Mathematics Online Class X On 08-07-2021

ARITHMETIC SEQUENCE

In the previous class we studied
The algebraic form of an arithmetic sequence is of the form $x_{n}=\mathbf{a n}+\mathbf{b}$, where \mathbf{a} and \mathbf{b} are fixed numbers and a is the common difference; conversely, any sequence of this form is an arithmetic sequence.
The algebraic form of an arithmetic sequence can also be written in the form $x_{n}=\mathbf{d n}+(\mathbf{f}-\mathbf{d})$ where f is the first term and d is the common difference.

Question

The algebraic form an arithmetic sequence is $5 n+3$. Find the fist term and common difference .

Answer

Algebraic form $=x_{n}=5 n+3$
First term $=x_{1}=5 \times 1+3=8$
Second term $=x_{2}=5 \times 2+3=13$
Third term $=x_{3}=5 \times 3+3=18$
\therefore Arithmetic sequence is $8,13,18, \ldots$
Common difference $\left.d=\begin{array}{c}13-8 \\ 18-13 \\ \cdots\end{array}\right]=5$

Question

In the arithmetic sequence $\frac{1}{2}, ~ \frac{5}{6}, ~ \frac{7}{6}, ~ \frac{9}{6}, \ldots$
i) Find the algebraic form of the sequence.
ii)Prove that this sequence contains no natural numbers.

Answer

Common difference $d=x_{3}-x_{2}=\frac{7}{6}-\frac{5}{6}=\frac{2}{6}=\frac{1}{3}$
Algebraic form $=x_{n}=a n+b$ Where $a=d$ and $b=f-d$

$$
\begin{aligned}
& a=d=\frac{1}{3} \\
& b=f-d=\frac{1}{2}-\frac{1}{3}=\frac{3}{6}-\frac{2}{6}=\frac{1}{6}
\end{aligned}
$$

Algebraic form $=x_{n}=\frac{1}{3} n+\frac{1}{6}=\frac{2}{6} n+\frac{1}{6}=\frac{(2 n+1)}{6}$
In this sequence each term contains numerator as an odd number and denominator as an even number
Since odd numbers cannot have 2 as a factor,
$\frac{\text { Numerator }}{\text { Denominator }}=\frac{\text { Odd number }}{\text { Even number }}$ cannot be a natural number .
\therefore we get, the sequence contains no natural numbers .

Question

In the arithmetic sequence $\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \ldots$
i) Find the algebraic form of the sequence.
ii)Prove that this sequence contains all natural numbers. Answer
Common difference $d=x_{2}-x_{1}=\frac{2}{7}-\frac{1}{7}=\frac{1}{7}$
Algebraic form $=x_{n}=a n+b$ Where $a=d$ and $b=f-d$

$$
\begin{aligned}
& \mathbf{a}=\mathbf{d}=\frac{1}{7} \\
& \mathbf{b}=\mathbf{f}-\mathbf{d}=\frac{1}{7}-\frac{1}{7}=\mathbf{0}
\end{aligned}
$$

Algebraic form $=\mathbf{x}_{\mathrm{n}}=\frac{1}{7} \mathrm{n}+0=\frac{1}{7} \mathrm{n}$
When $n=7,14,21,28,35, \ldots$ we get all natural numbers as terms of this sequence .

Question

The $8^{\text {th }}$ term of an arithmetic sequence is 12 and $12^{\text {th }}$ term is 8 .What is the algebraic expression for this sequence?
Find the 20 ${ }^{\text {th }}$ term?

Answer

$8^{\text {th }}$ term $=x_{8}=12$
$12^{\text {th }}$ term $=x_{12}=8$
We have Common difference $=\frac{\text { Termdifference }}{\text { Positiondifference }}$

$$
\begin{gathered}
d=\frac{x_{12}-x_{8}}{12-8}=\frac{8-12}{12-8}=\frac{-4}{4}=-1 \\
f=x_{1}=x_{8}-7 d=12-7 \times-1=12+7=19
\end{gathered}
$$

Algebraic form $=x_{n}=a n+b$ Where $a=d$ and $b=f-d$

$$
a=d=-1
$$

$$
b=f-d=19-(-1)=19+1=20
$$

Algebraic form $=x_{n}=-1 n+20=20-n$
$20^{\text {th }}$ term $=20-20=0$

NOTE

If $m^{\text {th }}$ term of an arithmetic sequence is n and $n^{\text {th }}$ term is m. Then
i) Common difference $d=1$
ii) $(m+n)^{\text {th }}$ term $=x_{(m+m)}=0$

Question

Prove that the squares of all the terms of the arithmetic sequence $4,7,10, \ldots$ belong to the sequence .
Answer
Given arithmetic sequence is $4,7,10, \ldots$
Common difference $d=x_{2}-x_{1}=7-4=3$
1
$3 \longdiv { 4 }$
2
$3 \longdiv { 7 }$
$3 \begin{array}{r}3 \\ \hline \mathbf{1 0}\end{array}$
$\frac{3}{1}$
$\frac{6}{1}$
9

Here d=3 and each term divided by 3 gives remainder 1 .

Now squares of the terms are $4^{2}=16,7^{2}=49,10^{2}=100, \ldots$

$$
\begin{array}{rrr}
5 & \frac{16}{5} & 33 \\
3 \lcm{16} & 3 \longdiv { 4 9 } & 3 \longdiv { 1 0 0 } \\
\frac{15}{1} & \frac{48}{1} & \frac{99}{1}
\end{array}
$$

Here the squares of the terms of the sequence will also give remainder 1 when divided by 3 .
From this we get the squares of all the terms of the arithmetic sequence $4,7,10, \ldots$ belongs to the sequence .

OR
Algebraic form $=x_{n}=a n+b$ Where $a=d$ and $b=f-d$

$$
\begin{aligned}
& a=d=3 \\
& b=f-d=4-3=1
\end{aligned}
$$

Algebraic form $=x_{n}=3 n+1$
That is each term of the sequence is 1 added to a multiple of 3 . Now $x_{n}{ }^{2}=(3 n+1)^{2}=9 n^{2}+6 n+1=3\left(3 n^{2}+2 n\right)+1$ is also 1 added to a multiple of 3 .
From this we get the squares of all the terms of the arithmetic sequence $4,7,10, \ldots$ belongs to the sequence .

