ONLINE MATHS CLASS - X - 09 (08 / $07 / 2021$)

1. ARITHMETIC SEQUENCE - CLASS 7

What did we study in the last class?

* If the first term of an arithmetic sequence is f and its common difference is d, then its $n^{\text {th }}$ term is $d n+f-d$.

The algebraic form of any arithmetic sequence is of the form $a n+\boldsymbol{b}$, where \boldsymbol{a} and \boldsymbol{b} are fixed numbers. \boldsymbol{a} is the common difference.
$\star a=d \quad, b=f-d$

Activity 1

Each term of an arithmetic sequence got by multiplying the position number by the common difference and adding a fixed number. That is algebraic form of any arithmetic sequence is of the form $x_{n}=\boldsymbol{a} n+\boldsymbol{b}$.
(NB: The $\mathrm{n}^{\text {th }}$ term of a sequence is also called its algebraic form .)
On the other hand, is any sequence $x_{n}=\boldsymbol{a} n+\boldsymbol{b}$, an arithmetic sequence ?
Any two consecutive terms of this sequence are of the form $a n+b$ and $a(n+1)+b$.
Their difference is, $\quad a(n+1)+b-(a n+b)=a n+a+b-(a n+b)$

$$
\begin{aligned}
& =a n+a+b-a n-b \\
& =a
\end{aligned}
$$

That is , the difference between any two consecutive terms is the same number a and so it is an arithmetic sequence .

Finding

Any sequence with the algebraic form $x_{n}=a n+\boldsymbol{b}$, is an arithmetic sequence

Activity 2

The algebraic form of a sequence is $5 n+3$. Check whether it is an arithmetic sequence .
Answer

$$
\begin{aligned}
& x_{n}=5 n+3 \\
& x_{1}=5 \times 1+3=5+3=8 \\
& x_{2}=5 \times 2+3=10+3=13 \\
& x_{3}=5 \times 3+3=15+3=18 \\
& x_{4}=5 \times 4+3=20+3=23 \\
& x_{5}=5 \times 5+3=25+3=28
\end{aligned}
$$

Sequence $=8,13,18,23,28, \ldots$
Here the sequence start with 8 and adding 5 repeatedly. So it is an arithmetic sequence

Activity 3

Write the algebraic form of the arithmetic sequence $\frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{9}{6}, \ldots$

Answer

$$
\begin{aligned}
d & =\frac{7}{6}-\frac{5}{6}=\frac{2}{6} \\
x_{n} & =d n+f-d \\
& =\frac{2}{6} \times n+\frac{1}{2}-\frac{2}{6} \\
& =\frac{2}{6} n+\frac{3}{6}-\frac{2}{6} \\
& =\frac{2}{6} n+\frac{1}{6} \quad=\frac{2 n+1}{6}
\end{aligned}
$$

Activity 4

Prove that the arithmetic sequence $\frac{1}{2}, \frac{5}{6}, \frac{7}{6}, \frac{9}{6}, \ldots$ contains no natural numbers .

Answer

$$
d=\frac{7}{6}-\frac{5}{6}=\frac{2}{6}
$$

Algebraic form of the sequence $=d n+f-d$

$$
=\frac{2}{6} \times n+\frac{1}{2}-\frac{2}{6}
$$

$$
=\frac{2}{6} n+\frac{3}{6}-\frac{2}{6}
$$

$$
\left[\frac{1}{2}=\frac{3}{6}\right]
$$

$$
=\frac{2}{6} n+\frac{1}{6} \quad=\frac{2 n+1}{6}
$$

Here the numerator of the terms of this sequence are odd numbers . (odd numbers are got by adding 1 to the multiples of 2) and the denominator 6 is an even number .

Since all the multiples of 6 are even, this sequence does not contain any natural number .

Activity 5

Prove that the arithmetic sequence $\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \ldots$ contains all natural numbers .

Answer

$$
d=\frac{2}{7}-\frac{1}{7}=\frac{1}{7}
$$

Algebraic form of the sequence $=d n+f-d$

$$
=\frac{1}{7} \times n+\frac{1}{7}-\frac{1}{7}=\frac{1}{7} n+0=\frac{n}{7}
$$

Here the numerator of the terms of this sequence are consecutive natural numbers. So the multiples of the denominator 7 come as the numerator of the terms . So this sequence contains all natural numbers .

Activity 6

Eighth term of an arithmetic sequence is 12 and its $12^{\text {th }}$ term is 8 . Write the algebraic form of this sequence ?

Answer

Common difference $=\frac{\text { Term difference }}{\text { Position difference }}=\frac{x_{12}-x_{8}}{12-8}=\frac{8-12}{4}=\frac{-4}{4}=-1$

$$
\begin{aligned}
\text { First term } & =x_{8}-7 d=12-7 \times-1=12+7=19 \\
& \begin{aligned}
x_{n} & =d n+f-d \\
& =-1 \times n+19-(-1) \\
& =-n+19+1 \\
& =-n+20
\end{aligned}
\end{aligned}
$$

NOTE :
What is the $20^{\text {th }}$ term of the sequence taken in the above activity?

$$
\begin{aligned}
& x_{n}=-n+20 \\
& x_{20}=-20+20=0
\end{aligned}
$$

(We may write $\quad x_{n}=-n+20$ as $x_{n}=20-n \quad$)

Activity 7

Prove that the squares of all the terms of the arithmetic sequence $4,7,10,13, \ldots$ belong to the sequence .

Answer

$$
\begin{aligned}
d & =7-4=3 \\
x_{n} & =d n+f-d \\
& =3 \times n+4-3 \\
& =3 n+1 \\
\left(x_{n}\right)^{2} & =(3 n+1)^{2} \quad \quad\left[(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\
& =(3 n)^{2}+1^{2}+2 \times 3 n \times 1 \\
& =9 n^{2}+1+6 n \\
\left(x_{n}\right)^{2}-4 & =9 n^{2}+1+6 n-4 \\
& =9 n^{2}+6 n+1-4 \\
& =9 n^{2}+6 n-3 \\
& =3 \times 3 n^{2}+3 \times 2 n-3 \times 1 \\
& =3\left(3 n^{2}+2 n-1\right)
\end{aligned}
$$

Here the difference between $\left(x_{n}\right)^{2}$ and 4 is divisible by the common difference .
(Difference is the multiple of the common difference). So $\left(x_{n}\right)^{2}$ is a term of this sequence That is , the squares of all the terms of this sequence belong to it .

Findings

If the algebraic form an arithmetic sequence is given, we can form the sequence or find any term .
$>$ If an arithmetic sequence or any two terms of this sequence are given, we can find its algebraic form .

