1. If n is a non negative integer, then anxn $+\ldots+$ a1 $\mathrm{x}+$ ao is a
(a) polynomial of degree 2
(b) polynomial of degree o
(c) polynomial of degree 3
(d) polynomial of degree n

Answer: (d) polynomial of degree n
2. What are the two consecutive even integers whose squares have sum 340 ?
(a) 12 and 10
(b) -12 and -14
(c) 12 and 14
(d) Both (b) and (c)

Answer: (d) Both (b) and (c)
3. The length of a hypotenuse of a right triangle exceeds the length of its base by 2 cm and exceeds twice the length of the altitude by 1 cm . Find the length of each side of the triangle (in cm) :
(a) $6,8,10$
(b) $7,24,25$
(c) $8,15,17$
(d) $7,40,41$

Answer: (c) 8, 15, 17
4. The roots of $x 2-8 x+12=0$, are
(a) $x=0$
(b) no real roots
(c) real and unequal
(d) real and equal

Answer: (c) real and unequal
5. Which of the following equations has the sum of its roots as 3 ?
(a) $3 x 2-3 x+3=0$
(b) $2 \times 2-3 x+6=0$
(c) $-x 2+3 x-3=0$
(d) $x 2+5 x+6=0$

Answer: (c) $-x 2+3 x-3=0$
6. If the equation $(3 \mathrm{x}) 2+(27 \times 31 / \mathrm{k}-15) \mathrm{x}+4=\mathrm{o}$ has equal roots, then $\mathrm{k}=$
(a) -2
(b) $-1 / 2$
(c) $1 / 2$
(d) o

Answer: (b) $-1 / 2$
7. The solution of $5 \mathrm{zz}=3 \mathrm{z}$ is
(a) $0,3 / 5$
(b) $0,-3 / 5$
(c) $3 / 5$
(d) o

Answer: (a) o, 3/5
8. Determine k such that the quadratic equation $\mathrm{x} 2+7(3+2 \mathrm{k})-2 \mathrm{x}(1+3 \mathrm{k})=\mathrm{o}$ has equal roots :
(a) 2,7
(b) 7,5
(c) $2,-10 / 9$
(d) None of these

Answer: (c) 2, -10/9
9. The condition for equation $\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}=\mathrm{o}$ to be quadratic is
(a) $\mathrm{a}<\mathrm{o}$
(b) $a \neq 0$
(c) $\mathrm{a} \neq \mathrm{o}, \mathrm{b} \neq \mathrm{o}$
(d) $\mathrm{a}>\mathrm{o}$

Answer: (b) a $=\mathrm{o}$
10. Which of the following equations has 2 as a root?
(a) $\mathrm{x} 2-4 \mathrm{x}+5=0$
(b) $\mathrm{x} 2+3 \mathrm{x}-12=0$
(c) $2 \times 2-7 x+6=0$
(d) $3 \times 2-6 x-2=0$

Answer: (c) $2 \times 2-7 x+6=0$
11. Find the two consecutive odd positive integers, sum of whose square is 290
(a) 15,17
(b) 9,11
(c) 13,15
(d) 11,13

Answer: (d) 11, 13
12. If the area of a rectangle is 24 m 2 and its perimeter is 20 m , the equation to find its length and breadth would be:
(a) $\mathrm{x} 2-10 \mathrm{x}+24=0$
(b) $x 2+12 x+24=0$
(c) $\mathrm{x} 2-10 \mathrm{x}-24=0$
(d) $\mathrm{x} 2+10 \mathrm{x}+28=0$

Answer: (a) $\mathrm{x} 2-10 \mathrm{x}+24=0$
13. The equation $\mathrm{x} 2-\mathrm{px}+\mathrm{q}=\mathrm{op}, \mathrm{q} \varepsilon \mathrm{R}$ has no real roots if :
(a) $\mathrm{p} 2>4 \mathrm{q}$
(b) $\mathrm{p} 2<4 \mathrm{q}$
(c) $\mathrm{p}^{2}=4 \mathrm{q}$
(d) None of these

Answer: (b) p2 < 4q
14. Write the general form of a quadratic polynomial
(a) ax2 + bx + c where a, b and c are real numbers
(b) $a x 2+b x+c=0$
(c) $\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}$ where a, b and c are real numbers and a is not equal to zero.
(d) $a x 2+b x+c$ or $b x+a x 2+c$ or $c+b x+a x 2$

Answer: (c) ax2 $+\mathrm{bx}+\mathrm{c}$ where a, b and c are real numbers and a is not equal to zero.
15. Which of the following quadratic expression can be expressed as a product of real linear factors?
(a) $x 2-2 x+3$
(b) $3 \times 2-\sqrt{2} x-\sqrt{3}$
(c) $\sqrt{2} \times 2-\sqrt{5} x+3$
(d) None of these

Answer: (b) $3 \times 2-\sqrt{2 x}-\sqrt{ } 3$
16. The two positive numbers differ by 5 and square of their sum is 169 are
(a) 2,4
(b) 5,6
(c) 4,9
(d) 3,7

Answer: (c) 4,9
17. -3 is a root of the quadratic equation $2 x 2+p x-15=0$. For what value of q, the equation $p(x 2+x)+q=0$ has equal roots?
(a) $1 / 4$
(b) 2
(c) 14
(d) $1 / 2$

Answer: (a) $1 / 4$
18. Comment on the nature of the roots of the equation $7 \mathrm{x}-3 \mathrm{x} 2-2=0$
(a) Real and distinct roots
(b) Real and equal roots
(c) Imaginary roots
(d) None of the these

Answer: (a) Real and distinct roots
19. If $\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}, \mathrm{a} \neq \mathrm{o}$ is factorizable into product of two linear factors, then roots of $\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}=\mathrm{o}$ can be found by equating each factor to
(a) 2
(b) -1
(c) o
(d) 1

Answer: (c) o
20. The length of the plot in meters is 1 more than twice its breadth and the area of a rectangle plot is 528 m 2 . Which of the following quadratic equations represents the given situation:
(a) $x 2+2 x-528=0$
(b) $2 \times 2+x-528=0$
(c) $2 \times 2+x+528=0$
(d) $x 2+x-528=0$

Answer: (b) $2 \times 2+x-528=0$
21. The real values of a for which the quadratic equation $2 \times 2-(a 3+8 a-1) x+a 2-4 a=0$ possesses roots of opposite signs are given by :
(a) $a>6$
(b) $\mathrm{a}>9$
(c) o $<$ a <4
(d) $\mathrm{a}<\mathrm{o}$

Answer: (c) o $<\mathrm{a}<4$
22. Discriminant of the equation $-3 \times 2+2 x-8=0$ is
(a) -92
(b) -29
(c) 39
(d) 49

Answer: (a) -92
23. Which of the following equations has 2 as a root?
(a) $2 \mathrm{x} 2-7 \mathrm{x}+6=0$
(b) $\mathrm{x} 2+3 \mathrm{x}-12=0$
(c) $3 \times 2-6 x-2=0$
(d) $x 2-4 x+5=0$

Answer: (a) $2 \times 2-7 x+6=0$
24. The sum of areas of two squares is 468 m 2 . If the difference of their perimeters is 24 m , then the sides of the two squares are:
(a) 12 m and 18 m
(b) 24 m and 28
(c) 6 m and 12 m
(d) 18 m and 24 m

Answer: (a) 12 m and 18 m

Question 1.
Which of the following is a quadratic equation?
(a) $x^{2}+2 x+1=(4-x)^{2}+3$
(b) $-2 x^{2}=(5-x)[2 x-25]$
(c) $(k+1) x^{2}+32 x=7$, where $k=-1$
(d) $x^{3}-x^{2}=(x-1)^{3}$

Answer: (d) $x^{3}-x^{2}=(x-1)^{3}$

Question 2.
Which of the following is not a quadratic equation?
(a) $2(x-1)^{2}=4 x^{2}-2 x+1$
(b) $2 x-x^{2}=x^{2}+5$
(c) $(\sqrt{2} x+\sqrt{3})^{2}+x^{2}=3 x^{2}-5 x$
(d) $\left(x^{2}+2 x\right)^{2}=x 4+3+4 x^{3}$

Answer: $(\mathrm{c})(\sqrt{2 x}+\sqrt{3})^{2}+x^{2}=3 x^{2}-5 x$

Question 3.

Which of the following equations has 2 as a root?
(a) $x^{2}-4 x+5=0$
(b) $x^{2}+3 x-12=0$
(c) $2 x^{2}-7 x+6=0$
(d) $3 x^{2}-6 x-2=0$

Answer: (c) $2 \mathrm{x}^{2}-7 \mathrm{x}+6=0$

Question 4.
If 12 is a root of the equation $x^{2}+k x-54=o$ then the value of k is
(a) 2
(b) -2
(c) 14
(d) 12

Answer: (a) 2

Question 5.
Which of the following has the sum of its roots as 3 ?
(a) $2 x^{2}-3 x+6=0$
(b) $-x^{2}+3 x+3=0$
(c) $\sqrt{2} x^{2}-3 \sqrt{ } 2 x+1=0$
(d) $3 x^{2}-3 x+3=0$

Question 6.

Values of k for which the quadratic equation $2 \mathrm{x}^{2}-\mathrm{kx}+\mathrm{k}=\mathrm{o}$ has equal roots is
(a) o only
(b) 4
(c) 8 only
(d) 0,8

Answer: (d) o, 8

Question 7.

Which constant must be added and subtracted to solve the quadratic equation $9 x^{2}+34 x-\sqrt{2}=0$ by the method of completing the square?
(a) 18
(b) 164
(c) 14
(d) 964

Answer: (b) 164

Question 8.

The quadratic equation $2 x^{2}-\sqrt{5 x}+1=0$ has
(a) two distinct real roots
(b) two equal real roots
(c) no real roots
(d) more than 2 real roots

Answer: (c) no real roots

Question 9.
Which of the following equations has two distinct real roots?
(a) $2 x^{2}-3 \sqrt{2} x+94=0$
(b) $x^{2}+x-5=0$
(c) $x^{2}+3 x+2 \sqrt{2}=0$
(d) $5 \mathrm{x}^{2}-3 \mathrm{x}+1=0$

Answer: (b) $\mathrm{x}^{2}+\mathrm{x}-5=0$

Question 10.
Which of the following equations has no real roots?
(a) $x^{2}-4 x+3 \sqrt{2}=0$
(b) $x^{2}+4 x-3 \sqrt{2}=0$
(c) $x^{2}-4 x-3 \sqrt{2}=0$
(d) $3 x^{2}+4 \sqrt{3}+4=0$

Answer: (a) $x^{2}-4 x+3 \sqrt{2}=0$

Question 11.
$\left(\mathrm{x}^{2}+1\right)^{2}-\mathrm{x}^{2}=\mathrm{o}$ has
(a) four real roots
(b) two real roots
(c) no real roots
(d) one real roots

Answer: (c) no real roots

