Notes of Online class

Worksheet 12

1) Complete the addition :
a) Calculate the sum of counting numbers from 1 to 10
b) Calculate the sum of counting numbers from 1to 100
c) Calculate the sum of the 48 terms of the sequence $3,4,5 \cdots$ obtained by adding 1 repeatedly
d) Calcualte the sum of counting numbers from10to 20
2) If $a,=a+1,{ }^{\prime} a=a-1$
a) Find 1 '- 1
b) Find 2 - ${ }^{\prime} 2$
c) Find $\left(1^{\prime}-{ }^{\prime} 1\right)+\left(2^{\prime}-{ }^{\prime} 2\right)+\left(3^{\prime}-{ }^{\prime} 3\right)+\cdots+\left(100^{\prime}-{ }^{\prime} 100\right)$
d) Find $1^{\prime}+2^{\prime}+3^{\prime} \cdots 100^{\prime}$
3) The sum of first n counting numbers is $(n+1) \times \frac{n}{2}$. Use this to complete the following calculations
a) Consider the sequence of the multiples of 3
$3,6,9 \cdots$. Which is the largest two digit term of this sequence
b) Calculate the summof all terms of this sequence below 100
c) Find the sum of all even numbers below 100
d) Calculate the sum of all multiples of 7 below 100
4) Consider the sequence $1,2,3,4 \cdots$
a) Make pairs as $(1,2),(3,4),(5,6) \cdots$, find the sum of numbers in each pair and write the sums as a sequence
b) Is this an arithmetic sequence ?why?
c) Write the algebraic form of this sequence
d) What is the common difference of the sequence obtained by adding three numbers in the group
e) What is the difference between the sum of the first n natural numbers and sum of next n natural numbers.
5) Nasrin has drawn a circle in her note book and marked 11 fine dots on the circle.She joined first dot to all other 10 dots to make chords.
a) How many chords can be drawn by joining second dot to the remaining dots in the same circle.
b) How many chords can be drawn using the third dot?
c) How many chords can be drawn using the fourth dot?
d) Find the total number of chords that can be drawn in this circle joining all 11 dots.

Answers and Explanation

1) a) $\operatorname{Sum}=(n+1) \times \frac{n}{2}=(10+1) \times \frac{10}{2}=55$
b) Sum $=(100+1) \times \frac{100}{2}=5050$
c) Sum $=(1+2+3+4 \cdots 50)-(1+2)=(50+1) \times \frac{50}{2}-3=1272$
d) Sum of the terms from 10th term to 20 th term $=$ Sum from 1st term to 20 th term - sum from 1st to 9 th term

$$
=(20+1) \times \frac{20}{2}-(9+1) \times \frac{9}{2}=165
$$

2)

a) $1^{\prime}-1=(1+1)-(1-1)=2$
b) $2,-$ ' $2=(2+1)-(2-1)=2$
c) $2 \times 100=200$
d) $1^{\prime}+2^{\prime}+3^{\prime} \cdots 100^{\prime}=2+3+4+\cdots 101=1+2+3+\cdots 100+100=5150$.
3) a) 99
b) $3+6+9+\cdots 99=3(1+2+3+\cdots 33)=3 \times(33+1) \times \frac{33}{2}=1683$
c) $2+4+6+\cdots 98)=2(1+2+3+\cdots 49)=2 \times(49+1) \times \frac{49}{2}=2450$
d) $7+14+21+\cdots 98=7(1+2+3 \cdots 14)=7 \times(14+1) \times \frac{14}{2}=735$
4) a) $3,7,11 \ldots$
b) Common difference 4 .This is an arithmetic sequence
c) $x_{n}=d n+(f-d)=4 n-1$
d) $3^{2}=9$
e) n^{2}
5) a) 9
b) 8
c) 7
d) $1+2+3+\cdots 10=55$

