Mathematics Online Class X On 01-07-2021

ARITHMETIC SEQUENCE Click

Answers of questions on previous class

1. In each of the arithmetic sequences below, some terms are missing and their positions are marked with \bigcirc . Find them. i) 24, 42, O, O, ... $\chi_2 - \chi_1 = (2-1)d$ d = 42 - 24 = 18R $\chi_3 = 42 + 18 = 60$ $\chi_4 = 60 + 18 = 78$ ii)(), 24, 42,(),... $\chi_3 - \chi_2 = (3-2)d$ d = 42 - 24 = 18 $x_1 = 24 - 18 = 6$ $x_4 = 42 + 18 = 60$ iii) $\bigcirc, \bigcirc, 24, 42, \ldots$ $\chi_4 - \chi_3 = (3-2)d$ - 24 = 18 $\chi_2 = 24 - 18 = 6$ $x_1 = 6 - 18 = -12$ $\chi_3 - \chi_1 = (3-1)d$ 2d = 42 - 24 = 18 $\therefore d = \frac{18}{2} = 9$ $I_2 = 24 + 9 = 33$ $x_4 = 42 + 9 = 51$ \mathbf{v}) $(\bigcirc, 24, \bigcirc, 42, \ldots)$ $\chi_4 - \chi_2 = (4-2)d$ 2d = 42 - 24 = 18 $\therefore d = \frac{18}{2} = 9$ $\chi_1 = 24 - 9 = 15$ $X_3 = 24 + 9 = 33$ vi) 24 , (), (), 42 , . . . $\chi_4 - \chi_1 = (4-1)d$ 3d = 42 - 24 = 18 $\therefore d = \frac{18}{3} = 6$ $\chi_2 = 24 + 6 = 30$ $\chi_3 = 30 + 6 = 36$

2. The terms in two positions of some arithmetic sequences are given below .Write the first five terms of each .

i)
$$3^{rd}$$
 term 34
 6^{th} term 67
 $\chi_6 \cdot \chi_3 = (6-3)d$ $3d = 67 - 34 = 33$ $\therefore d = \frac{33}{3} = 11$
 $\chi_1 = \chi_3 - 2d = 34 - 2 \times 11 = 34 - 22 = 12$
 $\chi_2 = 12 + 11 = 23$
 $\chi_3 = 23 + 11 = 34$
 $\chi_4 = 34 + 11 = 45$
 $\chi_5 = 45 + 11 = 56$
ii) 3^{rd} term 43
 6^{th} term 76
 $\chi_6 \cdot \chi_3 = (6-3)d$ $3d = 76 - 43 = 33$
 $\chi_1 = \chi_3 - 2d = 43 - 2 \times 11 = 43 - 22 = 21$
 $\chi_2 = 21 + 11 = 32$
 $\chi_3 = 32 + 11 = 43$
 $\chi_4 = 43 + 11 = 54$
 $\chi_5 = 54 + 11 = 65$
iii) 3^{rd} term 2
 5^{th} term 3
 $\chi_5 \cdot \chi_3 = (5-3)d$ $2d = 3 - 2 = 1$ $\therefore d = \frac{1}{2}$
 $\chi_1 = \chi_4 - 2d = 2 - 2 \times \frac{1}{2} = 2 - 1 = 1$
 $\chi_2 = 1 + \frac{1}{2} = 1 - \frac{1}{2}$
 $\chi_3 = 1 - \frac{1}{2} + \frac{1}{2} = 2$
 $\chi_4 = 2 + -\frac{1}{2} = 2 - \frac{1}{2}$
 $\chi_5 = 2 - \frac{1}{2} + -\frac{1}{2} = 3$
iv) 4^{th} term 2
 7^{th} term 3
 $\chi_7 \cdot \chi_4 = (7-4)d$ $3d = 3 - 2 = 1$ $\therefore d = \frac{1}{3}$
 $\chi_1 = \chi_4 - 3d = 2 - 3 \times -\frac{1}{3} = 2 - 1 = 1$

$$X_{2}=1 + \frac{1}{3} = 1 \frac{1}{3}$$

$$X_{3}=1 \frac{1}{3} + \frac{1}{3} = 1 \frac{2}{3}$$

$$X_{4}=1 \frac{2}{3} + \frac{1}{3} = 2 \frac{1}{3}$$

$$x_{5}=2 + \frac{1}{3} = 2 \frac{1}{3}$$
v) 2nd term 5
5th term 7
 $X_{5} - X_{2} = (5 - 2)d$ $3d = 2 - 5 = -3$ $\therefore d = \frac{-3}{3} = -1$
 $X_{1} = X_{2} - 1d = 5 - 1 \times -1 = 5 + 1 = 6$
 $X_{2} = 6 + (-1) = 5$
 $X_{3} = 5 + (-1) = 4$
 $X_{4} = 4 + (-1) = 3$
 $X_{5} = 3 + (-1) = 2$
3. The 5th term of an arithmetic sequence is 38 and 9th term is
66. What is its 25th term?
 $X_{5} = 38$ $X_{9} = 66$
 $X_{9} - X_{5} = (9 - 5)d$ $4d = 66 - 68 = 28$ $\therefore d = \frac{28}{4} = 7$
 $X_{20} = X_{9} + 16d = 66 + 16x7 = 66 + 112 = 178$
4. Is 101 a term of the arithmetic sequence 13, 24, 35, ...
What about 1001?
 $X_{1} = 13$ $d = 24 - 13 = 11$
101 - 13 = 88. Which is a multiple of common difference 11
 $\therefore 1001$ is not a term of this sequence.
Now
1001 - 13 = 988 Which is not a multiple of common difference 11
 $\therefore 1001$ is not a term of this sequence.
Fill each box with numbers such that each row and column must be
an arithmetic sequence .

Answer

Simply we can fill each box with natural numbers from 1 to 16

1	2	3	4	d = 1	10.1
5	6	7	8	d = 1	Here $\frac{16-1}{1} = 15$
9	10	11	12	d = 1	Total number of
13	14	15	16	d = 1	boxes= 15 + 1 = 16
d = 4	d = 4	d = 4	d = 4	-	ATTA

Here each row is an arithmetic sequence with common difference 1 and

each column is an arithmetic sequence with common difference 4. Question

Fill each box with numbers such that each row and column must be an arithmetic sequence .

Answer

Here two numbers are fixed.

We can simply we write continuous even natural numbers , we get

2	4	6	8	d = 2
10	12	14	16	d = 2
18	20	22	24	d = 2
26	28	30	32	d = 2
2	þ	þ	2	1
Ш	11	П	Ш	
00	00	00	00	

Here $\frac{32-2}{2} = 15$

Total number of boxes= 15 + 1 = 16

Here each row is an arithmetic sequence with common difference 2

and

each column is an arithmetic sequence with common difference 8. Question

Fill each box with numbers such that each row and column must be an arithmetic sequence .

Answer

Also

Here two numbers are fixed .

We can simply we write continuous odd natural numbers, we get,

	1	3	5	7	d = 2
	9	11	13	15	d = 2
	17	19	21	23	d = 2
	25	27	29	31	d = 2
		d	d =	d =	
				00	
×					
	00	00	00		
T		00	00		1
CONT.	1	3	5	7	
CONT	1 9	3 11	5 13	7 15	
CONT	1 9 17	3 11 19	5 13 21	7 15 23	
CONT	1 9 17 25	3 11 19 27	5 13 21 29	7 15 23 31	

Here $\frac{31 - 1}{2} = 15$

Total number of boxes= 15 + 1 = 16

Here we can see that the numbers in both the diagonals is also an arithmetic sequence .

From the above questions , we can see that $TOTAL NUMBER OF TERMS = \frac{LAST TERM - FIRST TERM}{COMMON DIFFERENCE} + 1$

Question

Fill up the empty cells of the given square such that the numbers in each row and column form an arithmetic sequences

Question

How many three digit numbers are there, which leave remainder 3 on division by 7?

OR

101, 108, 115, ..., 997. How many terms are there in this arithmetic sequence?

Answer

Three digit numbers which leave remainder 3 on division by 7 are 101, 108, 115, ..., 997.

 $\frac{997-101}{+1}$

This is an arithmetic sequence with first term 101 and last term 997 with common difference 7.

 $= \frac{896}{7} + 1$

= 128 + 1

= 129

TH JA.

$TOTAL NUMBER OF TERMS = \frac{LAST TERM - FIRST TERM}{COMMON DIFFERENCE}$

ASSIGNMENT

How many two digit numbers are there which leave a remainder 2 on division by 3?