \dots + (100'-100)$
 - d) Find 1'+2'+3' $\cdots 100'$
- 3) The sum of first *n* counting numbers is $(n+1) \times \frac{n}{2}$. Use this to complete the following calculations
 - a) Consider the sequence of the multiples of 3 $3, 6, 9 \cdots$. Which is the largest two digit term of this sequence
 - b) Calculate the summof all terms of this sequence below 100
 - c) Find the sum of all even numbers below $100\,$
 - d) Calculate the sum of all multiples of 7 below 100
- 4) Consider the sequence $1, 2, 3, 4 \cdots$
 - a) Make pairs as $(1,2), (3,4), (5,6) \cdots$, find the sum of numbers in each pair and write the sums as a sequence
 - b) Is this an arithmetic sequence ?why?
 - c) Write the algebraic form of this sequence
 - d) What is the common difference of the sequence obtained by adding three numbers in the group
 - e) What is the difference between the sum of the first n natural numbers and sum of next n natural numbers.
- 5) Nasrin has drawn a circle in her note book and marked 11 fine dots on the circle.She joined first dot to all other 10 dots to make chords.
 - a) How many chords can be drawn by joining second dot to the remaining dots in the same circle.
 - b) How many chords can be drawn using the third dot?
 - c) How many chords can be drawn using the fourth dot?
 - d) Find the total number of chords that can be drawn in this circle joining all 11 dots.

Answers and Explanation

- 1) a) Sum= $(n+1) \times \frac{n}{2} = (10+1) \times \frac{10}{2} = 55$
 - b) Sum= $(100 + 1) \times \frac{100}{2} = 5050$
 - c) Sum= $(1 + 2 + 3 + 4 \cdots 50) (1 + 2) = (50 + 1) \times \frac{50}{2} 3 = 1272$
 - d) Sum of the terms from 10th term to 20th term = Sum from 1st term to 20th term sum from 1st to 9th term
 - $= (20+1) \times \frac{20}{2} (9+1) \times \frac{9}{2} = 165$

2) a)
$$1'-'1 = (1+1) - (1-1) = 2$$

b) 2'-2' = (2+1) - (2-1) = 2

c) $2 \times 100 = 200$

d) $1'+2'+3'\cdots 100'=2+3+4+\cdots 101=1+2+3+\cdots 100+100=5150$. 3) **a)** 99 b) $3 + 6 + 9 + \dots 99 = 3(1 + 2 + 3 + \dots 33) = 3 \times (33 + 1) \times \frac{33}{2} = 1683$ c) $2+4+6+\cdots 98 = 2(1+2+3+\cdots 49) = 2 \times (49+1) \times \frac{49}{2} = 2450$ d) $7 + 14 + 21 + \dots 98 = 7(1 + 2 + 3 \dots 14) = 7 \times (14 + 1) \times \frac{14}{2} = 735$ 4) a) $3, 7, 11 \cdots$ b) Common difference 4. This is an arithmetic sequence c) $x_n = dn + (f - d) = 4n - 1$ d) $3^2 = 9$ e) n^2 **a)** 9 5) **b)** 8 c) 7 d) $1 + 2 + 3 + \cdots 10 = 55$

 $^1 \text{Compiler}$: John P.A, sjpuzzles@gmail.com , jpavpz@gmail.com | 9847307721

1