1. The distance of the point $P(2,3)$ from the x-axis is
(a) 2
(b) 3
(c) 1
(d) 5
2. The distance between the point $P(1,4)$ and $Q(4,0)$ is
(a) 4
(b) 5
(c) 6
(d) 3â`š3
3. The points $(-5,1),(1, p)$ and $(4,-2)$ are collinear if the value of p is
(a) 3
(b) 2
(c) 1
(d) -1
4. The area of the triangle $A B C$ with the vertices $A(-5,7), B(-4,-5)$ and $C(4,5)$ is
(a) 63
(b) 35
(c) 53
(d) 36
5. The distance of the point ($\left.\hat{\underline{L}}, \hat{I}^{2}\right)$ from the origin is
(a) $\hat{I} \pm+\hat{\imath}^{2}$
(b) $\hat{I} \pm \hat{A}^{2}+\hat{1} \hat{A}^{2}$
(c) $|\hat{1} \pm|+|\hat{2}|$
(d) $\sqrt{\alpha^{2}+\beta^{2}}$
6. The area of the triangle whose vertices are $\mathrm{A}(1,2), \mathrm{B}(-2,3)$ and $\mathrm{C}(-3,-4)$ is
(a) 11
(b) 22
(c) 33
(d) 21
7. If the distance between the points $(x,-1)$ and $(3,2)$ is 5 , then the value of x is
(a) -7 or -1
(b) -7 or 1
(c) 7 or 1
(d) 7 or -1
8. The area of the triangle formed by the points $A(-1.5,3), B(6,-2)$ and $C(-3,4)$ is
(a) 0
(b) 1
(c) 2
(d) $3 / 2$
9. If the points $P(1,2), B(0,0)$ and $C(a, b)$ are collinear, then
(a) $2 a=b$
(b) $a=-b$
(c) $a=2 b$
(d) $a=b$
10. If the segment joining the points (a, b) and (c, d) subtends a right angle at the origin, then
(a) ac - bd $=0$
(b) $\mathrm{ac}+\mathrm{bd}=0$
(c) $a b+c d=0$
(d) $a b-c d=0$
11. The distance of a point from the y axis is called its \qquad
A. Ordinate
B. Abscissa
C. Origin
12. The distance of a point from the x axis is called its \qquad
A. Ordinate
B. Abscissa
C. Origin
13. The coordinates of a point on the x axis are of the form -————
A. $(0, x)$
B. $(x, 0)$
C. $(y, 0)$
14. The coordinates of a point on the y axis are of the form----
A. $(0, y)$
B. $(y, 0)$
C. $(x, 0)$
15. A linear equation in two variables of the form $a x+b y+c=0$, when represented graphically gives a ------
A. Parabola
B. Circle
C. Straight line
16. The graph of a quadratic equation is a ----
A. Parabola
B. Circle
C. Straight line
17. The relation between x and y such that the point (x, y) is equidistant from the points $(7,1)$ and $(3,5)$ is ------
A. $x+y=2$
B. $x-y=2$
C. $y-x=2$
18. The area of a triangle whose vertices are $(1,-1)(-4,6)$ and $(-3,-5)$ is - ---
A. 20
B. 22
C. 24
19. The value of k if the points $A(2,3), B(4, k)$ and $C(6,-3)$ are collinear is \qquad
A. 0
B. 2
C. 4
20. The distance between the points $\mathrm{A}(1,1)$ and $\mathrm{B}(9,7)$ is

A. 8
B. 9
C. 10
21. The points $(1,7)(4,2)(-1,-1)$ and $(-4,4)$ are the vertices of a
A. Rectangle
B. Square
C. Parallelogram
22. The points $(5,-2)(6,4)$ and $(7,-2)$ are the vertices of an ---- triangle.
A. Scalene
B. Equilateral
C. Isosceles
23. The distance of a point $P(4,3)$ from the origin $(0,0)$ is given by - - --
A. 3
B. 4
C. 5
24. The points $(3,2)(-2,-3)$ and $(2,3)$ form a ---- triangle.
A. Acute angle
B. Right angle
C. Obtuse angle
25. A point on the y axis which is equidistant from the points $A(6,5)$ and
$B(-4,3)$ is
A. $y=8$
B. $y=9$
C. $y=10$

ANSWERS:

1. Abscissa
2. Ordinate
3. ($x, 0$)
4. $(0, y)$
5. Straight line
6. Parabola
7. $x-y=2$ (Use distance formula)
8. 24. (Use the formula for Area)
1. $\mathrm{k}=0$

Since the given points are collinear the area of the triangle formed by them must be zero.
$1 / 2[2(k+3)+4(-3-3)+6(3-k)]=0$
$1 / 2[-4 k]=0$
$k=0$
10. 10 (Use distance formula)
11. Square

Let $A(1,7), B(4,2) C(-1,1)$ and $D(-4,4)$ be the given points. Using distance formula, find the length of the sides $A B, B C, C D, A D$ and diagonals $A C$ and $B D$.
All the four sides of the quadrilateral $A B C D$ are equal and its diagonal $A C$ and $B D$ are also equal. Therefore, $A B C D$ is a square.
12. Isosceles triangle
13.5
14. Right triangle
15. $\mathrm{y}=9$

A point on the y axis is of the form $(0, y)$. So let the point $P(0, y)$ is equidistant from A and B. Then find the distance between $(0, y),(6,5)$ and $(0, y),(-4,3)$ then equate.

1. Point $A(-5,6)$ is at a distance of:
(a) 61 units from the origin (b) 11 units from the origin
(c) $\sqrt{ } 61$ units from the origin (d) $\sqrt{ } 11$ units from the origin
2. If the points $(1, x),(5,2)$ and $(9,5)$ are collinear then the value of x is
(a) $5 / 2$ (b) $-5 / 2$ (c) -1 (d) 1
3. The end points of diameter of circle are $(2,4)$ and $(-3,-1)$. The radius of the circle us
(a) $\frac{5 \sqrt{2}}{2}$
(b) $5 \sqrt{2}$
(c) $3 \sqrt{2}$
(d) $\frac{ \pm 5 \sqrt{2}}{2}$
4. The ratio in which x - axis divides the line segment joining the points (5, 4) and (2, -3) is:
(a) $5: 2$ (b) $3: 4$ (c) $2: 5$ (d) $4: 3$
5. The point which divides the line segment joining the points $(7,-6)$ and $(3,4)$ in ratio 1:2 internally lies in the
(a) I quadrant (b) II quadrant (c) III quadrant (d) IV quadrant
6. The point which lies on the perpendicular bisector of the line segment joining the points $A(-2,-5)$ and $B(2,5)$ is:
(a) $(0,0)(b)(0,2)(c)(2,0)(d)(-2,0)$
7. The fourth vertex D of a parallelogram $A B C D$ whose three vertices are $A(-2,3), B(6,7)$ and $C(8,3)$ is:
(a) $(0,1)(b)(0,-1)(c)(-1,0)(d)(1,0)$
8. If the point $P(2,1)$ lies on the line segment joining points $A(4,2)$ and $B(8,4)$, then
(a) $\mathrm{AP}=\frac{1}{3} \mathrm{AB}$
(b) $\mathrm{AP}=\mathrm{PB}$
(c) $\mathrm{PB}=\frac{1}{3} \mathrm{AB}$
(d) $\mathrm{AP}=\frac{1}{2} \mathrm{AB}$
9. Three vertices of a parallelogram taken in order are (-1, -6), (2, -5) and (7, 2). The fourth vertex is
(a) $(1,4)(b)(1,1)(c)(4,4)(d)(4,1)$
10. If A and B are the points $(-3,4)$ and $(2,1)$ respectively, then the coordinates of the points on $A B$ produced such that $A C=2 B C$ are
(a) $(2,4)(b)(3,7)(c)(7,-2)(d)$ none of these
11. Distance of the point $(4, a)$ from x-axis is half its distance from y-axis then $a=$
(a) 2 (b) 8 (c) 4 (d) 6
12. A triangle is formed by the points $0(0,0), A(5,0)$ and $B(0,5)$. The number of points having integral coordinates (both x and y) and strictly inside the triangle is
(a) 10 (b) 17 (c) 16 (d) 6
13. If $P(I, 2), Q(4,6), R(5,7)$ and $S(a, b)$ are the vertices of a parallelogram PQRS then (a) $a=2, b=4$ (b) $a=3, b=4$ (c) $a=2, b=3$ (d) $a=3, b=5$
14. The number of points on \mathbf{x}-axis which are at a distance of $\mathbf{2}$ units from $(2,4)$ is (a) 2 (b) 1 (c) 3 (d) 0
15. The distance of the point (h, k) from x-axis is
(a) h (b) k (c) $|h|(d)|k|$
16. The vertices of a triangle are $(0,0),(3,0)$ and $(0,4)$. Its orthocentre is at
(a) $(0,3)(b)(4,0)(c)(0,0)(d)(3,4)$
17. The area of the triangle with vertices at the points $(a, b+c),(b, c+a)$ and $(c, a+b)$ is (a) $a+b+c$ (b) $a+b-c$ (c) $a-b+c$ (d) 0
18. If the segment joining the points (a, b) and (c, d) subtends a right angle at the origin, then (a) ac -bd $=0$ (b) ac $+b d=0$ (c) $a b-c d=0(d) a b+c d=0$
19. The distance of $A(5,-12)$ from the origin is
(a) 12 (b) 11 (c) 13 (d) 10
20. Find the ordinate of a point whose abscissa is 10 and which is at a distance of 10 units from the point $\mathbf{P}(2,-3)$.
(a) 3 (b) -9 (c) both (a) or (b) (d) none of these
