1. In an equilateral triangle $A B C$, if $A D \perp B C$, then
(a) $5 A B^{2}=4 A D^{2}$.
(b) $4 A B^{2}=3 A D^{2}$.
(c) $3 A B^{2}=4 A D^{2}$.
(d) $2 A B^{2}=3 A D^{2}$.

- (c) $3 A B^{2}=4 A D^{2}$.

2. In a triangle $A B C, A C=V 180, A B=6, B C=12$. What is $\angle B=$?
(a) 90°
(b) 30°
(c) 45°
(d) 60°

- (a) 90°

3. In right triangled $A B C$ right angled at B, a line $D E$ is drawn through the mid point D of $A B$ and parallel to $B C$. If $A B=$ $9 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm} . \mathrm{AE}=$?
(a) 13 cm
(b) 10 cm
(c) 8.5 cm
(d) 7.5 cm
(d) 7.5 cm
4. If the legs of an isosceles right triangle are 5 cm long, approximate the length of the hypotenuse to the nearest whole number.
(a) 9 cm
(b) 7 cm
(c) 70 cm
(d) 90 cm

- (b) 7 cm .

5. A semicircle is drawn on $A C$. Two chords $A B$ and $B C$ of length 8 cm and 6 cm respectively are drawn in the semicircle. What is the measure of the diameter of the circle?
(a) 14 cm .
(b) 10 cm .
(c) 12 cm .
(d) 11 cm .
(b) 10 cm .
6. Three numbers form a Pythagorean triplet. Two of them are 15 and 17 where 17 is the largest of them. The third number is
(a) 8
(b) 12
(c) 13
(d) 5
(a) 8
7. D and E are respectively the points on the sides $A B$ and $A C$ of a triangle $A B C$ such that $A D=3 \mathrm{~cm}, B D=5 \mathrm{~cm}, B C=$ 12.8 cm and $D E \| B C$. Then length of $D E$ (in cm) is
(a) 4.8 cm
(b) 7.6 cm
(c) 19.2 cm
(d) 2.5 cm
(a) 4.8 cm
8. In triangle PQR length of the side $Q R$ is less than twice the length of the side $P Q$ by 2 cm . Length of the side $P R$ exceeds the length of the side PQ by 10 cm . The perimeter is 40 cm . The length of the smallest side of the triangle $P Q R$ is :
(a) 6 cm
(b) 8 cm
(c) 7 cm
(d) 10 cm

- (b) 8 cm

9. Which of the following is a Pythagorean triplet ?
(a) $(36,18,43)$
(b) $(15,20,25)$
(c) $(3,12,13)$
(d) $(24,25,26)$

- (b) $(15,20,25)$

10. If the sum of the length of the legs of a right triangle is 49 cm and the hypotenuse is 41 cm , find its shortest side.
(a) 19 cm
(b) 40 cm
(c) 4 cm
(d) 9 cm
(d) 9 cm
11. A boy is trying to catch fish sitting at a height of 12 m from the surface of the water. A big fish is at a horizontal distance of 5 m from him. What should be the length of his string to get the fish?
(a) 10
(b) 13
(c) 7
(d) 15

- (b) 13

12. The length of the side of a rhombus whose diagonals are of lengths 24 cm and 10 cm is
(a) 17 cm .
(b) 14 cm .
(c) 13 cm .
(d) 16 cm .

- (c) 13 cm .

13. In $\triangle A B C, A B=5 \mathrm{~cm}, A C=7 \mathrm{~cm}$. If $A D$ is the angle bisector of $\angle A$. Then $B D: C D$ is:
(a) $25: 49$
(b) $49: 25$
(c) $6: 1$
(d) $5: 7$
(d) $5: 7$
14. The monitors of computers are measured along the diagonal. What is the size of the largest monitor that can be placed in a space measuring $17^{\prime \prime} \times 21^{\prime \prime}$?
(a) $28^{\prime \prime}$
(b) $25^{\prime \prime}$
(c) $26^{\prime \prime}$
(d) $27^{\prime \prime}$

- (d) $27^{\prime \prime}$

15. Two isosceles triangles have equal angles and their areas are in the ratio $16: 25$. Then, the ratio of their corresponding heights is
(a) $3 / 5$
(b) $5 / 4$
(c) $5 / 7$
(d) $4 / 5$

- (d) $4 / 5$

16. Triangle $A B C$ is such that $A B=3 \mathrm{~cm}, B C=2 \mathrm{~cm}$ and $C A=2.5 \mathrm{~cm}$. Triangle $D E F$ is similar to $\triangle A B C$. If $E F=4 \mathrm{~cm}$, then the perimeter of $\triangle D E F$ is :
(a) 7.5 cm
(b) 15 cm
(c) 22.5 cm
(d) 30 cm

- (b) 15 cm

17. Three squares are based on the sides of a right angled triangle. The area of the two smaller ones are $144 \mathrm{sq} . \mathrm{cm}$ and $256 \mathrm{sq} . \mathrm{cm}$. What is the area of the third one?
(a) 625 sq. cm
(b) $361 \mathrm{sq} \cdot \mathrm{cm}$
(c) $400 \mathrm{sq} . \mathrm{cm}$
(d) $900 \mathrm{sq} . \mathrm{cm}$
(c) $400 \mathrm{sq} \cdot \mathrm{cm}$
18. The line segments joining the mid points of the sides of a triangle form four triangles each of which is :
(a) Similar to the original triangle
(b) Congruent to the original triangle
(c) An equilateral triangle
(d) An isosceles triangle

- (a) Similar to the original triangle

19. Two friends A and B start from the same point in the Eastern and Northern directions at the same time. How far are they from each other when A has travelled 5 km and B has travelled 12 km . distance?
(a) 8 km
(b) 17 km
(c) 10 km
(d) 13 km
(d) 13 km
20. $A B C$ is a triangle and $D E$ is drawn parallel to $B C$ cutting the other sides at D and E. If $A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$, then $A E$ is equal to :
(a) 1.4 cm
(b) 1.8 cm
(c) 1.2 cm
(d) 1.05 cm
(a) 1.4 cm
21. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
(a) $B C \cdot D E=A B \cdot E F$.
(b) $A B \cdot E F=A C \cdot D E$.
(c) $B C \cdot E F=A C \cdot F D$.
(d) $B C . D E=A B . F D$.
(a) $B C . D E=A B \cdot E F$.
22. Triangle $A B C$ is such that $A B=9 \mathrm{~cm}, B C=6 \mathrm{~cm}, A C=7.5 \mathrm{~cm}$. Triangle $\triangle D E F$ is similar to $A B C$, If $E F=12 \mathrm{~cm}$ then $D E$ is :
(a) 6 cm
(b) 16 cm
(c) 18 cm
(d) 15 cm

- (c) 18 cm

1. Two figures are said to be -----, if they have the same shape and the same size.
A. Similar
B. Congruent
C. Equal
2. Two figures having the same shape and not necessarily the same size are called - - - --
A. Similar figures
B. Congruent figures
C. Equal figures
3. Which of the following statements is false?
A. All congruent figures are similar
B. The similar figures need not be congruent.
C. All similar figures are congruent
4. All circles are - - - -
A. Equal
B. Congruent
C. Similar
5. All - - - - triangles are similar.
A. Scalene
B. Isosceles
C. Equilateral
6. Two polygons of the same number of sides are similar, if their corresponding angles are - - - and their corresponding sides are --- -
A. equal, proportional
B. equal, equal
C. Proportional, equal
7. The ratio of any two corresponding sides in two equilateral triangles is always the - - - - - -
A. Same.
B. Different
C. Greater
8. In a right triangle, the square of the hypotenuse is ———— to the sum of the squares of the other two sides.
A. Greater
B. Lesser
C. Equal
9. In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a - - - -
A. Acute angle
B. Obtuse angle
C. Right angle
10. In a rectangle length $=4 \mathrm{~cm}$, breadth $=3 \mathrm{~cm}$. Then its diagonal is - -
A. 5 cm
B. 6 cm
C. 7 cm
11. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. This theorem is called --- -
A. Gauss Theorem
B. Pythagoras Theorem
C. Thales Theorem (Basic Proportionality Theorem)
12. In two triangles $A B C$ and $P Q R, \angle A=\angle P=60, \angle B=\angle Q=80, \angle C=\angle R=40$. The similarity criterion used here is -
A. SSS
B. AAA
C. SAS
13. Sides of triangles are given below. Which of them are right angles?
A. $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
B. $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
C. $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
14. The ratio of the area of two similar triangles is equal to the - - -- of the ratio of the corresponding sides.
A. Twice
B. Square
C. Thrice
15. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 m above the ground. The length of the ladder is - - - --
A. 6.5 m
B. 6 m
C. 5.5 m

ANSWERS:

1. Congruent
2. Similar figures
3. All similar figures are congruent
4. Similar
5. Equilateral
6. Equal, proportional
7. Same
8. Equal
9. Right angle
10. 5 cm
11. Basic proportionality theorem
12. AAA
13. $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
14. Square
15. 6.5 m (Use Pythagoras Theorem)
16. O is a point on side $P Q$ of a $A P Q R$ such that $P O=Q O=R O$, then
(a) $R S^{2}=P R \times Q R$
(b) $P R^{2}+Q R^{2}=P Q^{2}$
(c) $Q R^{2}=Q O^{2}+R O^{2}$
(d) $\mathrm{PO}^{2}+\mathrm{RO}^{2}=\mathrm{PR}^{2}$

Answer

Answer: b
2. In $A B C, D E \| A B$. If $C D=3 \mathrm{~cm}, E C=4 \mathrm{~cm}, B E=6 \mathrm{~cm}$, then $D A$ is equal to
(a) 7.5 cm
(b) 3 cm
(c) 4.5 cm
(d) 6 cm

Answer
Answer: c
3. $A A B C$ is an equilateral A of side a. Its area will be...

MCQ Questions for Class 10 Maths Triangles with Answers 1

Answer
Answer: a
4. In a square of side 10 cm , its diagonal = ...
(a) 15 cm
(b) 10 V 2 cm
(c) 20 cm
(d) 12 cm

Answer
Answer: b
5. In a rectangle Length $=8 \mathrm{~cm}$, Breadth $=6 \mathrm{~cm}$. Then its diagonal $=\ldots$
(a) 9 cm
(b) 14 cm
(c) 10 cm
(d) 12 cm

Answer
Answer: c
6. In a rhombus if d1 $=16 \mathrm{~cm}, \mathrm{~d} 2=12 \mathrm{~cm}$, its area will be...
(a) $16 \times 12 \mathrm{~cm}^{2}$
(b) $96 \mathrm{~cm}^{2}$
(c) $8 \times 6 \mathrm{~cm}^{2}$
(d) $144 \mathrm{~cm}^{2}$

Answer
Answer: b
7. In a rhombus if $\mathrm{d} 1=16 \mathrm{~cm}, \mathrm{~d} 2=12 \mathrm{~cm}$, then the length of the side of the rhombus is
(a) 8 cm
(b) 9 cm
(c) 10 cm
(d) 12 cm

Answer
Answer: c
8. If in two $A s A B C$ and $D E F, A B D F=B C F E=C A E D$, then
(a) $\triangle A B C \sim \triangle D E F$
(b) $\triangle \mathrm{ABC} \sim \triangle E D F$
(c) $\triangle A B C \sim \triangle E F D$
(d) $\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$

Answer

Answer: d
9. It is given that $\triangle A B C \sim \triangle D E F$ and $B C E F=15$. Then Undefined control sequence \operatorname is equal to (a) 5
(b) 25
(c) 125
(d) 15

Answer
Answer: b
10. In $\angle B A C=90^{\circ}$ and $A D \perp B C$. A Then MCQ Questions for Class 10 Maths Triangles with Answers 2
(a) $B D \cdot C D=B C^{2}$
(б) $\mathrm{AB} \cdot \mathrm{AC}=\mathrm{BC}^{2}$
(c) $B D . C D=A D^{2}$
(d) $A B \cdot A C=A D^{2}$

Answer
Answer: c
11. D and E are respectively the points on the sides $A B$ and $A C$ of a triangle $A B C$ such that $A D=2 \mathrm{~cm}, B D=3 \mathrm{~cm}, B C=$ 7.5 cm and $D E \| B C$. Then, length of $D E$ (in cm) is
(a) 2.5
(b) 3
(c) 5
(d) 6

Answer
Answer: b
12. If $\triangle A B C \sim \triangle D E F$ and $\triangle A B C$ is not similar to $\triangle D E F$ then which of the following is not true?
(a) $B C \cdot E F=A C . F D$
(b) AB.ED = AC.DE
(c) $B C \cdot D E=A B . E E$
(d) $B C \cdot D E=A B . F D$

Answer
Answer: c
13. If in two triangles $D E F$ and $P Q R, Z D=Z Q$ and $Z R=Z E$, then which of the following is not true? MCQ Questions for Class 10 Maths Triangles with Answers 3

Answer
Answer: b
14. If $\triangle A B C \sim \triangle P Q R, B C Q R=13$ then Undefined control sequence \operatorname is
(a) 9
(b) 3
(c) $1 / 3$
(d) $1 / 9$

Answer
Answer: a
15. If $\triangle A B C \sim \triangle Q R P$, Undefined control sequence \operatorname, $A B=18 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$, then $P R$ is equal to
(a) 10 cm
(b) 12 cm
(c) 203 cm
(d) 8 cm

Answer
Answer: a
16. If in triangles $A B C$ and $D E F, A B D E=B C F D$, then they will be similar, if
(a) $\angle B=\angle E$
(b) $\angle A=\angle D$
(c) $\angle B=\angle D$
(d) $\angle A=\angle F$

Answer
Answer: c

