1. To divide a line segment $A B$ in the ratio $4: 7$, a ray $A X$ is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1} A_{2} A_{3}, \ldots$ are located at equal distances on the ray $A X$ and the point B is joined to
(a) A_{4}
(b) A_{11}
(c) A_{10}
(d) A_{7}
(b) A_{11}
2. When a line segment is divided in the ratio $2: 3$, how many parts is it divided into?
(a) $2 / 3$
(b) 2
(c) 3
(d) 5

- (d) 5

3. To divide a line segment $A B$ in the ratio $5: 7$, first a ray $A X$ is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is:
(a) 8
(b) 10
(c) 11
(d) 12

- (d) 12

4. To divide a line segment $A B$ in the ratio $p: q$ (p, q are positive integers), draw a ray $A X$ so that $\angle B A X$ s an acute angle and then mark points on ray $A X$ at equal distances such that the minimum number of these points is :
(a) $p+q$
(b) pq
(c) $p+q-1$
(d) greater of p and q

- (a) $\mathrm{p}+\mathrm{q}$

5. To construct a triangle similar to given $\triangle A B C$ with its sides 8585 of the corresponding sides of $\triangle A B C$, draw a ray $B X$ such that $\angle C B X$ is an acute angle and X is one the opposite side of A with respect to $B C$. The minimum number of points to be located at equal distances on ray $B X$ is :
(a) 3
(b) 5
(c) 8
(d) 13

- (c) 8

6. Which theorem criterion we are using in giving the just the justification of the division of a line segment by usual method?
(a) SSS criterion
(b) Area theorem
(c) BPT
(d) Pythagoras theorem

- (c) BPT

7. PT and PS are tangents drawn to a circle, with centre C, from a point P. If $\angle T P S=50^{\circ}$, then the measure of $\angle T C S$ is
(a) 150°
(b) 130°
(c) 120°
(d) 100°

- (b) 130°

8. In division of a line segment $A B$, any ray $A X$ making angle with $A B$ is
(a) right angle
(b) obtuse angle
(c) any arbitrary angle
(d) acute angle

- (d) acute angle

9. To divide a line segment $A B$ in the ratio $5: 6$ draw a ray $A X$ such that $\angle B A X$ is an acute angel, then draw a ray $B Y$ parallel to $A X$ and the points $A _(1,) A _(2,) A _(3,) \ldots$ and $B _(1,)$ $B _(2,) B _(3,) \ldots$ are located a equal distances on ray $A X$ and $B Y$, respectively, Then the points joined are :
(a) A_{4} and B_{5}
(b) A_{5} and B_{4}
(c) A_{5} and B_{6}
(d) A_{6} and B_{5}

- (c) A_{5} and B_{6}

10. To divide line segment $A B$ in the ratio $A: b$ (a, b are positive integers), draw a ray $A X$ so that $\angle B A X$ is an acute angle and then mark points on ray $A X$ at equal distances such that the minimum number of these points is
(a) ab
(b) Greater of a and b
(c) $(a+b)$
(d) $(a+b-1)$

- (c) $(a+b)$

11. To draw a pair of tangents to a circle which are inclined to each other at an angle of 45° it is required to draw tangents at the end point of those two radii of the circle, the angle between which is :
(a) 105°
(b) 135°
(c) 145°
(d) 70°

- (b) 135°

12. A point O is at a distance of 10 cm from the centre of a circle of radius 6 cm . How many tangents can be drawn from point O to the circle?
(a) 2
(b) 1
(c) Infinite
(d) 0

- (a) 2

13. To divide a line segment $A B$ in the ration 4:7, a ray $A X$ is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$ are located at equal distances on the ray $A X$ and the point B is joined to :
(a) A_{10}
(b) A_{11}
(c) A_{12}
(d) A_{9}
(b) A_{11}
14. A point O is at a distance of 10 cm from the centre of a circle of radius 6 cm . How many tangents can be drawn from point O to the circle?
(a) 1
(b) 3
(c) Infinite
(d) 2

- (d) 2

15. To construct a triangle similar to given $\triangle A B C$ with its sides $3 / 7$ of the corresponding sides of $\triangle A B C$, first draw a ray $B X$ such that $\angle C B X$ is an acute angle and X lies on the opposite side of A with respect to $B C$. Then locate points B_{1}, B_{2}, B_{3}, on $B X$ equal distance and next step is to join :
(a) B_{4} to C
(b) B_{10} to C
(c) B_{6} to C
(d) B_{7} to C

- (d) B_{7} to C

16. To draw a pair of tangents to circle which are inclined to each other at angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be :
(a) 60°
(b) 90°
(c) 120°
(d) 130°

- (c) 120°

17. A line segment drawn perpendicular from the vertex of a triangle to the opposite side is called the
(a) Bisector
(b) Median
(c) Perpendicular
(d) Altitude
(d) Altitude
18. To draw a pair of tangents to a circle which are inclined to each other at angle x°, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is
(a) $180^{\circ}-x^{\circ}$
(b) $90^{\circ}+x^{\circ}$
(c) $90^{\circ}-x^{\circ}$
(d) $180^{\circ}+x^{\circ}$

- (a) $180^{\circ}-x^{\circ}$

19. Length of the tangent to a circle from a point 26 cm away from the centre is 24 cm .

What is the radius of the circle?
(a) 11 cm
(b) 13 cm
(c) 10 cm
(d) 12 cm

- (c) 10 cm

20. If two tangents are drawn at the end points of two radii of a circle which are inclined at 120° to each other, then the pair of tangents will be inclined to each other at an angle of
(a) 60°
(b) 90°
(c) 100°
(d) 120°

- (a) 60°

21. A draw a pair of tangents to a circle which are inclined to each other at an angle of 65°, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is:
(a) 95°
(b) 105°
(c) 110°
(d) 115°

- (d) 115°

22. To draw a pair tangents to a circle which are inclined to each other at an angle of 70°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be
(a) 20°
(b) 70°
(c) 90°
(d) 110°
23. To construct a triangle similar to given $\triangle A B C$ with its sides 8585 of the corresponding sides of $\triangle A B C$, draw a ray $B X$ such that $\angle C B X$ is an acute angle and X is one the opposite side of A with respect to $B C$. The minimum number of points to be located at equal distances on ray $B X$ is :
(a) 3
(b) 5
(c) 8
(d) 13
(c) 8
24. To divide a line segment $A B$ in the ration $5: 6$, draw a ray $A X$ such that $\angle B A X$ is an acute angle, then draw a ray $B Y$ parallel to $A X$ and the points $A_{1}, A_{2}, A_{3} \ldots$ and $B_{1}, B_{2}, B^{3} \ldots$. are located at equal distances on ray $A X$ and $B Y$, respectively. Then, the points joined are
(a) A_{5} and B_{6}
(b) A_{4} and B_{5}
(c) A_{5} and B_{4}
(d) A_{6} and B_{5}

- (d) A_{6} and B_{5}

3. To divide a line segment $A B$ in the ration 2 : 5 , first a ray $A X$ is drawn, so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray such that the minimum number of these points is :
(a) 2
(b) 4
(c) 5
(d) 7
(d) 7
4. To construct a triangle similar to given $\triangle P Q R$ with its sides $5 / 8$ of the corresponding sides of $\triangle P Q R$, first a ray $P X$ is drawn such that $\angle Q P X$ is an acute angle and X lies on the opposite side of R with respect to $P Q$. Then locate points $P_{1}, P_{2}, P_{3} \ldots$. OnPX at equal distances and next step is to join :
(a) P_{5} to Q
(b) P_{8} to Q
(c) P_{3} to Q
(d) P_{6} to Q
(b) P_{8} to Q
5. To draw tangents to each of the circle with radii 3 cm and 2 cm from the centre of the other circle, such that the distance between their centres A and B is 6 cm , a perpendicular bisector of $A B$ is drawn intersecting $A B$ at M. The next step is to draw
(a) a circle with AB as diameter
(b) a circle with MB as diameter
(c) a circle with AM as diameter
(d) extend $A B$ to P such that $B P=M B$ and draw a circle with $M P$ as diameter

- (a) a circle with AB as diameter

6. To draw a pair of tangents to a circle which are inclined to each other at an angle of 45° it is required to draw tangents at the end points of the two radii of the circle, which are inclined at an angle of
(a) 105°
(b) 115°
(c) 125°
(d) 135°
(d) 135°
7. To draw a pair of tangents to a circle which are inclined to each other at an angle of 35°, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is :
(a) 70°
(b) 105°
(c) 140°
(d) 145°
(d) 145°
8. PT and PS are tangents drawn to a circle, with centre C , from a point P . If $\angle \mathrm{TPS}=$ 50°, then the measure of $\angle \mathrm{TCS}$ is
(a) 150°
(b) 130°
(c) 120°
(d) 100°
(b) 130°
9. To divide line segment $A B$ in the ratio A : b (a, b are positive integers), draw a ray $A X$ so that $\angle B A X$ is an acute angle and then mark points on ray $A X$ at equal distances such that the minimum number of these points is
(a) ab
(b) Greater of a and b
(c) $(a+b)$
(d) $(a+b-1)$
(c) $(a+b)$
10. To divide a line segment $A B$ in the ratio $5: 7$, first a ray $A X$ is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is :
(a) 8
(b) 10
(c) 11
(d) 12
(d) 12
11. To divide a line segment $L M$ in the ratio $a: b$, where a and b are positive integers, draw a ray LX so that $\angle \mathrm{MLX}$ is an acute angle and then mark points on the ray LX at equal distances such that the minimum number of these points is :
(a) greater of a and b
(b) $a+b$
(c) $a b$
(d) $a+b-1$

- (b) $a+b$

12. If two tangents are drawn at the end points of two radii of a circle which are inclined at 120° to each other, then the pair of tangents will be inclined to each other at an angle of
(a) 60°
(b) 90°
(c) 100°
(d) 120°

- (a) 60°

13. To divide a line segment $A B$ in the ration $4: 7$, a ray $A X$ is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$. are located at equal distances on the ray $A X$ and the point B is joined to
(a) A_{11}
(b) A_{10}
(c) A_{12}
(d) A_{9}
(a) A_{11}
14. To divide a line segment $A B$ in the ration $2: 3$, first a ray $A X$ is drawn so that $\angle B A X$ is an acute angle and then at equal distances, points are marked on the ray $A X$, such tha the minimum number of these points is
(a) 2
(b) 3
(c) 5
(d) 6
(c) 5
15. To divide a line segment $A B$ in the ratio 5:7, first a ray $A X$ is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
(a) 8
(b) 10
(v) 11
(d) 12
(d) 12
16. Which theorem criterion we are using in giving the just the justification of the division of a line segment by usual method?
(a) SSS criterion
(b) Area theorem
(c) BPT
(d) Pythagoras theorem

- (c) BPT

17. A pair of tangents can be constructed to a circle inclined at an angle of :
(a) 165°
(b) 185°
(c) 195°
(d) 175°

- (d) 175°

18. To divide a line segment $A B$ in the ratio $3: 7$, draw a ray $A X$ such that $\angle B A X$ is an acute angle, then draw a ray $B Y$ parallel to $A X$ and the points $A_{1}, A_{2}, A_{3}, \ldots$ and $B_{1}, B_{2}, B_{3}, \ldots$ are located at equal distances on ray $A X$ and $B Y$ respectively. Then the points joined are :
(a) A_{4} and B_{3}
(b) A_{7} and B_{3}
(c) A_{5} and B_{5}
(d) A_{3} and B_{7}

- (a) A_{3} and B_{7}

19. Length of the tangent to a circle from a point 26 cm away from the centre is 24 cm . What is the radius of the circle?
(a) 11 cm
(b) 13 cm
(c) 10 cm
(d) 12 cm
(c) 10 cm
20. To divide line segment $A B$ in the ration $m: n$ (m, n are positive integers), draw a ray $A X$ so that $\angle B A X$ is an acute angle and then mark points on ray $A X$ at equal distances such that the minimum number of these points is
(a) greater of m and n
(b) mn
(c) $m+n$
(d) $m+n-1$
(c) $m+n$
21. To construct a triangle similar to given $\triangle A B C$ with its sides $3 / 7$ of the corresponding sides of $\triangle A B C$ draw a ray $B X$ such that $\triangle C B X$ is an acute angle and X is on the opposite side of A with respect to $B C$. The minimum number of points to be located at equal distances on ray $B X$ is :
(a) 3
(b) 4
(c) 7
(d) 10
(c) 7
22. To draw a pair of tangents to a circle which are at right angles to each other, it is required to draw tangents at end points of the two radii of the circle, which are inclined at an angle of
(a) 60°
(b) 90°
(c) 45°
(d) 120°

- (b) 90°

